Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method
Abstract

We developed the energy and its gradient for the self-consistent-charge density-functional tight-binding (DFTB) method, combined with the fragment molecular orbital (FMO) approach, FMO-DFTB, including an optional a posteriori treatment for dispersion interaction, and evaluated its accuracy as well as computational efficiency for a set of representative systems: polypeptides, a DNA segment, and a small protein. The error in the total energy of FMO-DFTB versus full SCC-DFTB was below 1 kcal/mol for the polyalanine system consisting of about 2000 atoms partitioned into fragments containing 2 residues, and the optimized structures had root-mean-square deviations below 0.1 Å. The scaling of FMO-DFTB with the system size N is only marginally larger than linear [O(N1.2) in the worst case]. A parallelization efficiency of 94% was achieved using 128 CPU cores, and we demonstrate the applicability of FMO-DFTB for systems containing more than one million atoms by performing a geometry optimization of a fullerite cluster.
Cited By
This article is cited by 81 publications.
- Vladimir Sladek, Pavel Šmak, Igor Tvaroška. How E-, L-, and P-Selectins Bind to sLex and PSGL-1: A Quantification of Critical Residue Interactions. Journal of Chemical Information and Modeling 2023, 63
(17)
, 5604-5618. https://doi.org/10.1021/acs.jcim.3c00704
- José Leobardo Bañuelos, Eric Borguet, Gordon E. Brown, Jr., Randall T. Cygan, James J. DeYoreo, Patricia M. Dove, Marie-Pierre Gaigeot, Franz M. Geiger, Julianne M. Gibbs, Vicki H. Grassian, Anastasia G. Ilgen, Young-Shin Jun, Nadine Kabengi, Lynn Katz, James D. Kubicki, Johannes Lützenkirchen, Christine V. Putnis, Richard C. Remsing, Kevin M. Rosso, Gernot Rother, Marialore Sulpizi, Mario Villalobos, Huichun Zhang. Oxide– and Silicate–Water Interfaces and Their Roles in Technology and the Environment. Chemical Reviews 2023, 123
(10)
, 6413-6544. https://doi.org/10.1021/acs.chemrev.2c00130
- Hiroya Nakata, Hirotaka Kitoh-Nishioka, Wakana Sakai, Cheol Ho Choi. Toward Accurate Prediction of Ion Mobility in Organic Semiconductors by Atomistic Simulation. Journal of Chemical Theory and Computation 2023, 19
(5)
, 1517-1528. https://doi.org/10.1021/acs.jctc.2c01221
- Bryce M. Westheimer, Mark S. Gordon. General, Rigorous Approach for the Treatment of Interfragment Covalent Bonds. The Journal of Physical Chemistry A 2022, 126
(39)
, 6995-7006. https://doi.org/10.1021/acs.jpca.2c04015
- Taiji Nakamura, Tomoko Yokaichiya, Dmitri G. Fedorov. Analysis of Guest Adsorption on Crystal Surfaces Based on the Fragment Molecular Orbital Method. The Journal of Physical Chemistry A 2022, 126
(6)
, 957-969. https://doi.org/10.1021/acs.jpca.1c10229
- Dmitri G. Fedorov, Taiji Nakamura. Free Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method. The Journal of Physical Chemistry Letters 2022, 13
(6)
, 1596-1601. https://doi.org/10.1021/acs.jpclett.2c00040
- Aurora E. Clark, Henry Adams, Rigoberto Hernandez, Anna I. Krylov, Anders M. N. Niklasson, Sapna Sarupria, Yusu Wang, Stefan M. Wild, Qian Yang. The Middle Science: Traversing Scale In Complex Many-Body Systems. ACS Central Science 2021, 7
(8)
, 1271-1287. https://doi.org/10.1021/acscentsci.1c00685
- Dmitri G. Fedorov. Partitioning of the Vibrational Free Energy. The Journal of Physical Chemistry Letters 2021, 12
(28)
, 6628-6633. https://doi.org/10.1021/acs.jpclett.1c01823
- Hiroki Uratani, Takeshi Yoshikawa, Hiromi Nakai. Trajectory Surface Hopping Approach to Condensed-Phase Nonradiative Relaxation Dynamics Using Divide-and-Conquer Spin-Flip Time-Dependent Density-Functional Tight Binding. Journal of Chemical Theory and Computation 2021, 17
(3)
, 1290-1300. https://doi.org/10.1021/acs.jctc.0c01155
- A. Acharya, R. Agarwal, M. B. Baker, J. Baudry, D. Bhowmik, S. Boehm, K. G. Byler, S. Y. Chen, L. Coates, C. J. Cooper, O. Demerdash, I. Daidone, J. D. Eblen, S. Ellingson, S. Forli, J. Glaser, J. C. Gumbart, J. Gunnels, O. Hernandez, S. Irle, D. W. Kneller, A. Kovalevsky, J. Larkin, T. J. Lawrence, S. LeGrand, S.-H. Liu, J.C. Mitchell, G. Park, J.M. Parks, A. Pavlova, L. Petridis, D. Poole, L. Pouchard, A. Ramanathan, D. M. Rogers, D. Santos-Martins, A. Scheinberg, A. Sedova, Y. Shen, J. C. Smith, M. D. Smith, C. Soto, A. Tsaris, M. Thavappiragasam, A. F. Tillack, J. V. Vermaas, V. Q. Vuong, J. Yin, S. Yoo, M. Zahran, L. Zanetti-Polzi. Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19. Journal of Chemical Information and Modeling 2020, 60
(12)
, 5832-5852. https://doi.org/10.1021/acs.jcim.0c01010
- Dmitri G. Fedorov. Partition Analysis for Density-Functional Tight-Binding. The Journal of Physical Chemistry A 2020, 124
(49)
, 10346-10358. https://doi.org/10.1021/acs.jpca.0c08204
- Dmitri G. Fedorov. Three-Body Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method. The Journal of Physical Chemistry A 2020, 124
(24)
, 4956-4971. https://doi.org/10.1021/acs.jpca.0c03085
- Nana Komoto, Takeshi Yoshikawa, Yoshifumi Nishimura, Hiromi Nakai. Large-Scale Molecular Dynamics Simulation for Ground and Excited States Based on Divide-and-Conquer Long-Range Corrected Density-Functional Tight-Binding Method. Journal of Chemical Theory and Computation 2020, 16
(4)
, 2369-2378. https://doi.org/10.1021/acs.jctc.9b01268
- Dmitri G. Fedorov. Solvent Screening in Zwitterions Analyzed with the Fragment Molecular Orbital Method. Journal of Chemical Theory and Computation 2019, 15
(10)
, 5404-5416. https://doi.org/10.1021/acs.jctc.9b00715
- Van Quan Vuong, Yoshio Nishimoto, Dmitri G. Fedorov, Bobby G. Sumpter, Thomas A. Niehaus, Stephan Irle. The Fragment Molecular Orbital Method Based on Long-Range Corrected Density-Functional Tight-Binding. Journal of Chemical Theory and Computation 2019, 15
(5)
, 3008-3020. https://doi.org/10.1021/acs.jctc.9b00108
- Ka Hung Lee, Udo Schnupf, Bobby G. Sumpter, Stephan Irle. Performance of Density-Functional Tight-Binding in Comparison to Ab Initio and First-Principles Methods for Isomer Geometries and Energies of Glucose Epimers in Vacuo and Solution. ACS Omega 2018, 3
(12)
, 16899-16915. https://doi.org/10.1021/acsomega.8b02213
- Dmitri G. Fedorov and Kazuo Kitaura . Pair Interaction Energy Decomposition Analysis for Density Functional Theory and Density-Functional Tight-Binding with an Evaluation of Energy Fluctuations in Molecular Dynamics. The Journal of Physical Chemistry A 2018, 122
(6)
, 1781-1795. https://doi.org/10.1021/acs.jpca.7b12000
- Hirotaka Kitoh-Nishioka, Kai Welke, Yoshio Nishimoto, Dmitri G. Fedorov, and Stephan Irle . Multiscale Simulations on Charge Transport in Covalent Organic Frameworks Including Dynamics of Transfer Integrals from the FMO-DFTB/LCMO Approach. The Journal of Physical Chemistry C 2017, 121
(33)
, 17712-17726. https://doi.org/10.1021/acs.jpcc.7b05779
- Yoshio Nishimoto . DFTB/PCM Applied to Ground and Excited State Potential Energy Surfaces. The Journal of Physical Chemistry A 2016, 120
(5)
, 771-784. https://doi.org/10.1021/acs.jpca.5b10732
- Yoshio Nishimoto, Hiroya Nakata, Dmitri G. Fedorov, and Stephan Irle . Large-Scale Quantum-Mechanical Molecular Dynamics Simulations Using Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method. The Journal of Physical Chemistry Letters 2015, 6
(24)
, 5034-5039. https://doi.org/10.1021/acs.jpclett.5b02490
- Hiroya Nakata, Dmitri G. Fedorov, Takeshi Nagata, Kazuo Kitaura, and Shinichiro Nakamura . Simulations of Chemical Reactions with the Frozen Domain Formulation of the Fragment Molecular Orbital Method. Journal of Chemical Theory and Computation 2015, 11
(7)
, 3053-3064. https://doi.org/10.1021/acs.jctc.5b00277
- Alexey V. Akimov and Oleg V. Prezhdo . Large-Scale Computations in Chemistry: A Bird’s Eye View of a Vibrant Field. Chemical Reviews 2015, 115
(12)
, 5797-5890. https://doi.org/10.1021/cr500524c
- Dmitri G. Fedorov, Buu Q. Pham. Multi-level parallelization of quantum-chemical calculations. The Journal of Chemical Physics 2023, 158
(16)
https://doi.org/10.1063/5.0144917
- Van-Quan Vuong, Caterina Cevallos, Ben Hourahine, Bálint Aradi, Jacek Jakowski, Stephan Irle, Cristopher Camacho. Accelerating the density-functional tight-binding method using graphical processing units. The Journal of Chemical Physics 2023, 158
(8)
https://doi.org/10.1063/5.0130797
- Christian F. A. Negre, Michael E. Wall, Anders M. N. Niklasson. Graph-based quantum response theory and shadow Born–Oppenheimer molecular dynamics. The Journal of Chemical Physics 2023, 158
(7)
https://doi.org/10.1063/5.0137119
- Richard Einsele, Joscha Hoche, Roland Mitrić. Long-range corrected fragment molecular orbital density functional tight-binding method for excited states in large molecular systems. The Journal of Chemical Physics 2023, 158
(4)
https://doi.org/10.1063/5.0136844
- Dmitri G. Fedorov. Parametrized quantum-mechanical approaches combined with the fragment molecular orbital method. The Journal of Chemical Physics 2022, 157
(23)
https://doi.org/10.1063/5.0131256
- Mikhail A. Hameedi, Erica T. Prates, Michael R. Garvin, Irimpan I. Mathews, B. Kirtley Amos, Omar Demerdash, Mark Bechthold, Mamta Iyer, Simin Rahighi, Daniel W. Kneller, Andrey Kovalevsky, Stephan Irle, Van-Quan Vuong, Julie C. Mitchell, Audrey Labbe, Stephanie Galanie, Soichi Wakatsuki, Daniel Jacobson. Structural and functional characterization of NEMO cleavage by SARS-CoV-2 3CLpro. Nature Communications 2022, 13
(1)
https://doi.org/10.1038/s41467-022-32922-9
- Yang Cong, Yu Zhai, Xin Chen, Hui Li. The Accuracy of Semi-Empirical Quantum Chemistry Methods on Soot Formation Simulation. International Journal of Molecular Sciences 2022, 23
(21)
, 13371. https://doi.org/10.3390/ijms232113371
- Vladimir Sladek, Dmitri G. Fedorov. The Importance of Charge Transfer and Solvent Screening in the Interactions of Backbones and Functional Groups in Amino Acid Residues and Nucleotides. International Journal of Molecular Sciences 2022, 23
(21)
, 13514. https://doi.org/10.3390/ijms232113514
- Dmitri G. Fedorov. Polarization energies in the fragment molecular orbital method. Journal of Computational Chemistry 2022, 43
(16)
, 1094-1103. https://doi.org/10.1002/jcc.26869
- Taiji Nakamura, Dmitri G. Fedorov. The catalytic activity and adsorption in faujasite and ZSM-5 zeolites: the role of differential stabilization and charge delocalization. Physical Chemistry Chemical Physics 2022, 24
(13)
, 7739-7747. https://doi.org/10.1039/D1CP05851G
- Kaori Fukuzawa, Shigenori Tanaka. Fragment molecular orbital calculations for biomolecules. Current Opinion in Structural Biology 2022, 72 , 127-134. https://doi.org/10.1016/j.sbi.2021.08.010
- Andrew E. Blanchard, Pei Zhang, Debsindhu Bhowmik, Kshitij Mehta, John Gounley, Samuel Temple Reeve, Stephan Irle, Massimiliano Lupo Pasini. Computational Workflow for Accelerated Molecular Design Using Quantum Chemical Simulations and Deep Learning Models. 2022, 3-19. https://doi.org/10.1007/978-3-031-23606-8_1
- Dmitri G. Fedorov. Electron density from the fragment molecular orbital method combined with density-functional tight-binding. Chemical Physics Letters 2021, 780 , 138900. https://doi.org/10.1016/j.cplett.2021.138900
- Dmitry Morozov, Vladimir Mironov, Roman V. Moryachkov, Irina A. Shchugoreva, Polina V. Artyushenko, Galina S. Zamay, Olga S. Kolovskaya, Tatiana N. Zamay, Alexey V. Krat, Dmitry S. Molodenskiy, Vladimir N. Zabluda, Dmitry V. Veprintsev, Alexey E. Sokolov, Ruslan A. Zukov, Maxim V. Berezovski, Felix N. Tomilin, Dmitri G. Fedorov, Yuri Alexeev, Anna S. Kichkailo. The role of SAXS and molecular simulations in 3D structure elucidation of a DNA aptamer against lung cancer. Molecular Therapy - Nucleic Acids 2021, 25 , 316-327. https://doi.org/10.1016/j.omtn.2021.07.015
- Yoshifumi Nishimura, Hiromi Nakai. Quantum Chemical Calculations for up to One Hundred Million Atoms Using D
cdftbmd
Code on Supercomputer Fugaku. Chemistry Letters 2021, 50
(8)
, 1546-1550. https://doi.org/10.1246/cl.210263
- Yoshio Nishimoto, Dmitri G. Fedorov. The fragment molecular orbital method combined with density-functional tight-binding and periodic boundary conditions. The Journal of Chemical Physics 2021, 154
(11)
https://doi.org/10.1063/5.0039520
- Hirotaka Kitoh-Nishioka, Ryuma Sato, Yasuteru Shigeta, Koji Ando. Linear Combination of Molecular Orbitals of Fragments (FMO-LCMO) Method: Its Application to Charge Transfer Studies. 2021, 391-405. https://doi.org/10.1007/978-981-15-9235-5_20
- Hiroya Nakata, Dmitri G. Fedorov. Development of the Analytic Second Derivatives for the Fragment Molecular Orbital Method. 2021, 425-458. https://doi.org/10.1007/978-981-15-9235-5_22
- Yoshio Nishimoto, Stephan Irle. The FMO-DFTB Method. 2021, 459-485. https://doi.org/10.1007/978-981-15-9235-5_23
- Dmitri G. Fedorov. Recent Development of the Fragment Molecular Orbital Method in GAMESS. 2021, 31-51. https://doi.org/10.1007/978-981-15-9235-5_3
- Kaori Fukuzawa, Shigenori Tanaka, Yoichiro Yagi, Noriyuki Kurita, Norihito Kawashita, Kenichiro Takaba, Teruki Honma. FMO Drug Design Consortium. 2021, 127-181. https://doi.org/10.1007/978-981-15-9235-5_8
- Hiroya Nakata, Dmitri G. Fedorov. Analytic first and second derivatives of the energy in the fragment molecular orbital method combined with molecular mechanics. International Journal of Quantum Chemistry 2020, 120
(24)
https://doi.org/10.1002/qua.26414
- Agnieszka Kuc, Maximilian A. Springer, Kamal Batra, Rosalba Juarez‐Mosqueda, Christof Wöll, Thomas Heine. Proximity Effect in Crystalline Framework Materials: Stacking‐Induced Functionality in MOFs and COFs. Advanced Functional Materials 2020, 30
(41)
https://doi.org/10.1002/adfm.201908004
- Hirotaka Kitoh-Nishioka, Yasuteru Shigeta, Koji Ando. Tunneling matrix element and tunneling pathways of protein electron transfer calculated with a fragment molecular orbital method. The Journal of Chemical Physics 2020, 153
(10)
https://doi.org/10.1063/5.0018423
- Yoshifumi Nishimura, Hiromi Nakai. Hierarchical parallelization of divide‐and‐conquer density functional tight‐binding molecular dynamics and metadynamics simulations. Journal of Computational Chemistry 2020, 41
(19)
, 1759-1772. https://doi.org/10.1002/jcc.26217
- Mayu Inamori, Takeshi Yoshikawa, Yasuhiro Ikabata, Yoshifumi Nishimura, Hiromi Nakai. Spin‐flip approach within time‐dependent density functional tight‐binding method: Theory and applications. Journal of Computational Chemistry 2020, 41
(16)
, 1538-1548. https://doi.org/10.1002/jcc.26197
- Hiroki Uratani, Hiromi Nakai. Non-adiabatic molecular dynamics with divide-and-conquer type large-scale excited-state calculations. The Journal of Chemical Physics 2020, 152
(22)
https://doi.org/10.1063/5.0006831
- Giuseppe M. J. Barca, Colleen Bertoni, Laura Carrington, Dipayan Datta, Nuwan De Silva, J. Emiliano Deustua, Dmitri G. Fedorov, Jeffrey R. Gour, Anastasia O. Gunina, Emilie Guidez, Taylor Harville, Stephan Irle, Joe Ivanic, Karol Kowalski, Sarom S. Leang, Hui Li, Wei Li, Jesse J. Lutz, Ilias Magoulas, Joani Mato, Vladimir Mironov, Hiroya Nakata, Buu Q. Pham, Piotr Piecuch, David Poole, Spencer R. Pruitt, Alistair P. Rendell, Luke B. Roskop, Klaus Ruedenberg, Tosaporn Sattasathuchana, Michael W. Schmidt, Jun Shen, Lyudmila Slipchenko, Masha Sosonkina, Vaibhav Sundriyal, Ananta Tiwari, Jorge L. Galvez Vallejo, Bryce Westheimer, Marta Włoch, Peng Xu, Federico Zahariev, Mark S. Gordon. Recent developments in the general atomic and molecular electronic structure system. The Journal of Chemical Physics 2020, 152
(15)
https://doi.org/10.1063/5.0005188
- Aditya W. Sakti, Yoshifumi Nishimura, Hiromi Nakai. Recent advances in quantum‐mechanical molecular dynamics simulations of proton transfer mechanism in various water‐based environments. WIREs Computational Molecular Science 2020, 10
(1)
https://doi.org/10.1002/wcms.1419
- Stephan Irle, Van Q. Vuong, Mouhmad H. Elayyan, Marat R. Talipov, Steven M. Abel. Protein Molecular Dynamics Simulations with Approximate QM: What Can We Learn?. 2020, 149-161. https://doi.org/10.1007/978-1-0716-0282-9_10
- Hiroya Nakata, Dmitri G. Fedorov. Geometry Optimization, Transition State Search, and Reaction Path Mapping Accomplished with the Fragment Molecular Orbital Method. 2020, 87-103. https://doi.org/10.1007/978-1-0716-0282-9_6
- Inaki Morao, Alexander Heifetz, Dmitri G. Fedorov. Accurate Scoring in Seconds with the Fragment Molecular Orbital and Density-Functional Tight-Binding Methods. 2020, 143-148. https://doi.org/10.1007/978-1-0716-0282-9_9
- John M. Herbert. Fantasy versus reality in fragment-based quantum chemistry. The Journal of Chemical Physics 2019, 151
(17)
https://doi.org/10.1063/1.5126216
- Tymofii Yu. Nikolaienko, Valerii S. Chuiko, Leonid A. Bulavin. The dataset of covalent bond lengths resulting from the first-principle calculations. Computational and Theoretical Chemistry 2019, 1163 , 112508. https://doi.org/10.1016/j.comptc.2019.112508
- Vladimir Mironov, Yuri Alexeev, Dmitri G. Fedorov. Multithreaded parallelization of the energy and analytic gradient in the fragment molecular orbital method. International Journal of Quantum Chemistry 2019, 119
(12)
https://doi.org/10.1002/qua.25937
- Yoshifumi Nishimura, Hiromi Nakai. D
cdftbmd
: Divide‐and‐Conquer Density Functional Tight‐Binding Program for Huge‐System Quantum Mechanical Molecular Dynamics Simulations. Journal of Computational Chemistry 2019, 40
(15)
, 1538-1549. https://doi.org/10.1002/jcc.25804
- A. Simon, M. Rapacioli, E. Michoulier, L. Zheng, K. Korchagina, J. Cuny. Contribution of the density-functional-based tight-binding scheme to the description of water clusters: methods, applications and extension to bulk systems. Molecular Simulation 2019, 45
(4-5)
, 249-268. https://doi.org/10.1080/08927022.2018.1554903
- Dmitri G. Fedorov, Jimmy C. Kromann, Jan H. Jensen. Empirical corrections and pair interaction energies in the fragment molecular orbital method. Chemical Physics Letters 2018, 706 , 328-333. https://doi.org/10.1016/j.cplett.2018.06.025
- . Stephan Irle. Angewandte Chemie 2018, 6844-6844. https://doi.org/10.1002/ange.201712472
- . Stephan Irle. Angewandte Chemie International Edition 2018, 6732-6732. https://doi.org/10.1002/anie.201712472
- Yoshio Nishimoto, Dmitri G. Fedorov. Adaptive frozen orbital treatment for the fragment molecular orbital method combined with density-functional tight-binding. The Journal of Chemical Physics 2018, 148
(6)
https://doi.org/10.1063/1.5012935
- Albrecht Goez, Johannes Neugebauer. Embedding Methods in Quantum Chemistry. 2018, 139-179. https://doi.org/10.1007/978-981-10-5651-2_7
- Yang Wang. Maximum bonding fragment orbitals for deciphering complex chemical interactions. Physical Chemistry Chemical Physics 2018, 20
(20)
, 13792-13809. https://doi.org/10.1039/C8CP01808A
- Dmitri G. Fedorov. The fragment molecular orbital method: theoretical development, implementation in
GAMESS
, and applications. WIREs Computational Molecular Science 2017, 7
(6)
https://doi.org/10.1002/wcms.1322
- Maja Gruden, Ljubica Andjeklović, Akkarapattiakal Kuriappan Jissy, Stepan Stepanović, Matija Zlatar, Qiang Cui, Marcus Elstner. Benchmarking density functional tight binding models for barrier heights and reaction energetics of organic molecules. Journal of Computational Chemistry 2017, 38
(25)
, 2171-2185. https://doi.org/10.1002/jcc.24866
- Dmitri G. Fedorov, Kazuo Kitaura. Many-body expansion of the Fock matrix in the fragment molecular orbital method. The Journal of Chemical Physics 2017, 147
(10)
https://doi.org/10.1063/1.5001018
- Yoshio Nishimoto, Dmitri G. Fedorov. Three‐body expansion of the fragment molecular orbital method combined with density‐functional tight‐binding. Journal of Computational Chemistry 2017, 38
(7)
, 406-418. https://doi.org/10.1002/jcc.24693
- Laura E. Ratcliff, Stephan Mohr, Georg Huhs, Thierry Deutsch, Michel Masella, Luigi Genovese. Challenges in large scale quantum mechanical calculations. WIREs Computational Molecular Science 2017, 7
(1)
https://doi.org/10.1002/wcms.1290
- Ronald González, Carlos F. Suárez, Hugo J. Bohórquez, Manuel A. Patarroyo, Manuel E. Patarroyo. Semi-empirical quantum evaluation of peptide – MHC class II binding. Chemical Physics Letters 2017, 668 , 29-34. https://doi.org/10.1016/j.cplett.2016.12.015
- Hiroaki Nishizawa, Yoshifumi Nishimura, Masato Kobayashi, Stephan Irle, Hiromi Nakai. Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divide‐and‐conquer, density‐functional tight‐binding, and massively parallel computation. Journal of Computational Chemistry 2016, 37
(21)
, 1983-1992. https://doi.org/10.1002/jcc.24419
- Hiroya Nakata, Yoshio Nishimoto, Dmitri G. Fedorov. Analytic second derivative of the energy for density-functional tight-binding combined with the fragment molecular orbital method. The Journal of Chemical Physics 2016, 145
(4)
https://doi.org/10.1063/1.4959231
- Yoshio Nishimoto, Dmitri G. Fedorov. The fragment molecular orbital method combined with density-functional tight-binding and the polarizable continuum model. Physical Chemistry Chemical Physics 2016, 18
(32)
, 22047-22061. https://doi.org/10.1039/C6CP02186G
- V. Lutsker, B. Aradi, T. A. Niehaus. Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method. The Journal of Chemical Physics 2015, 143
(18)
https://doi.org/10.1063/1.4935095
- Yoshio Nishimoto. Time-dependent density-functional tight-binding method with the third-order expansion of electron density. The Journal of Chemical Physics 2015, 143
(9)
https://doi.org/10.1063/1.4929926
- Yoshio Nishimoto, Dmitri G. Fedorov, Stephan Irle. Third-order density-functional tight-binding combined with the fragment molecular orbital method. Chemical Physics Letters 2015, 636 , 90-96. https://doi.org/10.1016/j.cplett.2015.07.022
- Hiroya Nakata, Dmitri G. Fedorov, Federico Zahariev, Michael W. Schmidt, Kazuo Kitaura, Mark S. Gordon, Shinichiro Nakamura. Analytic second derivative of the energy for density functional theory based on the three-body fragment molecular orbital method. The Journal of Chemical Physics 2015, 142
(12)
https://doi.org/10.1063/1.4915068
- Michael P. Mazanetz, Ewa Chudyk, Dmitri G. Fedorov, Yuri Alexeev. Applications of the Fragment Molecular Orbital Method to Drug Research. 2015, 217-255. https://doi.org/10.1007/7653_2015_59
- Jan H. Jensen. Predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for electronic structure methods. Physical Chemistry Chemical Physics 2015, 17
(19)
, 12441-12451. https://doi.org/10.1039/C5CP00628G
- Norihito Kawashita, Hiroyuki Yamasaki, Tomoyuki Miyao, Kentaro Kawai, Yoshitake Sakae, Takeshi Ishikawa, Kenichi Mori, Shinya Nakamura, Hiromasa Kaneko. A Mini-review on Chemoinformatics Approaches for Drug Discovery. Journal of Computer Aided Chemistry 2015, 16
(0)
, 15-29. https://doi.org/10.2751/jcac.16.15