ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method

View Author Information
† ‡ Department of Chemistry and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8602, Japan
§ Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
*Phone: +81 (0)29 851-5426. Email: [email protected]
*Phone: +81 (0)52 747-6397. Email: [email protected]
Cite this: J. Chem. Theory Comput. 2014, 10, 11, 4801–4812
Publication Date (Web):September 22, 2014
https://doi.org/10.1021/ct500489d
Copyright © 2014 American Chemical Society

    Article Views

    1559

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)

    Abstract

    Abstract Image

    We developed the energy and its gradient for the self-consistent-charge density-functional tight-binding (DFTB) method, combined with the fragment molecular orbital (FMO) approach, FMO-DFTB, including an optional a posteriori treatment for dispersion interaction, and evaluated its accuracy as well as computational efficiency for a set of representative systems: polypeptides, a DNA segment, and a small protein. The error in the total energy of FMO-DFTB versus full SCC-DFTB was below 1 kcal/mol for the polyalanine system consisting of about 2000 atoms partitioned into fragments containing 2 residues, and the optimized structures had root-mean-square deviations below 0.1 Å. The scaling of FMO-DFTB with the system size N is only marginally larger than linear [O(N1.2) in the worst case]. A parallelization efficiency of 94% was achieved using 128 CPU cores, and we demonstrate the applicability of FMO-DFTB for systems containing more than one million atoms by performing a geometry optimization of a fullerite cluster.

    Cited By

    This article is cited by 81 publications.

    1. Vladimir Sladek, Pavel Šmak, Igor Tvaroška. How E-, L-, and P-Selectins Bind to sLex and PSGL-1: A Quantification of Critical Residue Interactions. Journal of Chemical Information and Modeling 2023, 63 (17) , 5604-5618. https://doi.org/10.1021/acs.jcim.3c00704
    2. José Leobardo Bañuelos, Eric Borguet, Gordon E. Brown, Jr., Randall T. Cygan, James J. DeYoreo, Patricia M. Dove, Marie-Pierre Gaigeot, Franz M. Geiger, Julianne M. Gibbs, Vicki H. Grassian, Anastasia G. Ilgen, Young-Shin Jun, Nadine Kabengi, Lynn Katz, James D. Kubicki, Johannes Lützenkirchen, Christine V. Putnis, Richard C. Remsing, Kevin M. Rosso, Gernot Rother, Marialore Sulpizi, Mario Villalobos, Huichun Zhang. Oxide– and Silicate–Water Interfaces and Their Roles in Technology and the Environment. Chemical Reviews 2023, 123 (10) , 6413-6544. https://doi.org/10.1021/acs.chemrev.2c00130
    3. Hiroya Nakata, Hirotaka Kitoh-Nishioka, Wakana Sakai, Cheol Ho Choi. Toward Accurate Prediction of Ion Mobility in Organic Semiconductors by Atomistic Simulation. Journal of Chemical Theory and Computation 2023, 19 (5) , 1517-1528. https://doi.org/10.1021/acs.jctc.2c01221
    4. Bryce M. Westheimer, Mark S. Gordon. General, Rigorous Approach for the Treatment of Interfragment Covalent Bonds. The Journal of Physical Chemistry A 2022, 126 (39) , 6995-7006. https://doi.org/10.1021/acs.jpca.2c04015
    5. Taiji Nakamura, Tomoko Yokaichiya, Dmitri G. Fedorov. Analysis of Guest Adsorption on Crystal Surfaces Based on the Fragment Molecular Orbital Method. The Journal of Physical Chemistry A 2022, 126 (6) , 957-969. https://doi.org/10.1021/acs.jpca.1c10229
    6. Dmitri G. Fedorov, Taiji Nakamura. Free Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method. The Journal of Physical Chemistry Letters 2022, 13 (6) , 1596-1601. https://doi.org/10.1021/acs.jpclett.2c00040
    7. Aurora E. Clark, Henry Adams, Rigoberto Hernandez, Anna I. Krylov, Anders M. N. Niklasson, Sapna Sarupria, Yusu Wang, Stefan M. Wild, Qian Yang. The Middle Science: Traversing Scale In Complex Many-Body Systems. ACS Central Science 2021, 7 (8) , 1271-1287. https://doi.org/10.1021/acscentsci.1c00685
    8. Dmitri G. Fedorov. Partitioning of the Vibrational Free Energy. The Journal of Physical Chemistry Letters 2021, 12 (28) , 6628-6633. https://doi.org/10.1021/acs.jpclett.1c01823
    9. Hiroki Uratani, Takeshi Yoshikawa, Hiromi Nakai. Trajectory Surface Hopping Approach to Condensed-Phase Nonradiative Relaxation Dynamics Using Divide-and-Conquer Spin-Flip Time-Dependent Density-Functional Tight Binding. Journal of Chemical Theory and Computation 2021, 17 (3) , 1290-1300. https://doi.org/10.1021/acs.jctc.0c01155
    10. A. Acharya, R. Agarwal, M. B. Baker, J. Baudry, D. Bhowmik, S. Boehm, K. G. Byler, S. Y. Chen, L. Coates, C. J. Cooper, O. Demerdash, I. Daidone, J. D. Eblen, S. Ellingson, S. Forli, J. Glaser, J. C. Gumbart, J. Gunnels, O. Hernandez, S. Irle, D. W. Kneller, A. Kovalevsky, J. Larkin, T. J. Lawrence, S. LeGrand, S.-H. Liu, J.C. Mitchell, G. Park, J.M. Parks, A. Pavlova, L. Petridis, D. Poole, L. Pouchard, A. Ramanathan, D. M. Rogers, D. Santos-Martins, A. Scheinberg, A. Sedova, Y. Shen, J. C. Smith, M. D. Smith, C. Soto, A. Tsaris, M. Thavappiragasam, A. F. Tillack, J. V. Vermaas, V. Q. Vuong, J. Yin, S. Yoo, M. Zahran, L. Zanetti-Polzi. Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19. Journal of Chemical Information and Modeling 2020, 60 (12) , 5832-5852. https://doi.org/10.1021/acs.jcim.0c01010
    11. Dmitri G. Fedorov. Partition Analysis for Density-Functional Tight-Binding. The Journal of Physical Chemistry A 2020, 124 (49) , 10346-10358. https://doi.org/10.1021/acs.jpca.0c08204
    12. Dmitri G. Fedorov. Three-Body Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method. The Journal of Physical Chemistry A 2020, 124 (24) , 4956-4971. https://doi.org/10.1021/acs.jpca.0c03085
    13. Nana Komoto, Takeshi Yoshikawa, Yoshifumi Nishimura, Hiromi Nakai. Large-Scale Molecular Dynamics Simulation for Ground and Excited States Based on Divide-and-Conquer Long-Range Corrected Density-Functional Tight-Binding Method. Journal of Chemical Theory and Computation 2020, 16 (4) , 2369-2378. https://doi.org/10.1021/acs.jctc.9b01268
    14. Dmitri G. Fedorov. Solvent Screening in Zwitterions Analyzed with the Fragment Molecular Orbital Method. Journal of Chemical Theory and Computation 2019, 15 (10) , 5404-5416. https://doi.org/10.1021/acs.jctc.9b00715
    15. Van Quan Vuong, Yoshio Nishimoto, Dmitri G. Fedorov, Bobby G. Sumpter, Thomas A. Niehaus, Stephan Irle. The Fragment Molecular Orbital Method Based on Long-Range Corrected Density-Functional Tight-Binding. Journal of Chemical Theory and Computation 2019, 15 (5) , 3008-3020. https://doi.org/10.1021/acs.jctc.9b00108
    16. Ka Hung Lee, Udo Schnupf, Bobby G. Sumpter, Stephan Irle. Performance of Density-Functional Tight-Binding in Comparison to Ab Initio and First-Principles Methods for Isomer Geometries and Energies of Glucose Epimers in Vacuo and Solution. ACS Omega 2018, 3 (12) , 16899-16915. https://doi.org/10.1021/acsomega.8b02213
    17. Dmitri G. Fedorov and Kazuo Kitaura . Pair Interaction Energy Decomposition Analysis for Density Functional Theory and Density-Functional Tight-Binding with an Evaluation of Energy Fluctuations in Molecular Dynamics. The Journal of Physical Chemistry A 2018, 122 (6) , 1781-1795. https://doi.org/10.1021/acs.jpca.7b12000
    18. Hirotaka Kitoh-Nishioka, Kai Welke, Yoshio Nishimoto, Dmitri G. Fedorov, and Stephan Irle . Multiscale Simulations on Charge Transport in Covalent Organic Frameworks Including Dynamics of Transfer Integrals from the FMO-DFTB/LCMO Approach. The Journal of Physical Chemistry C 2017, 121 (33) , 17712-17726. https://doi.org/10.1021/acs.jpcc.7b05779
    19. Yoshio Nishimoto . DFTB/PCM Applied to Ground and Excited State Potential Energy Surfaces. The Journal of Physical Chemistry A 2016, 120 (5) , 771-784. https://doi.org/10.1021/acs.jpca.5b10732
    20. Yoshio Nishimoto, Hiroya Nakata, Dmitri G. Fedorov, and Stephan Irle . Large-Scale Quantum-Mechanical Molecular Dynamics Simulations Using Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method. The Journal of Physical Chemistry Letters 2015, 6 (24) , 5034-5039. https://doi.org/10.1021/acs.jpclett.5b02490
    21. Hiroya Nakata, Dmitri G. Fedorov, Takeshi Nagata, Kazuo Kitaura, and Shinichiro Nakamura . Simulations of Chemical Reactions with the Frozen Domain Formulation of the Fragment Molecular Orbital Method. Journal of Chemical Theory and Computation 2015, 11 (7) , 3053-3064. https://doi.org/10.1021/acs.jctc.5b00277
    22. Alexey V. Akimov and Oleg V. Prezhdo . Large-Scale Computations in Chemistry: A Bird’s Eye View of a Vibrant Field. Chemical Reviews 2015, 115 (12) , 5797-5890. https://doi.org/10.1021/cr500524c
    23. Dmitri G. Fedorov, Buu Q. Pham. Multi-level parallelization of quantum-chemical calculations. The Journal of Chemical Physics 2023, 158 (16) https://doi.org/10.1063/5.0144917
    24. Van-Quan Vuong, Caterina Cevallos, Ben Hourahine, Bálint Aradi, Jacek Jakowski, Stephan Irle, Cristopher Camacho. Accelerating the density-functional tight-binding method using graphical processing units. The Journal of Chemical Physics 2023, 158 (8) https://doi.org/10.1063/5.0130797
    25. Christian F. A. Negre, Michael E. Wall, Anders M. N. Niklasson. Graph-based quantum response theory and shadow Born–Oppenheimer molecular dynamics. The Journal of Chemical Physics 2023, 158 (7) https://doi.org/10.1063/5.0137119
    26. Richard Einsele, Joscha Hoche, Roland Mitrić. Long-range corrected fragment molecular orbital density functional tight-binding method for excited states in large molecular systems. The Journal of Chemical Physics 2023, 158 (4) https://doi.org/10.1063/5.0136844
    27. Dmitri G. Fedorov. Parametrized quantum-mechanical approaches combined with the fragment molecular orbital method. The Journal of Chemical Physics 2022, 157 (23) https://doi.org/10.1063/5.0131256
    28. Mikhail A. Hameedi, Erica T. Prates, Michael R. Garvin, Irimpan I. Mathews, B. Kirtley Amos, Omar Demerdash, Mark Bechthold, Mamta Iyer, Simin Rahighi, Daniel W. Kneller, Andrey Kovalevsky, Stephan Irle, Van-Quan Vuong, Julie C. Mitchell, Audrey Labbe, Stephanie Galanie, Soichi Wakatsuki, Daniel Jacobson. Structural and functional characterization of NEMO cleavage by SARS-CoV-2 3CLpro. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-32922-9
    29. Yang Cong, Yu Zhai, Xin Chen, Hui Li. The Accuracy of Semi-Empirical Quantum Chemistry Methods on Soot Formation Simulation. International Journal of Molecular Sciences 2022, 23 (21) , 13371. https://doi.org/10.3390/ijms232113371
    30. Vladimir Sladek, Dmitri G. Fedorov. The Importance of Charge Transfer and Solvent Screening in the Interactions of Backbones and Functional Groups in Amino Acid Residues and Nucleotides. International Journal of Molecular Sciences 2022, 23 (21) , 13514. https://doi.org/10.3390/ijms232113514
    31. Dmitri G. Fedorov. Polarization energies in the fragment molecular orbital method. Journal of Computational Chemistry 2022, 43 (16) , 1094-1103. https://doi.org/10.1002/jcc.26869
    32. Taiji Nakamura, Dmitri G. Fedorov. The catalytic activity and adsorption in faujasite and ZSM-5 zeolites: the role of differential stabilization and charge delocalization. Physical Chemistry Chemical Physics 2022, 24 (13) , 7739-7747. https://doi.org/10.1039/D1CP05851G
    33. Kaori Fukuzawa, Shigenori Tanaka. Fragment molecular orbital calculations for biomolecules. Current Opinion in Structural Biology 2022, 72 , 127-134. https://doi.org/10.1016/j.sbi.2021.08.010
    34. Andrew E. Blanchard, Pei Zhang, Debsindhu Bhowmik, Kshitij Mehta, John Gounley, Samuel Temple Reeve, Stephan Irle, Massimiliano Lupo Pasini. Computational Workflow for Accelerated Molecular Design Using Quantum Chemical Simulations and Deep Learning Models. 2022, 3-19. https://doi.org/10.1007/978-3-031-23606-8_1
    35. Dmitri G. Fedorov. Electron density from the fragment molecular orbital method combined with density-functional tight-binding. Chemical Physics Letters 2021, 780 , 138900. https://doi.org/10.1016/j.cplett.2021.138900
    36. Dmitry Morozov, Vladimir Mironov, Roman V. Moryachkov, Irina A. Shchugoreva, Polina V. Artyushenko, Galina S. Zamay, Olga S. Kolovskaya, Tatiana N. Zamay, Alexey V. Krat, Dmitry S. Molodenskiy, Vladimir N. Zabluda, Dmitry V. Veprintsev, Alexey E. Sokolov, Ruslan A. Zukov, Maxim V. Berezovski, Felix N. Tomilin, Dmitri G. Fedorov, Yuri Alexeev, Anna S. Kichkailo. The role of SAXS and molecular simulations in 3D structure elucidation of a DNA aptamer against lung cancer. Molecular Therapy - Nucleic Acids 2021, 25 , 316-327. https://doi.org/10.1016/j.omtn.2021.07.015
    37. Yoshifumi Nishimura, Hiromi Nakai. Quantum Chemical Calculations for up to One Hundred Million Atoms Using D cdftbmd Code on Supercomputer Fugaku. Chemistry Letters 2021, 50 (8) , 1546-1550. https://doi.org/10.1246/cl.210263
    38. Yoshio Nishimoto, Dmitri G. Fedorov. The fragment molecular orbital method combined with density-functional tight-binding and periodic boundary conditions. The Journal of Chemical Physics 2021, 154 (11) https://doi.org/10.1063/5.0039520
    39. Hirotaka Kitoh-Nishioka, Ryuma Sato, Yasuteru Shigeta, Koji Ando. Linear Combination of Molecular Orbitals of Fragments (FMO-LCMO) Method: Its Application to Charge Transfer Studies. 2021, 391-405. https://doi.org/10.1007/978-981-15-9235-5_20
    40. Hiroya Nakata, Dmitri G. Fedorov. Development of the Analytic Second Derivatives for the Fragment Molecular Orbital Method. 2021, 425-458. https://doi.org/10.1007/978-981-15-9235-5_22
    41. Yoshio Nishimoto, Stephan Irle. The FMO-DFTB Method. 2021, 459-485. https://doi.org/10.1007/978-981-15-9235-5_23
    42. Dmitri G. Fedorov. Recent Development of the Fragment Molecular Orbital Method in GAMESS. 2021, 31-51. https://doi.org/10.1007/978-981-15-9235-5_3
    43. Kaori Fukuzawa, Shigenori Tanaka, Yoichiro Yagi, Noriyuki Kurita, Norihito Kawashita, Kenichiro Takaba, Teruki Honma. FMO Drug Design Consortium. 2021, 127-181. https://doi.org/10.1007/978-981-15-9235-5_8
    44. Hiroya Nakata, Dmitri G. Fedorov. Analytic first and second derivatives of the energy in the fragment molecular orbital method combined with molecular mechanics. International Journal of Quantum Chemistry 2020, 120 (24) https://doi.org/10.1002/qua.26414
    45. Agnieszka Kuc, Maximilian A. Springer, Kamal Batra, Rosalba Juarez‐Mosqueda, Christof Wöll, Thomas Heine. Proximity Effect in Crystalline Framework Materials: Stacking‐Induced Functionality in MOFs and COFs. Advanced Functional Materials 2020, 30 (41) https://doi.org/10.1002/adfm.201908004
    46. Hirotaka Kitoh-Nishioka, Yasuteru Shigeta, Koji Ando. Tunneling matrix element and tunneling pathways of protein electron transfer calculated with a fragment molecular orbital method. The Journal of Chemical Physics 2020, 153 (10) https://doi.org/10.1063/5.0018423
    47. Yoshifumi Nishimura, Hiromi Nakai. Hierarchical parallelization of divide‐and‐conquer density functional tight‐binding molecular dynamics and metadynamics simulations. Journal of Computational Chemistry 2020, 41 (19) , 1759-1772. https://doi.org/10.1002/jcc.26217
    48. Mayu Inamori, Takeshi Yoshikawa, Yasuhiro Ikabata, Yoshifumi Nishimura, Hiromi Nakai. Spin‐flip approach within time‐dependent density functional tight‐binding method: Theory and applications. Journal of Computational Chemistry 2020, 41 (16) , 1538-1548. https://doi.org/10.1002/jcc.26197
    49. Hiroki Uratani, Hiromi Nakai. Non-adiabatic molecular dynamics with divide-and-conquer type large-scale excited-state calculations. The Journal of Chemical Physics 2020, 152 (22) https://doi.org/10.1063/5.0006831
    50. Giuseppe M. J. Barca, Colleen Bertoni, Laura Carrington, Dipayan Datta, Nuwan De Silva, J. Emiliano Deustua, Dmitri G. Fedorov, Jeffrey R. Gour, Anastasia O. Gunina, Emilie Guidez, Taylor Harville, Stephan Irle, Joe Ivanic, Karol Kowalski, Sarom S. Leang, Hui Li, Wei Li, Jesse J. Lutz, Ilias Magoulas, Joani Mato, Vladimir Mironov, Hiroya Nakata, Buu Q. Pham, Piotr Piecuch, David Poole, Spencer R. Pruitt, Alistair P. Rendell, Luke B. Roskop, Klaus Ruedenberg, Tosaporn Sattasathuchana, Michael W. Schmidt, Jun Shen, Lyudmila Slipchenko, Masha Sosonkina, Vaibhav Sundriyal, Ananta Tiwari, Jorge L. Galvez Vallejo, Bryce Westheimer, Marta Włoch, Peng Xu, Federico Zahariev, Mark S. Gordon. Recent developments in the general atomic and molecular electronic structure system. The Journal of Chemical Physics 2020, 152 (15) https://doi.org/10.1063/5.0005188
    51. Aditya W. Sakti, Yoshifumi Nishimura, Hiromi Nakai. Recent advances in quantum‐mechanical molecular dynamics simulations of proton transfer mechanism in various water‐based environments. WIREs Computational Molecular Science 2020, 10 (1) https://doi.org/10.1002/wcms.1419
    52. Stephan Irle, Van Q. Vuong, Mouhmad H. Elayyan, Marat R. Talipov, Steven M. Abel. Protein Molecular Dynamics Simulations with Approximate QM: What Can We Learn?. 2020, 149-161. https://doi.org/10.1007/978-1-0716-0282-9_10
    53. Hiroya Nakata, Dmitri G. Fedorov. Geometry Optimization, Transition State Search, and Reaction Path Mapping Accomplished with the Fragment Molecular Orbital Method. 2020, 87-103. https://doi.org/10.1007/978-1-0716-0282-9_6
    54. Inaki Morao, Alexander Heifetz, Dmitri G. Fedorov. Accurate Scoring in Seconds with the Fragment Molecular Orbital and Density-Functional Tight-Binding Methods. 2020, 143-148. https://doi.org/10.1007/978-1-0716-0282-9_9
    55. John M. Herbert. Fantasy versus reality in fragment-based quantum chemistry. The Journal of Chemical Physics 2019, 151 (17) https://doi.org/10.1063/1.5126216
    56. Tymofii Yu. Nikolaienko, Valerii S. Chuiko, Leonid A. Bulavin. The dataset of covalent bond lengths resulting from the first-principle calculations. Computational and Theoretical Chemistry 2019, 1163 , 112508. https://doi.org/10.1016/j.comptc.2019.112508
    57. Vladimir Mironov, Yuri Alexeev, Dmitri G. Fedorov. Multithreaded parallelization of the energy and analytic gradient in the fragment molecular orbital method. International Journal of Quantum Chemistry 2019, 119 (12) https://doi.org/10.1002/qua.25937
    58. Yoshifumi Nishimura, Hiromi Nakai. D cdftbmd : Divide‐and‐Conquer Density Functional Tight‐Binding Program for Huge‐System Quantum Mechanical Molecular Dynamics Simulations. Journal of Computational Chemistry 2019, 40 (15) , 1538-1549. https://doi.org/10.1002/jcc.25804
    59. A. Simon, M. Rapacioli, E. Michoulier, L. Zheng, K. Korchagina, J. Cuny. Contribution of the density-functional-based tight-binding scheme to the description of water clusters: methods, applications and extension to bulk systems. Molecular Simulation 2019, 45 (4-5) , 249-268. https://doi.org/10.1080/08927022.2018.1554903
    60. Dmitri G. Fedorov, Jimmy C. Kromann, Jan H. Jensen. Empirical corrections and pair interaction energies in the fragment molecular orbital method. Chemical Physics Letters 2018, 706 , 328-333. https://doi.org/10.1016/j.cplett.2018.06.025
    61. . Stephan Irle. Angewandte Chemie 2018, 6844-6844. https://doi.org/10.1002/ange.201712472
    62. . Stephan Irle. Angewandte Chemie International Edition 2018, 6732-6732. https://doi.org/10.1002/anie.201712472
    63. Yoshio Nishimoto, Dmitri G. Fedorov. Adaptive frozen orbital treatment for the fragment molecular orbital method combined with density-functional tight-binding. The Journal of Chemical Physics 2018, 148 (6) https://doi.org/10.1063/1.5012935
    64. Albrecht Goez, Johannes Neugebauer. Embedding Methods in Quantum Chemistry. 2018, 139-179. https://doi.org/10.1007/978-981-10-5651-2_7
    65. Yang Wang. Maximum bonding fragment orbitals for deciphering complex chemical interactions. Physical Chemistry Chemical Physics 2018, 20 (20) , 13792-13809. https://doi.org/10.1039/C8CP01808A
    66. Dmitri G. Fedorov. The fragment molecular orbital method: theoretical development, implementation in GAMESS , and applications. WIREs Computational Molecular Science 2017, 7 (6) https://doi.org/10.1002/wcms.1322
    67. Maja Gruden, Ljubica Andjeklović, Akkarapattiakal Kuriappan Jissy, Stepan Stepanović, Matija Zlatar, Qiang Cui, Marcus Elstner. Benchmarking density functional tight binding models for barrier heights and reaction energetics of organic molecules. Journal of Computational Chemistry 2017, 38 (25) , 2171-2185. https://doi.org/10.1002/jcc.24866
    68. Dmitri G. Fedorov, Kazuo Kitaura. Many-body expansion of the Fock matrix in the fragment molecular orbital method. The Journal of Chemical Physics 2017, 147 (10) https://doi.org/10.1063/1.5001018
    69. Yoshio Nishimoto, Dmitri G. Fedorov. Three‐body expansion of the fragment molecular orbital method combined with density‐functional tight‐binding. Journal of Computational Chemistry 2017, 38 (7) , 406-418. https://doi.org/10.1002/jcc.24693
    70. Laura E. Ratcliff, Stephan Mohr, Georg Huhs, Thierry Deutsch, Michel Masella, Luigi Genovese. Challenges in large scale quantum mechanical calculations. WIREs Computational Molecular Science 2017, 7 (1) https://doi.org/10.1002/wcms.1290
    71. Ronald González, Carlos F. Suárez, Hugo J. Bohórquez, Manuel A. Patarroyo, Manuel E. Patarroyo. Semi-empirical quantum evaluation of peptide – MHC class II binding. Chemical Physics Letters 2017, 668 , 29-34. https://doi.org/10.1016/j.cplett.2016.12.015
    72. Hiroaki Nishizawa, Yoshifumi Nishimura, Masato Kobayashi, Stephan Irle, Hiromi Nakai. Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divide‐and‐conquer, density‐functional tight‐binding, and massively parallel computation. Journal of Computational Chemistry 2016, 37 (21) , 1983-1992. https://doi.org/10.1002/jcc.24419
    73. Hiroya Nakata, Yoshio Nishimoto, Dmitri G. Fedorov. Analytic second derivative of the energy for density-functional tight-binding combined with the fragment molecular orbital method. The Journal of Chemical Physics 2016, 145 (4) https://doi.org/10.1063/1.4959231
    74. Yoshio Nishimoto, Dmitri G. Fedorov. The fragment molecular orbital method combined with density-functional tight-binding and the polarizable continuum model. Physical Chemistry Chemical Physics 2016, 18 (32) , 22047-22061. https://doi.org/10.1039/C6CP02186G
    75. V. Lutsker, B. Aradi, T. A. Niehaus. Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method. The Journal of Chemical Physics 2015, 143 (18) https://doi.org/10.1063/1.4935095
    76. Yoshio Nishimoto. Time-dependent density-functional tight-binding method with the third-order expansion of electron density. The Journal of Chemical Physics 2015, 143 (9) https://doi.org/10.1063/1.4929926
    77. Yoshio Nishimoto, Dmitri G. Fedorov, Stephan Irle. Third-order density-functional tight-binding combined with the fragment molecular orbital method. Chemical Physics Letters 2015, 636 , 90-96. https://doi.org/10.1016/j.cplett.2015.07.022
    78. Hiroya Nakata, Dmitri G. Fedorov, Federico Zahariev, Michael W. Schmidt, Kazuo Kitaura, Mark S. Gordon, Shinichiro Nakamura. Analytic second derivative of the energy for density functional theory based on the three-body fragment molecular orbital method. The Journal of Chemical Physics 2015, 142 (12) https://doi.org/10.1063/1.4915068
    79. Michael P. Mazanetz, Ewa Chudyk, Dmitri G. Fedorov, Yuri Alexeev. Applications of the Fragment Molecular Orbital Method to Drug Research. 2015, 217-255. https://doi.org/10.1007/7653_2015_59
    80. Jan H. Jensen. Predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for electronic structure methods. Physical Chemistry Chemical Physics 2015, 17 (19) , 12441-12451. https://doi.org/10.1039/C5CP00628G
    81. Norihito Kawashita, Hiroyuki Yamasaki, Tomoyuki Miyao, Kentaro Kawai, Yoshitake Sakae, Takeshi Ishikawa, Kenichi Mori, Shinya Nakamura, Hiromasa Kaneko. A Mini-review on Chemoinformatics Approaches for Drug Discovery. Journal of Computer Aided Chemistry 2015, 16 (0) , 15-29. https://doi.org/10.2751/jcac.16.15

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect