ACS Publications. Most Trusted. Most Cited. Most Read
Incremental CCSD(T)(F12*)|MP2: A Black Box Method To Obtain Highly Accurate Reaction Energies
My Activity

Figure 1Loading Img
    Article

    Incremental CCSD(T)(F12*)|MP2: A Black Box Method To Obtain Highly Accurate Reaction Energies
    Click to copy article linkArticle link copied!

    View Author Information
    Institute for Chemistry, Chemnitz University of Technology, Straße der Nationen 62, 09111 Chemnitz, Germany
    Other Access OptionsSupporting Information (1)

    Journal of Chemical Theory and Computation

    Cite this: J. Chem. Theory Comput. 2013, 9, 12, 5381–5394
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ct4008074
    Published November 18, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    In this work we present a new partitioning scheme for the incremental approach in combination with the efficient (F12*) approximation for explicitly correlated coupled cluster (J. Chem. Phys.2010, 132, 231102). Furthermore we establish a black-box truncation scheme which provides chemical accuracy for the absolute energies of 81 molecules and 51 reaction energies. The errors in the absolute CCSD(T)/cc-pVTZ-F12 energies due to the local approximations are characterized by mean = −0.24 kJ/mol, σ = 0.49 kJ/mol, mae = 0.37 kJ/mol, rmsd = 0.54 kJ/mol, and range = 3.63 kJ/mol. For the reaction energies we find mean = 0.07 kJ/mol, σ = 0.49 kJ/mol, mae = 0.33 kJ/mol, rmsd = 0.49 kJ/mol, and range = 2.40 kJ/mol. On the basis of these findings it is evident that the incremental scheme provides highly accurate CCSD(T) energies of benchmark quality.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Reaction energies and the corresponding errors for all methods discussed in the text. Furthermore, the absolute energies of the incremental CCSD(T)(F12*) expansions. Finally, all coordinates of the molecular structures are included in atomic units. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 80 publications.

    1. Montgomery Gray, Aniket Mandal, John M. Herbert. Revisiting the Half-and-Half Functional. The Journal of Physical Chemistry A 2025, Article ASAP.
    2. Yu Hsuan Liang, Xing Zhang, Garnet Kin-Lic Chan, Timothy C. Berkelbach, Hong-Zhou Ye. Efficient Implementation of the Random Phase Approximation with Domain-Based Local Pair Natural Orbitals. Journal of Chemical Theory and Computation 2025, 21 (6) , 2918-2927. https://doi.org/10.1021/acs.jctc.4c01540
    3. Yangyang Song, Ning Zhang, Yibo Lei, Yang Guo, Wenjian Liu. QUEST#4X: An Extension of QUEST#4 for Benchmarking Multireference Wave Function Methods. Journal of Chemical Theory and Computation 2025, 21 (3) , 1119-1135. https://doi.org/10.1021/acs.jctc.4c01143
    4. Hans-Joachim Werner, Andreas Hansen. Local Wave Function Embedding: Correlation Regions in PNO-LCCSD(T)-F12 Calculations. The Journal of Physical Chemistry A 2024, 128 (50) , 10936-10947. https://doi.org/10.1021/acs.jpca.4c06852
    5. Hans-Joachim Werner, Andreas Hansen. Accurate Calculation of Isomerization and Conformational Energies of Larger Molecules Using Explicitly Correlated Local Coupled Cluster Methods in Molpro and ORCA. Journal of Chemical Theory and Computation 2023, 19 (20) , 7007-7030. https://doi.org/10.1021/acs.jctc.3c00270
    6. Daniel Graf, Alex J. W. Thom. Simple and Efficient Route toward Improved Energetics within the Framework of Density-Corrected Density Functional Theory. Journal of Chemical Theory and Computation 2023, 19 (16) , 5427-5438. https://doi.org/10.1021/acs.jctc.3c00441
    7. Nisha Mehta, Jan M. L. Martin. Reduced-Scaling Double Hybrid Density Functional Theory with Rapid Basis Set Convergence through Localized Pair Natural Orbital F12. The Journal of Physical Chemistry Letters 2022, 13 (40) , 9332-9338. https://doi.org/10.1021/acs.jpclett.2c02620
    8. Nisha Mehta, Jan M. L. Martin. Explicitly Correlated Double-Hybrid DFT: A Comprehensive Analysis of the Basis Set Convergence on the GMTKN55 Database. Journal of Chemical Theory and Computation 2022, 18 (10) , 5978-5991. https://doi.org/10.1021/acs.jctc.2c00426
    9. Viki Kumar Prasad, Alberto Otero-de-la-Roza, Gino A. DiLabio. Small-Basis Set Density-Functional Theory Methods Corrected with Atom-Centered Potentials. Journal of Chemical Theory and Computation 2022, 18 (5) , 2913-2930. https://doi.org/10.1021/acs.jctc.2c00036
    10. Qianli Ma, Hans-Joachim Werner. Scalable Electron Correlation Methods. 8. Explicitly Correlated Open-Shell Coupled-Cluster with Pair Natural Orbitals PNO-RCCSD(T)-F12 and PNO-UCCSD(T)-F12. Journal of Chemical Theory and Computation 2021, 17 (2) , 902-926. https://doi.org/10.1021/acs.jctc.0c01129
    11. Zack M. Williams, Timothy C. Wiles, Frederick R. Manby. Accurate Hybrid Density Functionals with UW12 Correlation. Journal of Chemical Theory and Computation 2020, 16 (10) , 6176-6194. https://doi.org/10.1021/acs.jctc.0c00442
    12. Qianli Ma, Hans-Joachim Werner. Scalable Electron Correlation Methods. 7. Local Open-Shell Coupled-Cluster Methods Using Pair Natural Orbitals: PNO-RCCSD and PNO-UCCSD. Journal of Chemical Theory and Computation 2020, 16 (5) , 3135-3151. https://doi.org/10.1021/acs.jctc.0c00192
    13. Dominique A. Wappett, Lars Goerigk. Toward a Quantum-Chemical Benchmark Set for Enzymatically Catalyzed Reactions: Important Steps and Insights. The Journal of Physical Chemistry A 2019, 123 (32) , 7057-7074. https://doi.org/10.1021/acs.jpca.9b05088
    14. Asim Najibi, Lars Goerigk. The Nonlocal Kernel in van der Waals Density Functionals as an Additive Correction: An Extensive Analysis with Special Emphasis on the B97M-V and ωB97M-V Approaches. Journal of Chemical Theory and Computation 2018, 14 (11) , 5725-5738. https://doi.org/10.1021/acs.jctc.8b00842
    15. Benjamin Fiedler, Daniel Himmel, Ingo Krossing, and Joachim Friedrich . More Stable Template Localization for an Incremental Focal-Point Approach—Implementation and Application to the Intramolecular Decomposition of Tris-perfluoro-tert-butoxyalane. Journal of Chemical Theory and Computation 2018, 14 (2) , 557-571. https://doi.org/10.1021/acs.jctc.7b00707
    16. Qianli Ma and Hans-Joachim Werner . Scalable Electron Correlation Methods. 5. Parallel Perturbative Triples Correction for Explicitly Correlated Local Coupled Cluster with Pair Natural Orbitals. Journal of Chemical Theory and Computation 2018, 14 (1) , 198-215. https://doi.org/10.1021/acs.jctc.7b01141
    17. Benjamin Fiedler, Gunnar Schmitz, Christof Hättig, and Joachim Friedrich . Combining Accuracy and Efficiency: An Incremental Focal-Point Method Based on Pair Natural Orbitals. Journal of Chemical Theory and Computation 2017, 13 (12) , 6023-6042. https://doi.org/10.1021/acs.jctc.7b00654
    18. Qianli Ma, Max Schwilk, Christoph Köppl, and Hans-Joachim Werner . Scalable Electron Correlation Methods. 4. Parallel Explicitly Correlated Local Coupled Cluster with Pair Natural Orbitals (PNO-LCCSD-F12). Journal of Chemical Theory and Computation 2017, 13 (10) , 4871-4896. https://doi.org/10.1021/acs.jctc.7b00799
    19. Max Schwilk, Qianli Ma, Christoph Köppl, and Hans-Joachim Werner . Scalable Electron Correlation Methods. 3. Efficient and Accurate Parallel Local Coupled Cluster with Pair Natural Orbitals (PNO-LCCSD). Journal of Chemical Theory and Computation 2017, 13 (8) , 3650-3675. https://doi.org/10.1021/acs.jctc.7b00554
    20. Gunnar Schmitz and Christof Hättig . Accuracy of Explicitly Correlated Local PNO-CCSD(T). Journal of Chemical Theory and Computation 2017, 13 (6) , 2623-2633. https://doi.org/10.1021/acs.jctc.7b00180
    21. Mateusz Marianski, Adriana Supady, Teresa Ingram, Markus Schneider, and Carsten Baldauf . Assessing the Accuracy of Across-the-Scale Methods for Predicting Carbohydrate Conformational Energies for the Examples of Glucose and α-Maltose. Journal of Chemical Theory and Computation 2016, 12 (12) , 6157-6168. https://doi.org/10.1021/acs.jctc.6b00876
    22. Benjamin Fiedler, Sonia Coriani, and Joachim Friedrich . Molecular Dipole Moments within the Incremental Scheme Using the Domain-Specific Basis-Set Approach. Journal of Chemical Theory and Computation 2016, 12 (7) , 3040-3052. https://doi.org/10.1021/acs.jctc.6b00076
    23. Jann A. Frey, Christof Holzer, Wim Klopper, and Samuel Leutwyler . Experimental and Theoretical Determination of Dissociation Energies of Dispersion-Dominated Aromatic Molecular Complexes. Chemical Reviews 2016, 116 (9) , 5614-5641. https://doi.org/10.1021/acs.chemrev.5b00652
    24. Tony Anacker, J. Grant Hill, and Joachim Friedrich . Optimized Basis Sets for the Environment in the Domain-Specific Basis Set Approach of the Incremental Scheme. The Journal of Physical Chemistry A 2016, 120 (15) , 2443-2458. https://doi.org/10.1021/acs.jpca.6b01097
    25. Tony Anacker, David P. Tew, and Joachim Friedrich . First UHF Implementation of the Incremental Scheme for Open-Shell Systems. Journal of Chemical Theory and Computation 2016, 12 (1) , 65-78. https://doi.org/10.1021/acs.jctc.5b00933
    26. Qianli Ma and Hans-Joachim Werner . Scalable Electron Correlation Methods. 2. Parallel PNO-LMP2-F12 with Near Linear Scaling in the Molecular Size. Journal of Chemical Theory and Computation 2015, 11 (11) , 5291-5304. https://doi.org/10.1021/acs.jctc.5b00843
    27. Yury Minenkov, Edrisse Chermak, and Luigi Cavallo . Accuracy of DLPNO–CCSD(T) Method for Noncovalent Bond Dissociation Enthalpies from Coinage Metal Cation Complexes. Journal of Chemical Theory and Computation 2015, 11 (10) , 4664-4676. https://doi.org/10.1021/acs.jctc.5b00584
    28. Dimitrios G. Liakos and Frank Neese . Is It Possible To Obtain Coupled Cluster Quality Energies at near Density Functional Theory Cost? Domain-Based Local Pair Natural Orbital Coupled Cluster vs Modern Density Functional Theory. Journal of Chemical Theory and Computation 2015, 11 (9) , 4054-4063. https://doi.org/10.1021/acs.jctc.5b00359
    29. Joachim Friedrich . Efficient Calculation of Accurate Reaction Energies—Assessment of Different Models in Electronic Structure Theory. Journal of Chemical Theory and Computation 2015, 11 (8) , 3596-3609. https://doi.org/10.1021/acs.jctc.5b00087
    30. Dimitrios G. Liakos, Manuel Sparta, Manoj K. Kesharwani, Jan M. L. Martin, and Frank Neese . Exploring the Accuracy Limits of Local Pair Natural Orbital Coupled-Cluster Theory. Journal of Chemical Theory and Computation 2015, 11 (4) , 1525-1539. https://doi.org/10.1021/ct501129s
    31. Konstantinos D. Vogiatzis, Wim Klopper, and Joachim Friedrich . Non-covalent Interactions of CO2 with Functional Groups of Metal–Organic Frameworks from a CCSD(T) Scheme Applicable to Large Systems. Journal of Chemical Theory and Computation 2015, 11 (4) , 1574-1584. https://doi.org/10.1021/ct5011888
    32. Jun Zhang and Michael Dolg . Third-Order Incremental Dual-Basis Set Zero-Buffer Approach for Large High-Spin Open-Shell Systems. Journal of Chemical Theory and Computation 2015, 11 (3) , 962-968. https://doi.org/10.1021/ct501052e
    33. Luke Fiedler, Hannah R. Leverentz, Santhanamoorthi Nachimuthu, Joachim Friedrich, and Donald G. Truhlar . Nitrogen and Sulfur Compounds in Atmospheric Aerosols: A New Parametrization of Polarized Molecular Orbital Model Chemistry and Its Validation against Converged CCSD(T) Calculations for Large Clusters. Journal of Chemical Theory and Computation 2014, 10 (8) , 3129-3139. https://doi.org/10.1021/ct5003169
    34. Joachim Friedrich , Haoyu Yu, Hannah R. Leverentz, Peng Bai, J. Ilja Siepmann, and Donald G. Truhlar . Water 26-mers Drawn from Bulk Simulations: Benchmark Binding Energies for Unprecedentedly Large Water Clusters and Assessment of the Electrostatically Embedded Three-Body and Pairwise Additive Approximations. The Journal of Physical Chemistry Letters 2014, 5 (4) , 666-670. https://doi.org/10.1021/jz500079e
    35. Andreas Heßelmann, Emmanuel Giner, Peter Reinhardt, Peter J. Knowles, Hans‐Joachim Werner, Julien Toulouse. A density‐fitting implementation of the density‐based basis‐set correction method. Journal of Computational Chemistry 2024, 45 (15) , 1247-1253. https://doi.org/10.1002/jcc.27325
    36. Daniel Graf, Alex J. W. Thom. Corrected density functional theory and the random phase approximation: Improved accuracy at little extra cost. The Journal of Chemical Physics 2023, 159 (17) https://doi.org/10.1063/5.0168569
    37. Hector H. Corzo, Andreas Erbs Hillers-Bendtsen, Ashleigh Barnes, Abdulrahman Y. Zamani, Filip Pawłowski, Jeppe Olsen, Poul Jørgensen, Kurt V. Mikkelsen, Dmytro Bykov. Corrigendum: Coupled cluster theory on modern heterogeneous supercomputers. Frontiers in Chemistry 2023, 11 https://doi.org/10.3389/fchem.2023.1256510
    38. Hector H. Corzo, Andreas Erbs Hillers-Bendtsen, Ashleigh Barnes, Abdulrahman Y. Zamani, Filip Pawłowski, Jeppe Olsen, Poul Jørgensen, Kurt V. Mikkelsen, Dmytro Bykov. Coupled cluster theory on modern heterogeneous supercomputers. Frontiers in Chemistry 2023, 11 https://doi.org/10.3389/fchem.2023.1154526
    39. Harry W. Nash, Robert A. Shaw, John Grant Hill. Correlation consistent auxiliary basis sets in density fitting Hartree – Fock : The atoms sodium through argon revisited. Journal of Computational Chemistry 2023, 44 (11) , 1119-1128. https://doi.org/10.1002/jcc.27069
    40. Andreas Hesselmann, Hans-Joachim Werner, Peter J. Knowles. Thermochemical evaluation of adaptive and fixed density functional theory quadrature schemes. The Journal of Chemical Physics 2022, 157 (23) https://doi.org/10.1063/5.0119622
    41. Carl Poelking, Felix A Faber, Bingqing Cheng. BenchML: an extensible pipelining framework for benchmarking representations of materials and molecules at scale. Machine Learning: Science and Technology 2022, 3 (4) , 040501. https://doi.org/10.1088/2632-2153/ac4d11
    42. Moritz Bensberg, Johannes Neugebauer. Orbital pair selection for relative energies in the domain-based local pair natural orbital coupled-cluster method. The Journal of Chemical Physics 2022, 157 (6) https://doi.org/10.1063/5.0100010
    43. Arno Förster, Lucas Visscher. Exploring the statically screened G 3 W 2 correction to the G W self-energy: Charged excitations and total energies of finite systems. Physical Review B 2022, 105 (12) https://doi.org/10.1103/PhysRevB.105.125121
    44. Zoe L. Seeger, Ekaterina I. Izgorodina. A DLPNO‐CCSD (T) benchmarking study of intermolecular interactions of ionic liquids. Journal of Computational Chemistry 2022, 43 (2) , 106-120. https://doi.org/10.1002/jcc.26776
    45. Moritz Bensberg, Johannes Neugebauer. Direct orbital selection within the domain-based local pair natural orbital coupled-cluster method. The Journal of Chemical Physics 2021, 155 (22) https://doi.org/10.1063/5.0071347
    46. Prakash Verma, Lee Huntington, Marc P. Coons, Yukio Kawashima, Takeshi Yamazaki, Arman Zaribafiyan. Scaling up electronic structure calculations on quantum computers: The frozen natural orbital based method of increments. The Journal of Chemical Physics 2021, 155 (3) https://doi.org/10.1063/5.0054647
    47. Alexander Lipp, Shorouk O. Badir, Ryan Dykstra, Osvaldo Gutierrez, Gary A. Molander. Catalyst‐Free Decarbonylative Trifluoromethylthiolation Enabled by Electron Donor‐Acceptor Complex Photoactivation. Advanced Synthesis & Catalysis 2021, 363 (14) , 3507-3520. https://doi.org/10.1002/adsc.202100469
    48. Nisha Mehta, Lars Goerigk. Assessing the Applicability of the Geometric Counterpoise Correction in B2PLYP/Double-ζ Calculations for Thermochemistry, Kinetics, and Noncovalent Interactions. Australian Journal of Chemistry 2021, 74 (11) , 795-805. https://doi.org/10.1071/CH21133
    49. Marius S. Frank, Gunnar Schmitz, Christof Hättig. Implementation of the iterative triples model CC3 for excitation energies using pair natural orbitals and Laplace transformation techniques. The Journal of Chemical Physics 2020, 153 (3) https://doi.org/10.1063/5.0012597
    50. Arno Förster, Lucas Visscher. Double hybrid DFT calculations with Slater type orbitals. Journal of Computational Chemistry 2020, 41 (18) , 1660-1684. https://doi.org/10.1002/jcc.26209
    51. Sree Ganesh Balasubramani, Guo P. Chen, Sonia Coriani, Michael Diedenhofen, Marius S. Frank, Yannick J. Franzke, Filipp Furche, Robin Grotjahn, Michael E. Harding, Christof Hättig, Arnim Hellweg, Benjamin Helmich-Paris, Christof Holzer, Uwe Huniar, Martin Kaupp, Alireza Marefat Khah, Sarah Karbalaei Khani, Thomas Müller, Fabian Mack, Brian D. Nguyen, Shane M. Parker, Eva Perlt, Dmitrij Rappoport, Kevin Reiter, Saswata Roy, Matthias Rückert, Gunnar Schmitz, Marek Sierka, Enrico Tapavicza, David P. Tew, Christoph van Wüllen, Vamsee K. Voora, Florian Weigend, Artur Wodyński, Jason M. Yu. TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations. The Journal of Chemical Physics 2020, 152 (18) https://doi.org/10.1063/5.0004635
    52. Hans-Joachim Werner, Peter J. Knowles, Frederick R. Manby, Joshua A. Black, Klaus Doll, Andreas Heßelmann, Daniel Kats, Andreas Köhn, Tatiana Korona, David A. Kreplin, Qianli Ma, Thomas F. Miller, Alexander Mitrushchenkov, Kirk A. Peterson, Iakov Polyak, Guntram Rauhut, Marat Sibaev. The Molpro quantum chemistry package. The Journal of Chemical Physics 2020, 152 (14) https://doi.org/10.1063/5.0005081
    53. Jitnapa Sirirak, Narin Lawan, Marc W. Van der Kamp, Jeremy N. Harvey, Adrian J. Mulholland. Benchmarking quantum mechanical methods for calculating reaction energies of reactions catalyzed by enzymes. PeerJ Physical Chemistry 2020, 2 , e8. https://doi.org/10.7717/peerj-pchem.8
    54. Mark Dornbach, Hans-Joachim Werner. Analytical energy gradients for local second-order Møller-Plesset perturbation theory using intrinsic bond orbitals. Molecular Physics 2019, 117 (9-12) , 1252-1263. https://doi.org/10.1080/00268976.2018.1537529
    55. Tina N. Mihm, Alexandra R. McIsaac, James J. Shepherd. An optimized twist angle to find the twist-averaged correlation energy applied to the uniform electron gas. The Journal of Chemical Physics 2019, 150 (19) https://doi.org/10.1063/1.5091445
    56. Peter Pinski, Frank Neese. Analytical gradient for the domain-based local pair natural orbital second order Møller-Plesset perturbation theory method (DLPNO-MP2). The Journal of Chemical Physics 2019, 150 (16) https://doi.org/10.1063/1.5086544
    57. Pierpaolo Morgante, Roberto Peverati. ACCDB: A collection of chemistry databases for broad computational purposes. Journal of Computational Chemistry 2019, 40 (6) , 839-848. https://doi.org/10.1002/jcc.25761
    58. Justyna Kozłowska, Max Schwilk, Agnieszka Roztoczyńska, Wojciech Bartkowiak. Assessment of DFT for endohedral complexes' dipole moment: PNO-LCCSD-F12 as a reference method. Physical Chemistry Chemical Physics 2018, 20 (46) , 29374-29388. https://doi.org/10.1039/C8CP05928D
    59. Tim Gould. ‘Diet GMTKN55’ offers accelerated benchmarking through a representative subset approach. Physical Chemistry Chemical Physics 2018, 20 (44) , 27735-27739. https://doi.org/10.1039/C8CP05554H
    60. Qianli Ma, Hans‐Joachim Werner. Explicitly correlated local coupled‐cluster methods using pair natural orbitals. WIREs Computational Molecular Science 2018, 8 (6) https://doi.org/10.1002/wcms.1371
    61. Karl Karu, Maksim Mišin, Heigo Ers, Jianwei Sun, Vladislav Ivaništšev. Performance of SCAN density functional for a set of ionic liquid ion pairs. International Journal of Quantum Chemistry 2018, 118 (13) https://doi.org/10.1002/qua.25582
    62. Nisha Mehta, Marcos Casanova-Páez, Lars Goerigk. Semi-empirical or non-empirical double-hybrid density functionals: which are more robust?. Physical Chemistry Chemical Physics 2018, 20 (36) , 23175-23194. https://doi.org/10.1039/C8CP03852J
    63. Thomas Kjærgaard, Pablo Baudin, Dmytro Bykov, Kasper Kristensen, Poul Jørgensen. The divide–expand–consolidate coupled cluster scheme. WIREs Computational Molecular Science 2017, 7 (6) https://doi.org/10.1002/wcms.1319
    64. Hans‐Joachim Werner, Christoph Köppl, Qianli Ma, Max Schwilk. Explicitly Correlated Local Electron Correlation Methods. 2017, 1-79. https://doi.org/10.1002/9781119129271.ch1
    65. Joaquín Calbo, Juan C. Sancho-García, Enrique Ortí, Juan Aragó. DLPNO-CCSD(T) scaled methods for the accurate treatment of large supramolecular complexes. Journal of Computational Chemistry 2017, 38 (21) , 1869-1878. https://doi.org/10.1002/jcc.24835
    66. Lars Goerigk, Andreas Hansen, Christoph Bauer, Stephan Ehrlich, Asim Najibi, Stefan Grimme. A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Physical Chemistry Chemical Physics 2017, 19 (48) , 32184-32215. https://doi.org/10.1039/C7CP04913G
    67. James J. Shepherd. Communication: Convergence of many-body wave-function expansions using a plane-wave basis in the thermodynamic limit. The Journal of Chemical Physics 2016, 145 (3) https://doi.org/10.1063/1.4958461
    68. Joachim Friedrich, Benjamin Fiedler. Accurate calculation of binding energies for molecular clusters – Assessment of different models. Chemical Physics 2016, 472 , 72-80. https://doi.org/10.1016/j.chemphys.2016.02.022
    69. Yang Min Wang, Christof Hättig, Simen Reine, Edward Valeev, Thomas Kjærgaard, Kasper Kristensen. Explicitly correlated second-order Møller-Plesset perturbation theory in a Divide-Expand-Consolidate (DEC) context. The Journal of Chemical Physics 2016, 144 (20) https://doi.org/10.1063/1.4951696
    70. Wei Li, Zhigang Ni, Shuhua Li. Cluster-in-molecule local correlation method for post-Hartree–Fock calculations of large systems. Molecular Physics 2016, 114 (9) , 1447-1460. https://doi.org/10.1080/00268976.2016.1139755
    71. Fabijan Pavošević, Peter Pinski, Christoph Riplinger, Frank Neese, Edward F. Valeev. SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. IV. Linear-scaling second-order explicitly correlated energy with pair natural orbitals. The Journal of Chemical Physics 2016, 144 (14) https://doi.org/10.1063/1.4945444
    72. Michael von Domaros, Sascha Jähnigen, Joachim Friedrich, Barbara Kirchner. Quantum cluster equilibrium model of N -methylformamide–water binary mixtures. The Journal of Chemical Physics 2016, 144 (6) https://doi.org/10.1063/1.4941278
    73. Jiří Chmela, Michael E. Harding, Dimitri Matioszek, Christopher E. Anson, Frank Breher, Wim Klopper. Differential Many‐Body Cooperativity in Electronic Spectra of Oligonuclear Transition‐Metal Complexes. ChemPhysChem 2016, 17 (1) , 37-45. https://doi.org/10.1002/cphc.201500626
    74. Klaus Banert, Manfred Hagedorn, Tom Pester, Nicole Siebert, Cornelius Staude, Ivan Tchernook, Katharina Rathmann, Oldamur Hollóczki, Joachim Friedrich. Rearrangement Reactions of Tritylcarbenes: Surprising Ring Expansion and Computational Investigation. Chemistry – A European Journal 2015, 21 (42) , 14911-14923. https://doi.org/10.1002/chem.201501352
    75. Peter Pinski, Christoph Riplinger, Edward F. Valeev, Frank Neese. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals. The Journal of Chemical Physics 2015, 143 (3) https://doi.org/10.1063/1.4926879
    76. Mihály Kállay. Linear-scaling implementation of the direct random-phase approximation. The Journal of Chemical Physics 2015, 142 (20) https://doi.org/10.1063/1.4921542
    77. Joachim Friedrich, Harley R. McAlexander, Ashutosh Kumar, T. Daniel Crawford. Incremental evaluation of coupled cluster dipole polarizabilities. Physical Chemistry Chemical Physics 2015, 17 (22) , 14284-14296. https://doi.org/10.1039/C4CP05076B
    78. Tony Anacker, Joachim Friedrich. New accurate benchmark energies for large water clusters: DFT is better than expected. Journal of Computational Chemistry 2014, 35 (8) , 634-643. https://doi.org/10.1002/jcc.23539
    79. Aleksandr V. Marenich, Junming Ho, Michelle L. Coote, Christopher J. Cramer, Donald G. Truhlar. Computational electrochemistry: prediction of liquid-phase reduction potentials. Phys. Chem. Chem. Phys. 2014, 16 (29) , 15068-15106. https://doi.org/10.1039/C4CP01572J
    80. Manuel Sparta, Frank Neese. Chemical applications carried out by local pair natural orbital based coupled-cluster methods. Chem. Soc. Rev. 2014, 43 (14) , 5032-5041. https://doi.org/10.1039/C4CS00050A

    Journal of Chemical Theory and Computation

    Cite this: J. Chem. Theory Comput. 2013, 9, 12, 5381–5394
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ct4008074
    Published November 18, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    913

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.