ACS Publications. Most Trusted. Most Cited. Most Read
Forcefield_PTM: Ab Initio Charge and AMBER Forcefield Parameters for Frequently Occurring Post-Translational Modifications
My Activity

Figure 1Loading Img
    Article

    Forcefield_PTM: Ab Initio Charge and AMBER Forcefield Parameters for Frequently Occurring Post-Translational Modifications
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States
    *E-mail: [email protected]. Phone: 609-258-4595. Fax: 609-258-0211.
    Other Access OptionsSupporting Information (3)

    Journal of Chemical Theory and Computation

    Cite this: J. Chem. Theory Comput. 2013, 9, 12, 5653–5674
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ct400556v
    Published November 22, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    In this work, we introduce Forcefield_PTM, a set of AMBER forcefield parameters consistent with ff03 for 32 common post-translational modifications. Partial charges were calculated through ab initio calculations and a two-stage RESP-fitting procedure in an ether-like implicit solvent environment. The charges were found to be generally consistent with others previously reported for phosphorylated amino acids, and trimethyllysine, using different parametrization methods. Pairs of modified structures and their corresponding unmodified structures were curated from the PDB for both single and multiple modifications. Background structural similarity was assessed in the context of secondary and tertiary structures from the global data set. Next, the charges derived for Forcefield_PTM were tested on a macroscopic scale using unrestrained all-atom Langevin molecular dynamics simulations in AMBER for 34 (17 pairs of modified/unmodified) systems in implicit solvent. Assessment was performed in the context of secondary structure preservation, stability in energies, and correlations between the modified and unmodified structure trajectories on the aggregate. As an illustration of their utility, the parameters were used to compare the structural stability of the phosphorylated and dephosphorylated forms of OdhI. Microscopic comparisons between quantum and AMBER single point energies along key χ torsions on several PTMs were performed, and corrections to improve their agreement in terms of mean-squared errors and squared correlation coefficients were parametrized. This forcefield for post-translational modifications in condensed-phase simulations can be applied to a number of biologically relevant and timely applications including protein structure prediction, protein and peptide design, and docking and to study the effect of PTMs on folding and dynamics. We make the derived parameters and an associated interactive webtool capable of performing post-translational modifications on proteins using Forcefield_PTM available at http://selene.princeton.edu/FFPTM.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Instructions for importing new parameters into AMBER, forcefield parameters for each PTM grouped by scaffold residue, images of each parametrized PTM grouped by scaffold residue, an explanation of the methodology used to curate the pairs of modified and unmodified protein structures contained in the PDB, the identities of post-translationally modified proteins in the PDB as a function of the number of modifications, an explanation of how the background secondary and tertiary structure dissimilarity was assessed to establish background control levels, the methodology for filling in missing residues and homology modeling of the pairs of modified/unmodified proteins curated, a derivation of the restrained electrostatic potential (106) (for completion), energetic and structural statistics collected over the course of 5 ns all-atom MD simulations for 17 pairs of modified/unmodified structures, supplementary discussion on 2L5J/2L5I deviation in simulation, plots of energetics, secondary structure, and tertiary structure space sampled for pairs of modified/unmodified proteins, images of the torsion angles assessed using ab initio rotational profiles, and a forcefield file capable of being directly imported into AMBER. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 91 publications.

    1. Emile de Bruyn, Anton Emil Dorn, Giulia Rossetti, Claudio Fernandez, Tiago F. Outeiro, Jörg B. Schulz, Paolo Carloni. Impact of Phosphorylation on the Physiological Form of Human alpha-Synuclein in Aqueous Solution. Journal of Chemical Information and Modeling 2024, 64 (21) , 8215-8226. https://doi.org/10.1021/acs.jcim.4c01172
    2. Sophia M. Dewing, Tien M. Phan, Emma J. Kraft, Jeetain Mittal, Scott A. Showalter. Acetylation-Dependent Compaction of the Histone H4 Tail Ensemble. The Journal of Physical Chemistry B 2024, 128 (43) , 10636-10649. https://doi.org/10.1021/acs.jpcb.4c05701
    3. Matteo Castelli, Filippo Marchetti, Sílvia Osuna, A. Sofia F. Oliveira, Adrian J. Mulholland, Stefano A. Serapian, Giorgio Colombo. Decrypting Allostery in Membrane-Bound K-Ras4B Using Complementary In Silico Approaches Based on Unbiased Molecular Dynamics Simulations. Journal of the American Chemical Society 2024, 146 (1) , 901-919. https://doi.org/10.1021/jacs.3c11396
    4. Syed Jawad Ali Shah, Qianqian Zhang, Jingjing Guo, Hongli Liu, Huanxiang Liu, Jordi Villà-Freixa. Identification of Aggregation Mechanism of Acetylated PHF6* and PHF6 Tau Peptides Based on Molecular Dynamics Simulations and Markov State Modeling. ACS Chemical Neuroscience 2023, 14 (21) , 3959-3971. https://doi.org/10.1021/acschemneuro.3c00578
    5. Tasha B. Toro, Kiara E. Bornes, Terry J. Watt. Lysine Deacetylase Substrate Selectivity: Distinct Interaction Surfaces Drive Positive and Negative Selection for Residues Following Acetyllysine. Biochemistry 2023, 62 (9) , 1464-1483. https://doi.org/10.1021/acs.biochem.3c00001
    6. Ge Song, Bozitao Zhong, Bo Zhang, Ashfaq Ur Rehman, Hai-Feng Chen. Phosphorylation Modification Force Field FB18CMAP Improving Conformation Sampling of Phosphoproteins. Journal of Chemical Information and Modeling 2023, 63 (5) , 1602-1614. https://doi.org/10.1021/acs.jcim.3c00112
    7. Xiaokun Hong, Kaiyuan Song, Mueed Ur Rahman, Ting Wei, Yan Zhang, Lin-Tai Da, Hai-Feng Chen. Phosphorylation Regulation Mechanism of β2 Integrin for the Binding of Filamin Revealed by Markov State Model. Journal of Chemical Information and Modeling 2023, 63 (2) , 605-618. https://doi.org/10.1021/acs.jcim.2c01177
    8. Rojalin Pradhan, Sibarama Panigrahi, Prabhat K. Sahu. Conformational Search for the Building Block of Proteins Based on the Gradient Gravitational Search Algorithm (ConfGGS) Using Force Fields: CHARMM, AMBER, and OPLS-AA. Journal of Chemical Information and Modeling 2023, 63 (2) , 670-690. https://doi.org/10.1021/acs.jcim.2c01398
    9. Md. Shahadat Hossain, Zhe Zhang, Sudhat Ashok, Ashley R. Jenks, Christopher J. Lynch, James L. Hougland, Davoud Mozhdehi. Temperature-Responsive Nano-Biomaterials from Genetically Encoded Farnesylated Disordered Proteins. ACS Applied Bio Materials 2022, 5 (5) , 1846-1856. https://doi.org/10.1021/acsabm.1c01162
    10. John P. Stoppelman, Tracey T. Ng, Paul S. Nerenberg, Lee-Ping Wang. Development and Validation of AMBER-FB15-Compatible Force Field Parameters for Phosphorylated Amino Acids. The Journal of Physical Chemistry B 2021, 125 (43) , 11927-11942. https://doi.org/10.1021/acs.jpcb.1c07547
    11. Tasha B. Toro, Jordan S. Swanier, Jada A. Bezue, Christian G. Broussard, Terry J. Watt. Lysine Deacetylase Substrate Selectivity: A Dynamic Ionic Interaction Specific to KDAC8. Biochemistry 2021, 60 (33) , 2524-2536. https://doi.org/10.1021/acs.biochem.1c00384
    12. Anastasia Croitoru, Sang-Jun Park, Anmol Kumar, Jumin Lee, Wonpil Im, Alexander D. MacKerell, Jr., Alexey Aleksandrov. Additive CHARMM36 Force Field for Nonstandard Amino Acids. Journal of Chemical Theory and Computation 2021, 17 (6) , 3554-3570. https://doi.org/10.1021/acs.jctc.1c00254
    13. Junxi Mu, Hao Liu, Jian Zhang, Ray Luo, Hai-Feng Chen. Recent Force Field Strategies for Intrinsically Disordered Proteins. Journal of Chemical Information and Modeling 2021, 61 (3) , 1037-1047. https://doi.org/10.1021/acs.jcim.0c01175
    14. Clorice R. Reinhardt, Raquel Sequeira, Cecilia Tommos, Sharon Hammes-Schiffer. Computing Proton-Coupled Redox Potentials of Fluorotyrosines in a Protein Environment. The Journal of Physical Chemistry B 2021, 125 (1) , 128-136. https://doi.org/10.1021/acs.jpcb.0c09974
    15. Jingxiao Bao, Xiao He, John Z.H. Zhang. Development of a New Scoring Function for Virtual Screening: APBScore. Journal of Chemical Information and Modeling 2020, 60 (12) , 6355-6365. https://doi.org/10.1021/acs.jcim.0c00474
    16. Laura Pedraza-González, María Del Carmen Marín, Alejandro N. Jorge, Tyler D. Ruck, Xuchun Yang, Alessio Valentini, Massimo Olivucci, Luca De Vico. Web-ARM: A Web-Based Interface for the Automatic Construction of QM/MM Models of Rhodopsins. Journal of Chemical Information and Modeling 2020, 60 (3) , 1481-1493. https://doi.org/10.1021/acs.jcim.9b00615
    17. Ellen Rieloff, Marie Skepö. Phosphorylation of a Disordered Peptide—Structural Effects and Force Field Inconsistencies. Journal of Chemical Theory and Computation 2020, 16 (3) , 1924-1935. https://doi.org/10.1021/acs.jctc.9b01190
    18. Katherine R. Welker Leng, Carol Ann Castañeda, Christophe Decroos, Barira Islam, Shozeb M. Haider, David W. Christianson, Carol A. Fierke. Phosphorylation of Histone Deacetylase 8: Structural and Mechanistic Analysis of the Phosphomimetic S39E Mutant. Biochemistry 2019, 58 (45) , 4480-4493. https://doi.org/10.1021/acs.biochem.9b00653
    19. Martin Kulke, Myriam Uhrhan, Norman Geist, Dorothea Brüggemann, Bastian Ohler, Walter Langel, Susan Köppen. Phosphorylation of Fibronectin Influences the Structural Stability of the Predicted Interchain Domain. Journal of Chemical Information and Modeling 2019, 59 (10) , 4383-4392. https://doi.org/10.1021/acs.jcim.9b00555
    20. Jiří Vymětal, Veronika Jurásková, Jiří Vondrášek. AMBER and CHARMM Force Fields Inconsistently Portray the Microscopic Details of Phosphorylation. Journal of Chemical Theory and Computation 2019, 15 (1) , 665-679. https://doi.org/10.1021/acs.jctc.8b00715
    21. Ranganath Gopalakrishnan, Andrey I. Frolov, Laurent Knerr, William J. Drury, III, and Eric Valeur . Therapeutic Potential of Foldamers: From Chemical Biology Tools To Drug Candidates?. Journal of Medicinal Chemistry 2016, 59 (21) , 9599-9621. https://doi.org/10.1021/acs.jmedchem.6b00376
    22. Maxim V. Ivanov, Marat R. Talipov, and Qadir K. Timerghazin . Genetic Algorithm Optimization of Point Charges in Force Field Development: Challenges and Insights. The Journal of Physical Chemistry A 2015, 119 (8) , 1422-1434. https://doi.org/10.1021/acs.jpca.5b00218
    23. Ronald D. Gorham, Jr., David L. Forest, George A. Khoury, James Smadbeck, Consuelo N. Beecher, Evangeline D. Healy, Phanourios Tamamis, Georgios Archontis, Cynthia K. Larive, Christodoulos A. Floudas, Monte J. Radeke, Lincoln V. Johnson, and Dimitrios Morikis . New Compstatin Peptides Containing N-Terminal Extensions and Non-Natural Amino Acids Exhibit Potent Complement Inhibition and Improved Solubility Characteristics. Journal of Medicinal Chemistry 2015, 58 (2) , 814-826. https://doi.org/10.1021/jm501345y
    24. George A. Khoury, James Smadbeck, Phanourios Tamamis, Andrew C. Vandris, Chris A. Kieslich, and Christodoulos A. Floudas . Forcefield_NCAA: Ab Initio Charge Parameters to Aid in the Discovery and Design of Therapeutic Proteins and Peptides with Unnatural Amino Acids and Their Application to Complement Inhibitors of the Compstatin Family. ACS Synthetic Biology 2014, 3 (12) , 855-869. https://doi.org/10.1021/sb400168u
    25. Niels Hansen and Wilfred F. van Gunsteren . Practical Aspects of Free-Energy Calculations: A Review. Journal of Chemical Theory and Computation 2014, 10 (7) , 2632-2647. https://doi.org/10.1021/ct500161f
    26. Yuanqing Wang, Kenichiro Takaba, Michael S. Chen, Marcus Wieder, Yuzhi Xu, Tong Zhu, John Z. H. Zhang, Arnav Nagle, Kuang Yu, Xinyan Wang, Daniel J. Cole, Joshua A. Rackers, Kyunghyun Cho, Joe G. Greener, Peter Eastman, Stefano Martiniani, Mark E. Tuckerman. On the design space between molecular mechanics and machine learning force fields. Applied Physics Reviews 2025, 12 (2) https://doi.org/10.1063/5.0237876
    27. Mengdi Zhao, Jaeyoung Kim, Chunxian Guo, Joonkyung Jang. Distinct mechanisms for the underwater adhesions of Pvfp-5β and Mfp-5: A comparative all-atom molecular dynamics study. Surfaces and Interfaces 2025, 58 , 105847. https://doi.org/10.1016/j.surfin.2025.105847
    28. Balazs Balega, Michael Beer, James Spencer, Giorgio Colombo, Stefano A. Serapian, A. Sofia F. Oliveira, Adrian J. Mulholland. Dynamical nonequilibrium molecular dynamics simulations reveal allosteric networks, signal transduction mechanisms, and sites associated with drug resistance in biomolecular systems. Molecular Physics 2024, 6 https://doi.org/10.1080/00268976.2024.2428350
    29. Kenichiro Takaba, Anika J. Friedman, Chapin E. Cavender, Pavan Kumar Behara, Iván Pulido, Michael M. Henry, Hugo MacDermott-Opeskin, Christopher R. Iacovella, Arnav M. Nagle, Alexander Matthew Payne, Michael R. Shirts, David L. Mobley, John D. Chodera, Yuanqing Wang. Machine-learned molecular mechanics force fields from large-scale quantum chemical data. Chemical Science 2024, 15 (32) , 12861-12878. https://doi.org/10.1039/D4SC00690A
    30. Anastasiia S. Fedulova, Grigoriy A. Armeev, Tatiana A. Romanova, Lovepreet Singh‐Palchevskaia, Nikita A. Kosarim, Nikita A. Motorin, Galina A. Komarova, Alexey K. Shaytan. Molecular dynamics simulations of nucleosomes are coming of age. WIREs Computational Molecular Science 2024, 14 (4) https://doi.org/10.1002/wcms.1728
    31. Sonja Grubišić, Ivana Đorđević, Dragan M. Popović. Optimization of Non-Polarizable and Polarizable Force Fields and Their Application to Model Compounds. 2024, 964-986. https://doi.org/10.1016/B978-0-12-821978-2.00117-3
    32. Winner Amaka Egejuru, Olajide Enoch Aderemi, Abel Ujaigbe Egbemhenghe, Muhammad Qasim Ali, Dolapo Emmanuel Opasina, Cyril Obaro Agadagba, Emmanuel Parkay Oladokun, Ibrahim Tope Abdulrazaq, Maryam Folake Ayinla, Abiodun Bamidele, Olamide Oluwagbeminiyi Alayemi, Latifat Akorede Adebowale, Folakemi Monsurat Adebayo, Bamidele Samson Omotara. Identification of novel immuno-oncology compounds as VISTA-inhibitors for cancer therapy: A computational approach integrating virtual screening and molecular dynamics simulation. Informatics in Medicine Unlocked 2024, 46 , 101461. https://doi.org/10.1016/j.imu.2024.101461
    33. Yue Wang, Haodong Shao, Chengxu Zhang, Feng Liu, Jianqiang Zhao, Sanyuan Zhu, Michael K.H. Leung, Jue Hu. Molecular dynamics for electrocatalysis: Mechanism explanation and performance prediction. Energy Reviews 2023, 2 (3) , 100028. https://doi.org/10.1016/j.enrev.2023.100028
    34. Amirhossein Mafi, Soo-Kyung Kim, William A. Goddard. The dynamics of agonist-β2-adrenergic receptor activation induced by binding of GDP-bound Gs protein. Nature Chemistry 2023, 15 (8) , 1127-1137. https://doi.org/10.1038/s41557-023-01238-6
    35. Sang-Jun Park, Nathan Kern, Turner Brown, Jumin Lee, Wonpil Im. CHARMM-GUI PDB Manipulator: Various PDB Structural Modifications for Biomolecular Modeling and Simulation. Journal of Molecular Biology 2023, 435 (14) , 167995. https://doi.org/10.1016/j.jmb.2023.167995
    36. Kerlen T. Korbeld, Maximilian J. L. J. Fürst. Curse and Blessing of Non‐Proteinogenic Parts in Computational Enzyme Engineering. ChemBioChem 2023, 24 (12) https://doi.org/10.1002/cbic.202300192
    37. Manuel Deubler, Lucas Weißenborn, Simon Leukel, Anselm H. C. Horn, Jutta Eichler, Heinrich Sticht. Computational Characterization of the Binding Properties of the HIV1-Neutralizing Antibody PG16 and Design of PG16-Derived CDRH3 Peptides. Biology 2023, 12 (6) , 824. https://doi.org/10.3390/biology12060824
    38. Ruzanna Shkhyan, Candace Flynn, Emma Lamoure, Arijita Sarkar, Benjamin Van Handel, Jinxiu Li, Jesse York, Nicholas Banks, Robert Van der Horst, Nancy Q. Liu, Siyoung Lee, Paul Bajaj, Kanagasabai Vadivel, Hans I.-Chen Harn, Jade Tassey, Thomas Lozito, Jay R. Lieberman, Cheng-Ming Chuong, Mark S. Hurtig, Denis Evseenko. Inhibition of a signaling modality within the gp130 receptor enhances tissue regeneration and mitigates osteoarthritis. Science Translational Medicine 2023, 15 (688) https://doi.org/10.1126/scitranslmed.abq2395
    39. Matthew Carter Childers, Valerie Daggett. Molecular Dynamics Methods for Antibody Design. 2023, 109-124. https://doi.org/10.1007/978-1-0716-2609-2_5
    40. Austin T. Weigle, Jiangyan Feng, Diwakar Shukla. Thirty years of molecular dynamics simulations on posttranslational modifications of proteins. Physical Chemistry Chemical Physics 2022, 24 (43) , 26371-26397. https://doi.org/10.1039/D2CP02883B
    41. Yuanqing Wang, Josh Fass, Benjamin Kaminow, John E. Herr, Dominic Rufa, Ivy Zhang, Iván Pulido, Mike Henry, Hannah E. Bruce Macdonald, Kenichiro Takaba, John D. Chodera. End-to-end differentiable construction of molecular mechanics force fields. Chemical Science 2022, 13 (41) , 12016-12033. https://doi.org/10.1039/D2SC02739A
    42. Liwei Chang, Arup Mondal, Alberto Perez. Towards rational computational peptide design. Frontiers in Bioinformatics 2022, 2 https://doi.org/10.3389/fbinf.2022.1046493
    43. Bozitao Zhong, Ge Song, Hai-Feng Chen. Balanced Force Field ff03CMAP Improving the Dynamics Conformation Sampling of Phosphorylation Site. International Journal of Molecular Sciences 2022, 23 (19) , 11285. https://doi.org/10.3390/ijms231911285
    44. Syed Jawad Ali Shah, Haiyang Zhong, Qianqian Zhang, Huanxiang Liu. Deciphering the Effect of Lysine Acetylation on the Misfolding and Aggregation of Human Tau Fragment 171IPAKTPPAPK180 Using Molecular Dynamic Simulation and the Markov State Model. International Journal of Molecular Sciences 2022, 23 (5) , 2399. https://doi.org/10.3390/ijms23052399
    45. Xing-Xing Shi, Zhi-Zheng Wang, Yu-Liang Wang, Guang-Yi Huang, Jing-Fang Yang, Fan Wang, Ge-Fei Hao, Guang-Fu Yang. PTMdyna: exploring the influence of post-translation modifications on protein conformational dynamics. Briefings in Bioinformatics 2022, 23 (1) https://doi.org/10.1093/bib/bbab424
    46. Junxi Mu, Jiali Zhou, Qingqiu Gong, Qin Xu. An allosteric regulation mechanism of Arabidopsis Serine/Threonine kinase 1 (SIK1) through phosphorylation. Computational and Structural Biotechnology Journal 2022, 20 , 368-379. https://doi.org/10.1016/j.csbj.2021.12.033
    47. Yunhui Peng, Shuxiang Li, Alexey Onufriev, David Landsman, Anna R. Panchenko. Binding of regulatory proteins to nucleosomes is modulated by dynamic histone tails. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-25568-6
    48. Venkatesh P. Mysore, Zhi-Wei Zhou, Chiara Ambrogio, Lianbo Li, Jonas N. Kapp, Chunya Lu, Qi Wang, Maxwell R. Tucker, Jeffrey J. Okoro, Gabriela Nagy-Davidescu, Xiaochen Bai, Andreas Plückthun, Pasi A. Jänne, Kenneth D. Westover, Yibing Shan, David E. Shaw. A structural model of a Ras–Raf signalosome. Nature Structural & Molecular Biology 2021, 28 (10) , 847-857. https://doi.org/10.1038/s41594-021-00667-6
    49. Nikolina Šoštarić, Vera van Noort, . Molecular dynamics shows complex interplay and long-range effects of post-translational modifications in yeast protein interactions. PLOS Computational Biology 2021, 17 (5) , e1008988. https://doi.org/10.1371/journal.pcbi.1008988
    50. Theodora Myrto Perdikari, Nina Jovic, Gregory L. Dignon, Young C. Kim, Nicolas L. Fawzi, Jeetain Mittal. A predictive coarse-grained model for position-specific effects of post-translational modifications. Biophysical Journal 2021, 120 (7) , 1187-1197. https://doi.org/10.1016/j.bpj.2021.01.034
    51. Veronica H Ryan, Theodora M Perdikari, Mandar T Naik, Camillo F Saueressig, Jeremy Lins, Gregory L Dignon, Jeetain Mittal, Anne C Hart, Nicolas L Fawzi. Tyrosine phosphorylation regulates hnRNPA2 granule protein partitioning and reduces neurodegeneration. The EMBO Journal 2021, 40 (3) https://doi.org/10.15252/embj.2020105001
    52. Kristen Scopino, Carol Dalgarno, Clara Nachmanoff, Daniel Krizanc, Kelly M. Thayer, Michael P. Weir. Arginine Methylation Regulates Ribosome CAR Function. International Journal of Molecular Sciences 2021, 22 (3) , 1335. https://doi.org/10.3390/ijms22031335
    53. Quan Wang, Wen-Cheng Zhao, Xue-Qi Fu, Qing-Chuan Zheng. Exploring the Distinct Binding and Activation Mechanisms for Different CagA Oncoproteins and SHP2 by Molecular Dynamics Simulations. Molecules 2021, 26 (4) , 837. https://doi.org/10.3390/molecules26040837
    54. Martin Kulke, Felix Nagel, Lukas Schulig, Norman Geist, Marcel Gabor, Julia Mayerle, Markus M Lerch, Andreas Link, Mihaela Delcea. A Hypothesized Mechanism for Chronic Pancreatitis Caused by the N34S Mutation of Serine Protease Inhibitor Kazal-Type 1 Based on Conformational Studies. Journal of Inflammation Research 2021, Volume 14 , 2111-2119. https://doi.org/10.2147/JIR.S304787
    55. Li Ren Kong, Richard Weijie Ong, Tuan Zea Tan, Nur Afiqah Binte Mohamed Salleh, Matan Thangavelu, Jane Vin Chan, Lie Yong Judice Koh, Giridharan Periyasamy, Jieying Amelia Lau, Thi Bich Uyen Le, Lingzhi Wang, Miyoung Lee, Srinivasaraghavan Kannan, Chandra S. Verma, Chwee Ming Lim, Wee Joo Chng, David P. Lane, Ashok Venkitaraman, Huynh The Hung, Chit Fang Cheok, Boon Cher Goh. Targeting codon 158 p53-mutant cancers via the induction of p53 acetylation. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-15608-y
    56. Stefan M. Ivanov, Mariyana Atanasova, Ivan Dimitrov, Irini A. Doytchinova. Cellular polyamines condense hyperphosphorylated Tau, triggering Alzheimer’s disease. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-67119-x
    57. Quan Wang, Wen-Cheng Zhao, Xue-Qi Fu, Qing-Chuan Zheng. Exploring the Allosteric Mechanism of Src Homology-2 Domain-Containing Protein Tyrosine Phosphatase 2 (SHP2) by Molecular Dynamics Simulations. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.597495
    58. Filip Zmuda, Luke H. Chamberlain. Regulatory effects of post-translational modifications on zDHHC S-acyltransferases. Journal of Biological Chemistry 2020, 295 (43) , 14640-14652. https://doi.org/10.1074/jbc.REV120.014717
    59. Corazon Ericka Mae M. Itang, Jokent T. Gaza, Dan Jethro M. Masacupan, Dessa Camille R. Batoctoy, Yu-Ju Chen, Ricky B. Nellas, Eizadora T. Yu. Identification of Conomarphin Variants in the Conus eburneus Venom and the Effect of Sequence and PTM Variations on Conomarphin Conformations. Marine Drugs 2020, 18 (10) , 503. https://doi.org/10.3390/md18100503
    60. Ravi Jain, Pinki Dey, Sakshi Gupta, Soumya Pati, Arnab Bhattacherjee, Manoj Munde, Shailja Singh. Molecular dynamics simulations and biochemical characterization of Pf 14-3-3 and Pf CDPK1 interaction towards its role in growth of human malaria parasite. Biochemical Journal 2020, 477 (12) , 2153-2177. https://doi.org/10.1042/BCJ20200145
    61. Martin Kulke, Walter Langel. Molecular dynamics simulations to the bidirectional adhesion signaling pathway of integrin α V β 3. Proteins: Structure, Function, and Bioinformatics 2020, 88 (5) , 679-688. https://doi.org/10.1002/prot.25849
    62. Mengdi Zhao, Liyi Bai, Joonkyung Jang. Underwater adhesion of mussel foot protein on a graphite surface. Applied Surface Science 2020, 511 , 145589. https://doi.org/10.1016/j.apsusc.2020.145589
    63. Jason M. Held. Redox Systems Biology: Harnessing the Sentinels of the Cysteine Redoxome. Antioxidants & Redox Signaling 2020, 32 (10) , 659-676. https://doi.org/10.1089/ars.2019.7725
    64. Amirhossein Mafi, Soo-Kyung Kim, William A. Goddard. The atomistic level structure for the activated human κ-opioid receptor bound to the full Gi protein and the MP1104 agonist. Proceedings of the National Academy of Sciences 2020, 117 (11) , 5836-5843. https://doi.org/10.1073/pnas.1910006117
    65. Paolo Calligari, Mauro Torsello, Marco Bortoli, Laura Orian, Antonino Polimeno. Modelling of Ca 2+ -promoted structural effects in wild type and post-translationally modified Connexin26. Molecular Simulation 2020, 46 (3) , 235-245. https://doi.org/10.1080/08927022.2019.1690653
    66. Nupur Bansal, Simone Sciabola, Govinda Bhisetti. Understanding allosteric interactions in hMLKL protein that modulate necroptosis and its inhibition. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-53078-5
    67. Havva Yalinca, Charlotte Julie Caroline Gehin, Vladimiras Oleinikovas, Hilal A. Lashuel, Francesco Luigi Gervasio, Annalisa Pastore. The Role of Post-translational Modifications on the Energy Landscape of Huntingtin N-Terminus. Frontiers in Molecular Biosciences 2019, 6 https://doi.org/10.3389/fmolb.2019.00095
    68. Wei Yang, Qi Zhang, Changsheng Zhang, Annan Guo, Yanyan Wang, Hantian You, Xiaoling Zhang, Luhua Lai. Computational design and optimization of novel d ‐peptide TNF α inhibitors. FEBS Letters 2019, 593 (12) , 1292-1302. https://doi.org/10.1002/1873-3468.13444
    69. Gregory L Dignon, Wenwei Zheng, Jeetain Mittal. Simulation methods for liquid–liquid phase separation of disordered proteins. Current Opinion in Chemical Engineering 2019, 23 , 92-98. https://doi.org/10.1016/j.coche.2019.03.004
    70. Pavel Semenyuk, Vladimir Muronetz. Protein Interaction with Charged Macromolecules: From Model Polymers to Unfolded Proteins and Post-Translational Modifications. International Journal of Molecular Sciences 2019, 20 (5) , 1252. https://doi.org/10.3390/ijms20051252
    71. Andrew J. Schaub, Gabriel O. Moreno, Shiji Zhao, Hau V. Truong, Ray Luo, Shiou-Chuan Tsai. Computational structural enzymology methodologies for the study and engineering of fatty acid synthases, polyketide synthases and nonribosomal peptide synthetases. 2019, 375-409. https://doi.org/10.1016/bs.mie.2019.03.001
    72. Anthea Di Rita, Angelo Peschiaroli, Pasquale D′Acunzo, Daniela Strobbe, Zehan Hu, Jens Gruber, Mads Nygaard, Matteo Lambrughi, Gerry Melino, Elena Papaleo, Jörn Dengjel, Said El Alaoui, Michelangelo Campanella, Volker Dötsch, Vladimir V. Rogov, Flavie Strappazzon, Francesco Cecconi. HUWE1 E3 ligase promotes PINK1/PARKIN-independent mitophagy by regulating AMBRA1 activation via IKKα. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-05722-3
    73. Nikolina Šoštarić, Francis J. O'Reilly, Piero Giansanti, Albert J.R. Heck, Anne-Claude Gavin, Vera van Noort. Effects of Acetylation and Phosphorylation on Subunit Interactions in Three Large Eukaryotic Complexes. Molecular & Cellular Proteomics 2018, 17 (12) , 2387-2401. https://doi.org/10.1074/mcp.RA118.000892
    74. Gilles Lamothe, Thérèse E. Malliavin. re-TAMD: exploring interactions between H3 peptide and YEATS domain using enhanced sampling. BMC Structural Biology 2018, 18 (1) https://doi.org/10.1186/s12900-018-0083-6
    75. Asuka A. Orr, Juan C. Gonzalez-Rivera, Mark Wilson, P. Reena Bhikha, Daiqi Wang, Lydia M. Contreras, Phanourios Tamamis. A high-throughput and rapid computational method for screening of RNA post-transcriptional modifications that can be recognized by target proteins. Methods 2018, 143 , 34-47. https://doi.org/10.1016/j.ymeth.2018.01.015
    76. Xue-Song Wang, Qing-Chuan Zheng. Theoretical research in structure characteristics of different inhibitors and differences of binding modes with CBP bromodomain. Bioorganic & Medicinal Chemistry 2018, 26 (3) , 712-720. https://doi.org/10.1016/j.bmc.2017.12.040
    77. Veronica H. Ryan, Gregory L. Dignon, Gül H. Zerze, Charlene V. Chabata, Rute Silva, Alexander E. Conicella, Joshua Amaya, Kathleen A. Burke, Jeetain Mittal, Nicolas L. Fawzi. Mechanistic View of hnRNPA2 Low-Complexity Domain Structure, Interactions, and Phase Separation Altered by Mutation and Arginine Methylation. Molecular Cell 2018, 69 (3) , 465-479.e7. https://doi.org/10.1016/j.molcel.2017.12.022
    78. Jing Huang, Alexander D MacKerell. Force field development and simulations of intrinsically disordered proteins. Current Opinion in Structural Biology 2018, 48 , 40-48. https://doi.org/10.1016/j.sbi.2017.10.008
    79. Yang Zhou, Muzammal Hussain, Guanglin Kuang, Jiancun Zhang, Yaoquan Tu. Mechanistic insights into peptide and ligand binding of the ATAD2-bromodomain via atomistic simulations disclosing a role of induced fit and conformational selection. Physical Chemistry Chemical Physics 2018, 20 (36) , 23222-23232. https://doi.org/10.1039/C8CP03860K
    80. Ruth Hendus-Altenburger, Matteo Lambrughi, Thilde Terkelsen, Stine F. Pedersen, Elena Papaleo, Kresten Lindorff-Larsen, Birthe B. Kragelund. A phosphorylation-motif for tuneable helix stabilisation in intrinsically disordered proteins – Lessons from the sodium proton exchanger 1 (NHE1). Cellular Signalling 2017, 37 , 40-51. https://doi.org/10.1016/j.cellsig.2017.05.015
    81. Shuangyan Zhou, Qianqian Wang, Mengdan Ren, Ai Zhang, Huanxiang Liu, Xiaojun Yao. Molecular dynamics simulation on the inhibition mechanism of peptide‐based inhibitor of islet amyloid polypeptide ( IAPP ) to islet amyloid polypeptide ( IAPP 22–28 ) oligomers. Chemical Biology & Drug Design 2017, 90 (1) , 31-39. https://doi.org/10.1111/cbdd.12924
    82. Niels H Skotte, Shaun S Sanders, Roshni R Singaraja, Dagmar E Ehrnhoefer, Kuljeet Vaid, Xiaofan Qiu, Srinivasaragavan Kannan, Chandra Verma, Michael R Hayden. Palmitoylation of caspase-6 by HIP14 regulates its activation. Cell Death & Differentiation 2017, 24 (3) , 433-444. https://doi.org/10.1038/cdd.2016.139
    83. Neha S. Gandhi, Predrag Kukic, Guy Lippens, Ricardo L. Mancera. Molecular Dynamics Simulation of Tau Peptides for the Investigation of Conformational Changes Induced by Specific Phosphorylation Patterns. 2017, 33-59. https://doi.org/10.1007/978-1-4939-6598-4_3
    84. Sarah R. Needham, Selene K. Roberts, Anton Arkhipov, Venkatesh P. Mysore, Christopher J. Tynan, Laura C. Zanetti-Domingues, Eric T. Kim, Valeria Losasso, Dimitrios Korovesis, Michael Hirsch, Daniel J. Rolfe, David T. Clarke, Martyn D. Winn, Alireza Lajevardipour, Andrew H. A. Clayton, Linda J. Pike, Michela Perani, Peter J. Parker, Yibing Shan, David E. Shaw, Marisa L. Martin-Fernandez. EGFR oligomerization organizes kinase-active dimers into competent signalling platforms. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms13307
    85. Deepika Mathur, Satya Prakash, Priya Anand, Harpreet Kaur, Piyush Agrawal, Ayesha Mehta, Rajesh Kumar, Sandeep Singh, Gajendra P. S. Raghava. PEPlife: A Repository of the Half-life of Peptides. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep36617
    86. Quan Wang, Qing‐Chuan Zheng, Hong‐Xing Zhang. Exploring the mechanism how AF9 recognizes and binds H3K9ac by molecular dynamics simulations and free energy calculations. Biopolymers 2016, 105 (11) , 779-786. https://doi.org/10.1002/bip.22896
    87. Sandeep Singh, Kumardeep Chaudhary, Sandeep Kumar Dhanda, Sherry Bhalla, Salman Sadullah Usmani, Ankur Gautam, Abhishek Tuknait, Piyush Agrawal, Deepika Mathur, Gajendra P.S. Raghava. SATPdb: a database of structurally annotated therapeutic peptides. Nucleic Acids Research 2016, 44 (D1) , D1119-D1126. https://doi.org/10.1093/nar/gkv1114
    88. Piyush Agrawal, Sherry Bhalla, Salman Sadullah Usmani, Sandeep Singh, Kumardeep Chaudhary, Gajendra P. S. Raghava, Ankur Gautam. CPPsite 2.0: a repository of experimentally validated cell-penetrating peptides. Nucleic Acids Research 2016, 44 (D1) , D1098-D1103. https://doi.org/10.1093/nar/gkv1266
    89. Sandeep Singh, Harinder Singh, Abhishek Tuknait, Kumardeep Chaudhary, Balvinder Singh, S. Kumaran, Gajendra P. S. Raghava. PEPstrMOD: structure prediction of peptides containing natural, non-natural and modified residues. Biology Direct 2015, 10 (1) https://doi.org/10.1186/s13062-015-0103-4
    90. Atul Tyagi, Abhishek Tuknait, Priya Anand, Sudheer Gupta, Minakshi Sharma, Deepika Mathur, Anshika Joshi, Sandeep Singh, Ankur Gautam, Gajendra P.S. Raghava. CancerPPD: a database of anticancer peptides and proteins. Nucleic Acids Research 2015, 43 (D1) , D837-D843. https://doi.org/10.1093/nar/gku892
    91. George A. Khoury, Nikita Bhatia, Christodoulos A. Floudas. Hydration free energies calculated using the AMBER ff03 charge model for natural and unnatural amino acids and multiple water models. Computers & Chemical Engineering 2014, 71 , 745-752. https://doi.org/10.1016/j.compchemeng.2014.07.017

    Journal of Chemical Theory and Computation

    Cite this: J. Chem. Theory Comput. 2013, 9, 12, 5653–5674
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ct400556v
    Published November 22, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    3269

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.