ACS Publications. Most Trusted. Most Cited. Most Read
Transferable Force Field for Metal–Organic Frameworks from First-Principles: BTW-FF
My Activity

Figure 1Loading Img
  • Open Access
Article

Transferable Force Field for Metal–Organic Frameworks from First-Principles: BTW-FF
Click to copy article linkArticle link copied!

View Author Information
Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
Open PDFSupporting Information (1)

Journal of Chemical Theory and Computation

Cite this: J. Chem. Theory Comput. 2014, 10, 10, 4644–4652
Click to copy citationCitation copied!
https://doi.org/10.1021/ct500515h
Published August 27, 2014

Copyright © 2014 American Chemical Society. This publication is licensed under these Terms of Use.

Abstract

Click to copy section linkSection link copied!

We present an ab-initio derived force field to describe the structural and mechanical properties of metal–organic frameworks (or coordination polymers). The aim is a transferable interatomic potential that can be applied to MOFs regardless of metal or ligand identity. The initial parametrization set includes MOF-5, IRMOF-10, IRMOF-14, UiO-66, UiO-67, and HKUST-1. The force field describes the periodic crystal and considers effective atomic charges based on topological analysis of the Bloch states of the extended materials. Transferable potentials were developed for the four organic ligands comprising the test set and for the associated Cu, Zn, and Zr metal nodes. The predicted materials properties, including bulk moduli and vibrational frequencies, are in agreement with explicit density functional theory calculations. The modal heat capacity and lattice thermal expansion are also predicted.

Copyright © 2014 American Chemical Society

1 Introduction

Click to copy section linkSection link copied!

Metal–organic frameworks (MOFs), or coordination polymers, are hybrid materials that display a range of unique properties that can be used for a variety of applications ranging from gas storage and catalysis to photovoltaics and drug delivery systems. (1-3) MOFs are formed via the coordination of metals and organic ligands in a self-assembled manner to create an extended crystalline material. The number of possible combinations of building blocks is therefore vast, and the associated crystal structures and properties are often unpredictable. To reduce efforts spent on refining the optimum conditions for the synthesis of a particular MOF, and to identify compositions of particular interest, accurate property predictions from computer simulations would be highly beneficial.
The emerging field of “materials design” has largely been based around the application of modern electronic structure techniques, such as density functional theory (DFT), to predict the structures and properties of new materials. (4-8) Such approaches are appropriate for high-symmetry close-packed inorganic materials but are challenging for the large and complex crystal structures associated with MOFs. For example, a “complex” quaternary semiconductor such as Cu2ZnSnS4 can be described using only 8 atoms in its primitive unit cell, (9) while a “simple” MOF can require several hundred atoms. For example, the popular framework MOF-5 has 106 atoms in its primitive cell and 424 atoms in its conventional crystallographic cell. A high-quality calculation of a single MOF poses a heavy computational burden; a large-scale screening is prohibitively expensive.
An alternative to a direct quantum mechanical treatment, which usually involves a self-consistent numerical solution of the Kohn–Sham or Hartree–Fock equations, is the use of an analytical interatomic potential or force field that can describe a range of properties of interest. (10, 11) An accurate and transferable force field for MOFs would provide a means of rapidly screening material compositions and properties for particular applications.
A number of initial MOF force fields have been recently reported. (12-16) These have been mainly fitted for specific MOF structures that were highlighted experimentally as possessing functional properties. An example by Vaduyfhuys et al. is a force field for the Al containing MIL-53. (17) One common approximation for MOF potentials, to reduce the complexity of parametrization, is to fix the atom positions within the unit cell. This approach is generally used for probing gas adsorption using Grand Canonical Monte Carlo (GCMC) or Molecular Dynamic (MD) simulations. The advantage is that the intraframework interactions need not be considered, facilitating fast screening, (2, 18-23) but materials response functions are not described. As an extension to this approach one can conduct hybrid GCMC and MD calculations to model structural transitions of flexible MOFs. (24-26)
A second approach is to use a generic force field derived for molecules such as proteins, hydrocarbons, and common gases; OPLS-aa (Optimized Potentials for Liquid Simulations—all atom), DREIDING, and MM3 (Molecular Mechanics 3) are examples of these. (27-29) The application of generic force fields to MOFs, which consist of both organic and inorganic components, is highly convenient but approximate. While large-scale screenings can be again performed, (30, 31) complex geometries and interactions are often not modeled with quantitative accuracy. Recent progress includes UFF4MOF, an extension of the universal force field (UFF) (30) to describe some common metal–organic framework motifs. (32)
A third common approach to MOF force fields is to construct representative finite clusters (fragments) of the full MOF crystals. (33) The advantage is faster derivation with a reduced number of interaction parameters (and degrees of freedom) in the model. The disadvantage is that the neglect of periodicity and long-range interactions is unphysical and standard mechanical, thermal, and dielectric properties cannot be described in the absence of a sophisticated embedding procedure.
In this paper, we report a force field to describe metal–organic frameworks parametrized by first-principles crystal structures and electron density. The aim is a transferable potential form suitable to describe the majority of ligand and metal combinations for MOFs, including predicting properties of novel compositions. In contrast to the universal force field approach in which general parameters not fitted for MOFs and fixed generic charges are employed, we develop a force field that has been fitted explicitly to the periodic frameworks. Some initial parameters have been refined from existing force fields (MM3 and MOF-FF) and the functional format of MM3 is preserved. (34-36) Ligand and metal interatomic potentials are parametrized and validated across multiple MOF structures and atomic charges are determined based on topological analysis using Bader’s atom in molecules theory (AIM) (37) of the equilibrium electron density from solid-state DFT calculations.

2 Metal–Organic Frameworks

Click to copy section linkSection link copied!

We consider six representative MOFs covering three of the most common isoreticular frameworks: [MOF-5 (Zn4O(BDC)3), IRMOF-10 (Zn4O(BPDC)3), IRMOF-14 (Zn4O(PDC)3), UiO-66 (Zr6O4(OH)4(BDC)6), UiO-67 (Zr6O4(OH)4(BPDC)6), and HKUST-1 (Cu3(BTC)2)], as illustrated in Figures 1 and 2.

Figure 1

Figure 1. Comparative illustrations of the repeating units of Zn-containing MOF-5, IRMOF-10 and IRMOF-14 with the organic ligands shown underneath each structure. Torsion angle (atom types 170-913-902-912) labeled as x has been highlighted.

Figure 2

Figure 2. Comparative illustrations of the repeating units of Cu-containing HKUST-1 and Zr-containing UiO-66 and UiO-67 with the organic ligands shown underneath each structure. Torsion angle (atom types 912-903-903-912) labeled as y has been highlighted.

MOF-5 was first reported by the group of Yaghi. (38) It is formed of Zn4O clusters and 1,4-benzenedicarboxylate (BDC) organic ligands. The Zn metal centers are in tetrahedral coordination with respect to oxygen (Figure 1), which is similar to the bulk metal oxide. The crystal structure can be described by its primitive rhombohedral unit cell of dimensions a = 18.289 Å, α = 60.0°. The cubic unit cell of MOF-5 has the associated dimension of a = 25.832 Å and space group Fmm. (39) The ligands form the edges of the cubic structure and the metal clusters the corners. Each unit cell contains half the ligand molecules orientated face-on and half rotated 90° into the plane. The structures of IRMOF-10 and IRMOF-14 are analogous to that of MOF-5, differing only in the ligand identity. The organic ligand comprising IRMOF-10 is 4,4′-biphenyldicarboxylate (BPDC), whereas for IRMOF-14 it is pyrene-2,7-dicarboxylate (PDC). The cell parameter for the cubic unit cell of IRMOF-10 is a = 34.281 Å, while IRMOF-14 is a = 34.381 Å. (39)
Table 1. Experimentally Determined Crystal Structure Parameters of Six Metal–Organic Frameworksa
MOFmetaloxidationligandspace groupa (Å)N
MOF-5 (39)ZnIIBDCFmm25.832424
IRMOF-10 (39)ZnIIBPDCFmm34.281664
IRMOF-14 (39)ZnIIPDCFmm34.381760
UiO-66 (40)ZrIVBDCF4̅3m20.978456
UiO-67 (40)ZrIVBPDCF4̅3m27.094684
HKUST-1 (41)CuIIBTCFmm26.343576
a

Oxidation refers to the formal metal oxidation state, while N refers to the number of atoms in the unit cell described.

Beyond the isoreticular Zn-MOFs, UiO-66, UiO-67, and HKUST-1 were also modeled (see Figure 2). UiO-66 is formed of Zr6O4(OH)4 clusters 12-coordinated to BDC ligands, such that each Zr ion is in octahedral coordination with capping η3-OH and η3-O anions. (40, 42, 43) The cubic cell dimension for UiO-66, with the space group F4̅3m, is a = 20.978 Å. (40) The crystal structure of UiO-67 is similar but composed of the biphenyl ligand (BPDC); the extension is analogous to that of MOF-5 to IRMOF-10. The behavior of the BPDC ligand differs for UiO-67 due to a ligand twist (labeled y in Figure 2). First-principles calculations predict the twist across the central carbon atoms connecting the two aromatic rings to be approximately 31°. UiO-67 also has the space group F4̅3m, with cell dimension a = 27.094 Å. (40, 44) The UiO series is of increasing interest for MOF applications due to their high thermal stability up to 813 K and resistivity to water decomposition. (45)
HKUST-1 differs in relation to the structures previously discussed. Here, the ligand is 1,3,5-benzenetricarboxylic acid (BTC), as shown in Figure 2. This MOF, first reported by Chui et al., (41) is of interest not only for its high gas storage capacities but also for its unique electronic structure originating from Cu–Cu interactions. The room temperature experimental crystal structure infers metal–metal separation of 2.63 Å. The metal nodes in HKUST-1 are Cu, which are in a square planar coordination resulting in a 3D network with a paddlewheel geometry and three voids of diameters 5, 11, and 13.5 Å, respectively. Each metal center has 4 BTC ligands, with additional water coordination in vertical alignment with the Cu–Cu interaction, resulting in a pseudo-octahedral geometry for hydrated crystals. The water can be removed and/or substituted to further expose the metals. (46, 47) In this paper, we will consider only the dehydrated HKUST-1 structure. HKUST-1 has a cubic crystal symmetry (space group Fmm) with a lattice dimension of a = 26.343 Å. Table 1 gives a summary of unit cell parameters of each structure described.

3 Theoretical Approach

Click to copy section linkSection link copied!

3.1 Reference Solid-State Electronic Structure Calculations

In order to provide systematic benchmark data, electronic structure calculations for the periodic crystals were performed using DFT as implemented in the VASP (Vienna Ab-Initio Simulation Package) code. (48, 49) All calculations were performed using the PBEsol functional, (50) which is a semilocal functional that usually predicts equilibrium structures in very good agreement with experiment; its success for MOFs has been well demonstrated. (3, 51) Comparison of different exchange-correlation functionals for a range of materials shows that the structures and frequencies of PBEsol are among the most accurate currently available for solids. (52, 53)
The computational setup differed between structures due to variations in the unit cell size. A 2 × 2 × 2 k-point grid was used for the optimization of UiO-66. Due to the larger unit cells of MOF-5, IRMOF-10, IRMOF-14, UiO-67, and HKUST-1, only Γ-point sampling was performed. The quasi-Newtonian relaxation employed for structural optimization was converged to forces of 0.005 eV/Å or lower. A kinetic energy cutoff of 500 eV was employed for the plane-wave basis set. Scalar-relativistic projector-augmented wave (PAW) potentials were used to model the interactions between the core and valence electrons on each atom, with the 3d electrons treated explicitly for Zn. Effective atomic charges for each atom type were derived using the AIM theory on the total electron density (i.e., the sum of the PAW and valence density) for the optimized structure. (54) Vibrational frequencies were calculated with Γ-point sampling of the Brillouin zone using the finite displacement method.

3.2 Force Field Parametrization and Testing

The functional form of MM3 is maintained in our parametrization. Thus, the overall energy expression is(1)where str = stretch, tor = torsion, opb = out of plane bend, Coul = Coulomb, and vdW = van der Waals interactions and where the usual bond stretching and bending modes are described, in addition to longer range van der Waals (dispersion) and Coulombic interactions. Nonbonding interactions were calculated using the Buckingham equation:(2)vdW radii and ε values are given in Table 4. Default values for the A, B, and C constants were used (184000.0, 12.0, 2.25, respectively) as defined in TINKER.
The MM3 force field has been shown to recreate organic systems accurately and, more recently, has been applied to MOF structures. (33-36, 55) The TINKER package (56, 57) contains the full set of the MM3 force field parameters and has a range of capabilities for crystal structure and property calculations. The XTALMIN program inside of TINKER was used to apply periodic boundary conditions allowing the full crystal to be modeled and optimized. The internal positions are described using connectivity (in the absence of space group symmetry). When considering the interaction between organic and inorganic building blocks both “bonding” and “nonbonding” contributions were included. Atom types were assigned based on the element and the environment of the crystal. The reparameterization of the MM3 force field include the terms describing the carboxylic head and interaction between metal node and ligand. New parameters were also derived for the metal node, particularly for the metal–inorganic oxygen interaction. TINKER default values of the Buckingham potentials were used in association with Coulomb long-range terms to describe nonbonding interactions.
Vibrational frequencies were calculated at the Γ-point using the VIBRATE program, and bulk moduli with the DYNAMIC program in the TINKER package through molecular dynamic simulations. A series of Canonical (NVT) ensemble calculations were employed to fix the unit cell volume at 1 K with negligible kinetic energy contribution. Unit cell volumes were sampled every 0.01 Å for ±1% from the equilibrium volume (V0). Simulations were run for 250 000 dynamic steps with a time step of 1 fs at 1 atm with an Ewald cutoff of 11 Å. Constant temperature of the system was maintained with a Nosé–Hoover thermostat. The Velocity Verlet algorithm was used to integrate the Newton equations. Average values of the potential energy were taken from the final 50 ps (500 dynamic steps). The bulk moduli (B0) of each structure was calculated using the isothermal Birch–Murnaghan equation of state (eq 3). Data processing was implemented in Octave using the Asturfit program, which performs a least-squares fit to the Birch–Murnaghan equation of state. (58, 59)(3)
Linear (α) (eq 4) and volumetric (β) (eq 5) thermal expansion coefficients were calculated from a series of anisotropic isothermal–isobaric (NPT) ensemble calculations. The Berendensen bath coupling method was used as a barostat to maintain defined pressures. The temperatures were sampled at 1 K and between 80–500 at 50 K increments with 500 K as an additional temperature point. The program DYNAMIC was used to calculate the average lattice parameters over 50 ps following equilibration for 200 ps.(4)(5)
For isotropic expansion 3 × α = β; this relationship was used when calculating the volumetric thermal coefficients from the linear thermal coefficients. The value of the lattice parameter a when calculating the linear thermal expansion coefficient was taken as the average of the 298 K MD simulation and ∂a/∂T is the average slope over the temperature range 80–500 K.
Finally, isochoric heat capacities (CV) were calculated within the harmonic approximation from the vibrational frequencies of each structure for temperatures ranging between 80 and 500 at 50 K intervals using the standard (Einstein) phonon summation:(6)

3.3 Molecular versus Periodic Charges

One distinction of our MOF potential is the choice of effective atomic charges. When deriving effective charges the core atomic density is often not considered due to the use of a pseudopotential or effective core potential. This leads to a systematic error in the calculation of the atomic surfaces, making bonds appear more ionic in nature. (60) With the PAW method, we can reconstruct the total charge density of the system as a sum of the valence and PAW density. The effective charges derived from topological analysis of charge density for different structural representations of MOF-5, including those of BTW-FF (with and without the core density) are listed in Table 2.
Table 2. Comparative Bader Charges Derived for a Small Cluster (SC) (79 Atom, Zn4O13C42H30) and Large Cluster (LC) (328 Atom, Zn32O104C120H72) of MOF-5 Compared with Those Derived for the Periodic System Used in the BTW-FF and UFF Modelsa
  Bader charges (au)
atom typeelementBTW-FFinc.coreBTW-FFexc.coreSCLCUFF
172Zn1.2811.4081.2911.2911.308
913C (acid)1.4972.6831.5581.5361.912
912C (benz)–0.053–0.011–0.058–0.0551.912
902C (C–Cacid)–0.008–0.0070.010–0.0031.912
170O (acid)–1.151–1.768–1.195–1.168–2.300
171O (inorganic)–1.115–1.336–1.171–1.207–2.300
915H (H–C)0.1260.0830.0900.1230.712
a

Also given are the periodic charges with and without the inclusion of core density. Charges are given in atomic units.

Analysis of data first confirms the importance of including core charges for MOFs. The differences are large, especially for the carboxylic head of the ligand. Second, comparing charges derived from the Bloch states versus finite molecular orbitals, we show that similar results can be obtained when a large cluster is used. In contrast, the standard molecular UFF parametrization has a more ionic description with charges larger in magnitude for all atoms.

4 Results

Click to copy section linkSection link copied!

To begin, topological analysis of charge density of the equilibrium MOF structures from the electronic structure calculations was performed to obtain the effective atomic charges to be used in the force field. The values are presented in Table 3. Comparable charges were derived for MOF-5, IRMOF-10, and IRMOF-14, and also for UiO-66 and UiO-67. The higher charge of Zr is consistent with its higher oxidation state. Similar derived charges for each atom type allowed average charges to be used, resulting in a fully transferable model, analogous to that of an UFF implementation.
The values used for the van der Waals radii and polarizability (ε) parameters describing the nonbonding interactions in each structure are given in Table 4. The derived parameters of Zn and Cu are similar to those derived by Schmid et al. (34) Zr is heavier and its higher oxidation state in UiO-66 results in greater polarizability; hence, its values are larger. The Zr parameters are similar to those already used within inorganic crystals. (61)
The final set of force field parameters to describe all MOFs reported here are included as Supporting Information (SI) and an online repository, which will be updated with future potentials. (62)

4.1 IRMOF Series

The lattice parameter agreement between the equilibrium BTW-FF and DFT (PBEsol) structures is very good (errors of less than 1%). The full internal structural parameter comparison for MOF-5, IRMOF-10, and IRMOF-14 is provided as SI. Atom type assignment is shown in Figure 3.

Figure 3

Figure 3. Atom type definitions used for MOF-5/IRMOF-10/IRMOF-14.

An interesting observation was made when deriving the potentials for both MOF-5 and IRMOF-10. Initial parametrization resulted in slightly distorted ligand structures with a nonplanar torsion angle occurring between the O-C(carb)-C(phen)-C(phen) (170-3-902-2) (labeled as x in Figure 1). For comparison a DFT(PBEsol) calculation was run starting from a 2.73° angle, where the equilibrium structure gave a distortion of 1.04°. Our data suggests that the ground-state of the ligands in MOF-5, IRMOF-10, and IRMOF-14 is slightly distorted, with a space group of lower symmetry than the average one identified at room temperature. This distortion is likely to fluctuate at higher temperatures, with an average structure that is planar (double well potential). The force field parameters presented contain a torsion potential to suppress this distortion and recreate experimental data; however, it can be removed without disrupting the remainder of the framework.
Table 3. Atomic Charges Derived Via Topological Analysis for Each Atom Type in Each MOFa
  effective atomic charges (au)
elementatom typeMOF-5IRMOF-10IRMOF-14UiO-66UiO-67HKUST-1avg. charges
C (benz)912–0.054–0.046–0.044–0.058–0.060–0.023–0.050
C (acid)9131.4971.5381.5381.5761.5481.5401.539
C (Cbenz–Cacid)9020.008–0.0280.051–0.0560.006–0.011–0.008
C (Cbenz–Cbenz′)903 –0.012  –0.035 –0.024
O (acid)170–1.151–1.163–1.156–1.181–1.182–1.091–1.154
O (inorganic)171–1.115–1.214–1.224–1.189–1.881 –1.186
O (O–H)75   –1.242–1.244 –1.243
H (H–C)9150.1260.1050.0920.1290.0960.1580.118
H (H–O)21   0.6220.623 0.622
metal 1.2811.2951.2972.6012.6101.0361.291 (Zn), 2.605 (Zr)
a

Atomic charges are given in atomic units and total average charges of all structures are given.

Table 4. van der Waals Radii and ε Values Used for the Transition Metals within the MOF Structuresa
elementsvdW radii (Å)ε (kcal mol–1)
Zn2.2900.276
Cu2.2900.276
Zr3.5200.367
a

Epsilon refers to the polarizability of the atoms, which is an energy term within the van der Waals function in the MM3 format (eq 1).

4.2 UiO-Series

Compared to the IRMOF series, the structural fit of UiO-66 and UiO-67 proved more challenging to converge. The equilibrium lattice constants are within 0.51% of the DFT(PBEsol) values. The ligand potentials used to model the IRMOF structures are transferable to UiO-66 and UiO-67 with small errors in bond lengths and angles (see SI). Atom type assignments are shown in Figure 4. The results and the error associated with the Zr–inorganic oxygen bond (2.23 and 2.67% in UiO-66 and UiO-67, respectively) suggest a more robust nonbonding interaction for these bonds may be required to improve the overall accuracy of the models (e.g., higher-order multipoles in the electrostatic summations).
To stress the close relationship between MOF-5 and UiO-66, the ligand potentials for the BDC ligand remained unchanged between the structures. This is also the case for IRMOF-10 and UiO-67. The one exception is that in order to recreate the 31° twist across the central bond of the biphenyl ligand within UiO-67, the applied k-force for the torsion (912-903-903-912 atom types) was reduced. The resultant twist of UiO-67 was 32.2°. The Zr potential is fully transferable between UiO-66 and UiO-67.

Figure 4

Figure 4. Definition of atom types for UiO-66 and UiO-67.

4.3 HKUST-1

The equilibrium lattice constants of HKUST-1 show errors of less than 0.1%, with the internal structure parameters also well described (see SI). See Figure 5 for atom type assignment. The nature of the Cu–Cu bonding is somewhat in debate; chemically each Cu ion is formally divalent (d9) and the unpaired spin form open-shell and closed-shell singlets, as well as a (ferromagnetic) triplet state. (63, 64) Here, it was necessary to model Cu–Cu as 5 coordinate, that is, bonded to 4 carboxylic acid oxygens in the equatorial positions and 1 Cu in the axial position. Reasonable k-force was required to model this metal–metal interaction. Future work could extend these HKUST-1 potentials to include water coordination as described in the introduction of this paper to form a pseudo Cu octahedral environment.

Figure 5

Figure 5. Definition of atom types for HKUST-1.

4.4 Property Calculations

To validate the accuracy and transferability of the potential model beyond equilibrium structures, a series of materials property calculations have been performed. We have determined the bulk moduli and vibrational frequencies for each structure using our force field and compared these to available reference data. These properties are extremely computationally expensive to calculate on the DFT potential energy landscape but are straightforward using our potential model.
The calculated bulk moduli are given in Table 5, with the energy/volume curves provided in Figure 6. An excellent agreement with reference values for all structures besides UiO-66 is shown. The trends in the obtained bulk moduli of the MOFs is also consistent with available experimental and DFT calculated values. UiO-66 appears to be an unique case due to the large increase in mechanical strength for UiO-66 when comparing this value with the structurally similar UiO-67. To our knowledge, experimental values for the bulk modulus of UiO-66 are not available currently to provide a definitive reference. The large difference between the bulk moduli of MOF-5 and UiO-66 is due to the coordination and oxidation state differences of the metal centers in either structure. In MOF-5 the metals are 4-coordinate and formally Zn2+ and in UiO-66 the metals are 6-coordinate with 6 further capping ligands to create a total outer coordination of 12. In addition, the formal oxidation state of the metals in UiO-66 is Zr4+. UiO-66 can therefore be considered as being formed of stronger interactions, which increase the mechanical strength of the material.
Table 5. Bulk Moduli of MOF-5, IRMOF-10, IRMOF-14, UiO-66, UiO-67, and HKUST-1a
MOFBulk moduli (GPa)
BTW-FFReference
MOF-511.9518.20 (65)
IRMOF-108.256.00 (66)
IRMOF-148.405.90 (66)
UiO-6627.1541.01 (65)
UiO-6719.1517.15 (65)
HKUST-125.0524.53 (65)
a

Values reported are those using BTW-FF and available reference data from DFT calculations. Reference calculations used Density Functional based Tight Binding (Kuc et al.) (66) and PBE functional (Wu et al.). (65) Note that the bulk modulus is related to the second derivatives of the energy with respect to volume and hence is sensitive to the theoretical approach.

Figure 6

Figure 6. Energy/volume curves for MOF-5, IRMOF-10, IRMOF-14, UiO-66, UiO-67 and HKUST-1, from which the bulk moduli were derived via an equation of state.

It should be noted that the bulk modulus of a material is temperature dependent. Direct comparison with experimental data is therefore not often appropriate when discussing accuracy to athermal calculations. (67) Furthermore, where values from other DFT studies are compared, it should be remembered that these values are sensitive to the choice of functional, where the bulk modulus is proportional to the equilibrium cell volume, that is(7)where standard local and semilocal functionals can produce large errors.
Vibrational frequencies were calculated and compared with those from DFT (PBEsol) (see Figure 7). A generally good agreement is found for all structures. There are, however, frequencies in the 1900 cm–1 to 3000 cm–1 range for UiO-67 and IRMOF-10, which are not calculated with DFT. We can assign these anomalous modes to stretches involving the central C–C bond (atom types 903-903). The force constants involving the connection of this central bond were strengthened to prevent the previously discussed carboxylate head twisting distortion occurring. Further additional modes for UiO-67 and also for UiO-66 were predicted by BTW-FF in the same frequency region. Analysis of the associated eigenvectors confirms these to be due to stretching modes within the Zr–O(O–H) (atom types Zr-75) bonds. These bonds have the largest error (2.23% and 2.67% for UiO-66 and UiO-67, respectively, Supporting Information Table S2) when compared to the equilibrated DFT structure. HKUST-1 was not included in the vibrational frequency analysis as the DFT proved to be too expensive to compute due to the larger crystal structure. It should be noted that soft modes associated with the carboxylate torsion of the ligands were present in all cases. This torsion has previously been described and labeled as x in Figure 1.
As a further analysis, we compare the vibrational frequencies of the IRMOF and UiO-series with DFT (B3-LYP) data previously reported and analyzed by Civalleri et al. and Valenzano et al. for the respective series of structures (Table 6 and Table 7). (44, 68) Assignment of the vibrational frequencies for prominent stretching and bending modes shows an excellent agreement in our reported results using BTW-FF and those from DFT (B3-LYP). This agreement further supports the accuracy of our model.
Table 6. Assigned Vibrational Frequencies (ω) for MOF-5, IRMOF-10, and IRMOF-14a
 ω (cm–1)
descriptionDFT (MOF-5)MOF-5IRMOF-10IRMOF-14
Oacid–Zn–Oacid bend114111123136
Zn–Oinorganic–Zn bend136174181178–179
Zn–Oacid–Cacid bend263283302–305284
Zn–Oinorganic asymmetric stretch512497497–498493
Zn–Oacid symmetric stretch579558544–575545–565
Zn–Oacid asymmetric stretch606563–568590–602575–590
Cacid–Oacid symmetric stretch142113941471–14731355–1382
a

Reference DFT calculations B3-LYP level of theory in the CRYSTAL code (Civalleri et al.). Reported DFT values are for MOF-5. (68)

Occupation of the lattice phonons at finite temperatures leads to changes in the crystal structure parameters. Linear and volumetric thermal expansion coefficients have been calculated to determine the change in unit cell size with increasing temperature. Many MOFs are known to contract with increasing thermal energy due to transverse vibrational modes of the ligands. Details describing the causes of negative thermal expansion in solid materials are detailed in a referenced review. (69) The phenomenon is not to be confused with structural changes that occur following the evacuation of internal solvent molecules.
Table 7. Assigned Vibrational Frequencies (ω) for UiO-66 and UiO-67a
 ω (cm–1)
descriptionDFT (UiO-66)UiO-66UiO-67
Zr–Oacid asymmetric stretch556558593
μ3–O stretch673671–672667–671
O–H bend771, 814778–779, 810–812872
Cacid–Oacid symmetric stretch14081380, 14081363
a

Reference DFT calculations B3-LYP level of theory in the CRYSTAL code (Valenzano et al). Reported DFT values are for UiO-66. (44)

Figure 7

Figure 7. Γ-point vibrational frequencies between 500–3500 cm–1 for MOF-5, IRMOF-10, IRMOF-14, UiO-66, UiO-67, and HKUST-1. DFT calculated (left) and BTW-FF calculated (right). Note: DFT (PBEsol) frequencies for HKUST-1 could not be computed owing to the computational expense.

Table 8. Calculated Linear (α) and Volumetric (β) Thermal Expansion Coefficients of MOF-5, IRMOF-10, IRMOF-14, UiO-66, UiO-67, and HKUST-1
MOFα (×10–6) (K–1)β (×10–6) (K–1)
MOF-5–5.27–15.80
IRMOF-10–8.11–24.32
IRMOF-14–4.95–14.86
UiO-66–1.04–3.11
UiO-67–2.22–6.66
HKUST-1–3.18–9.53

Figure 8

Figure 8. Thermal expansion profiles for MOF-5, IRMOF-10, IRMOF-14, UiO-66, UiO-67, and HKUST-1. In contrast to standard quasi-harmonic approaches, molecular dynamic simulations include high order anharmonicity from phonon–phonon interactions. Shown is the difference in a parameter at a given temperature, with respect to the a parameter at 1 K. Error bars indicate the variation in the lattice constants at each temperature due to thermal fluctuations.

Negative thermal expansion was calculated for each structure as shown by the thermal expansion coefficients (Table 8). The extent of unit cell contraction with temperature is shown in Figure 8. IRMOF-10 experiences the greatest thermal contraction due to bending modes of the biphenyl ligand. IRMOF-14 and MOF-5, although containing the same metal node as IRMOF-10, have more rigid ligands and therefore contract less with temperature. The UiO series contract the least due to the high charge on the Zr metal node resulting in a rigid extended structure. The influence of the charge on the metal is highlighted by the difference in behavior of UiO-67 and IRMOF-10. These structures contain the same ligand, but due to the higher ionicity of UiO-67, soft bending modes of the biphenyl ligand are no longer present. The final structure, HKUST-1 also exhibits very weak negative thermal expansion at high temperatures. A low charge was calculated on the Cu metal centers (Table 3) suggesting that HKUST-1 exhibits harder structural properties due to the rigidity of the tricarboxylate ligand and not increased ionicity. Calculated values are consistent with those previously found from experiment and MD simulations. (70-72)
Finally, volumetric heat capacities were calculated at constant volume from the vibrational frequencies (eq 6) for each structure under the harmonic approximation. The heat capacity describes the energy required to increase the temperature of a material by a given quantity and is determined from the changes in vibrational occupancy with increasing temperature. The values plateau at relatively low temperatures (200–300 K) suggesting low Debye temperatures (Figure 9). Unfortunately, little experimental data is available on the heat capacity of MOFs to date for comparison.

5 Conclusions

Click to copy section linkSection link copied!

We have parametrized a new interatomic potential to describe the crystal structures and properties of metal–organic frameworks. The force field is shown to accurately reproduce the structural parameters of MOF-5, IRMOF-10, IRMOF-14, UiO-66, UiO-67, and HKUST-1. The ligand parameters are transferable between the Zr and Zn frameworks and are expected to be valid for other systems of interest. Bulk moduli and vibrational frequencies have been calculated and are in agreement with calculations on the DFT (PBEsol) potential energy surface. Finally, we highlighted the importance of periodic boundaries when deriving empirical parameters for MOFs. Future work will concern extending this model to other systems and extending the range of materials response functions that can be calculated for hybrid frameworks.

Figure 9

Figure 9. Temperature dependence of the predicted volumetric heat capacities for MOF-5, IRMOF-10, IRMOF-14, UiO-66, UiO-67, and HKUST-1.

Supporting Information

Click to copy section linkSection link copied!

Structural parameters, including bond lengths, angles, and unit cell parameters for each structure. Potential parameter sets and data used to plot modal heat capacities. This material is available free of charge via the Internet at http://pubs.acs.org

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
    • Aron Walsh - Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom Email: [email protected]
  • Authors
    • Jessica K. Bristow - Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
    • Davide Tiana - Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

Click to copy section linkSection link copied!

We thank Rochus Schmid for providing access to his MOF-FF potential implementation, and Jonathan Skelton for useful conversations and guidance with this work. J.K.B. is funded by the EPSRC Doctoral Training Centre for Sustainable Chemical Technologies at Bath University (Grant No. EP/G03768X/1). D.T. is funded under ERC Starting Grant 277757. A.W. acknowledges support from the Royal Society University Research Fellowship scheme. The work benefits from the high performance computing facility at the University of Bath. Access to the HECToR and ARCHER supercomputers was facilitated through membership of the HPC Materials Chemistry Consortium (EP/F067496).

References

Click to copy section linkSection link copied!

This article references 72 other publications.

  1. 1
    Millward, A. R.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 17998 17999
  2. 2
    Bernini, M. C.; Fairen-Jimenez, D.; Pasinetti, M.; Ramirez-Pastor, A. J.; Snurr, R. Q. J. Mater. Chem. B 2014, 2, 766 774
  3. 3
    Hendon, C. H.; Tiana, D.; Walsh, A. Phys. Chem. Chem. Phys. 2012, 14, 13120 13132
  4. 4
    Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G. APL Mater. 2013, 1, 011002
  5. 5
    Wang, C.; Chen, S.; Yang, J.-H.; Lang, L.; Xiang, H.; Gong, X.; Walsh, A.; Wei, S.-H. Chem. Mater. 2014, 26, 3411
  6. 6
    Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; van Schilfgaarde, M.; Walsh, A. Nano Lett. 2014, 14, 2584 2590
  7. 7
    Zakutayev, A.; Zhang, X.; Nagaraja, A.; Yu, L.; Lany, S.; Mason, T. O.; Ginley, D. S.; Zunger, A. J. Am. Chem. Soc. 2013, 135, 10048 10054
  8. 8
    Scanlon, D. O.; Walsh, A. Appl. Phys. Lett. 2012, 100, 251911
  9. 9
    Jackson, A. J.; Walsh, A. J. Mater. Chem. A 2014, 2, 7829 7836
  10. 10
    Lewis, G.; Catlow, C. J. Phys. C 1985, 18, 1149
  11. 11
    Catlow, C.; Guo, Z.; Miskufova, M.; Shevlin, S.; Smith, A.; Sokol, A.; Walsh, A.; Wilson, D.; Woodley, S. Philos. Trans. R. Soc. A 2010, 368, 3379 3456
  12. 12
    Greathouse, J. A.; Allendorf, M. D. J. Am. Chem. Soc. 2006, 128, 10678 10679
  13. 13
    Schmid, R.; Tafipolsky, M. J. Am. Chem. Soc. 2008, 130, 12600 12601
  14. 14
    Salles, F.; Ghoufi, A.; Maurin, G.; Bell, R. G.; Mellot-Draznieks, C.; Férey, G. Angew. Chem., Int. Ed. 2008, 47, 8487 8491
  15. 15
    McDaniel, J. G.; Yu, K.; Schmidt, J. J. Phys. Chem. C 2012, 116, 1892 1903
  16. 16
    Greathouse, J. A.; Allendorf, M. D. J. Phys. Chem. C 2008, 112, 5795 5802
  17. 17
    Vanduyfhuys, L.; Verstraelen, T.; Vandichel, M.; Waroquier, M.; Van Speybroeck, V. J. Chem. Theory Comput. 2012, 8, 3217 3231
  18. 18
    Yang, Q.; Liu, D.; Zhong, C.; Li, J.-R. Chem. Rev. 2013, 113, 8261 8323
  19. 19
    Babarao, R.; Jiang, J. Langmuir 2008, 24, 6270 6278
  20. 20
    Wilmer, C. E.; Leaf, M.; Lee, C. Y.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Snurr, R. Q. Nat. Chem. 2011, 4, 83 89
  21. 21
    Yazaydin, A. O.; Snurr, R. Q.; Park, T.; Koh, K.; Liu, J.; LeVan, M. D.; Benin, A. I.; Jakubczak, P.; Lanuza, M.; Galloway, D. B. J. Am. Chem. Soc. 2009, 131, 18198 18199
  22. 22
    Sikora, B. J.; Winnegar, R.; Proserpio, D. M.; Snurr, R. Q. Micropor. Mesopor. Mater. 2014, 186, 207 213
  23. 23
    Fu, J.; Sun, H. J. Phys. Chem. C 2009, 113, 21815 21824
  24. 24
    Zhang, L.; Hu, Z.; Jiang, J. J. Am. Chem. Soc. 2013, 135, 3722 3728
  25. 25
    Ghoufi, A.; Maurin, G. J. Phys. Chem. C 2010, 114, 6496 6502
  26. 26
    Zhang, L.; Wu, G.; Jiang, J. J. Phys. Chem. C 2014, 118, 8788 8794
  27. 27
    Yang, Q.; Zhong, C. J. Phys. Chem. B 2006, 110, 17776 17783
  28. 28
    Düren, T.; Bae, Y.; Snurr, R. Q. Chem. Soc. Rev. 2009, 38, 1237 1247
  29. 29
    Wu, D.; Wang, C.; Liu, B.; Liu, D.; Yang, Q.; Zhong, C. AIChE J. 2012, 58, 2078 2084
  30. 30
    Rappé, A. K.; Casewit, C. J.; Colwell, K.; Goddard Iii, W.; Skiff, W. J. Am. Chem. Soc. 1992, 114, 10024 10035
  31. 31
    Haldoupis, E.; Nair, S.; Sholl, D. S. J. Am. Chem. Soc. 2012, 134, 4313 4323
  32. 32
    Addicoat, M. A.; Vankova, N.; Akter, F. I.; Heine, T. J. Chem. Theory Comput. 2014, 10, 880 891
  33. 33
    Tafipolsky, M.; Amirjalayer, S.; Schmid, R. J. Phys. Chem. C 2010, 114, 14402 14409
  34. 34
    Bureekaew, S.; Amirjalayer, S.; Tafipolsky, M.; Spickermann, C.; Roy, T. K.; Schmid, R. Phys. Status Solidi B 2013, 250, 1128 1141
  35. 35
    Allinger, N. L.; Yuh, Y. H.; Lii, J. H. J. Am. Chem. Soc. 1989, 111, 8551 8566
  36. 36
    Allinger, N. L.; Li, F.; Yan, L. J. Comput. Chem. 1990, 11, 848 867
  37. 37
    Bader, R. F. Acc. Chem. Res. 1985, 18, 9 15
  38. 38
    Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276 279
  39. 39
    Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469 472
  40. 40
    Yang, Q.; Guillerm, V.; Ragon, F.; Wiersum, A. D.; Llewellyn, P. L.; Zhong, C.; Devic, T.; Serre, C.; Maurin, G. Chem. Commun. 2012, 48, 9831 9833
  41. 41
    Chui, S. S.-Y.; Lo, S. M.-F.; Charmant, J. P.; Orpen, A. G.; Williams, I. D. Science 1999, 283, 1148 1150
  42. 42
    Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc. 2008, 130, 13850 13851
  43. 43
    Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Chem. Eur. J. A 2011, 17, 6643 6651
  44. 44
    Valenzano, L.; Civalleri, B.; Chavan, S.; Bordiga, S.; Nilsen, M. H.; Jakobsen, S.; Lillerud, K. P.; Lamberti, C. Chem. Mater. 2011, 23, 1700 1718
  45. 45
    Wiersum, A. D.; Soubeyrand-Lenoir, E.; Yang, Q.; Moulin, B.; Guillerm, V.; Yahia, M. B.; Bourrelly, S.; Vimont, A.; Miller, S.; Vagner, C. Asian J. Chem. 2011, 6, 3270 3280
  46. 46
    Lin, K.-S.; Adhikari, A. K.; Ku, C.-N.; Chiang, C.-L.; Kuo, H. Int. J. Hydrogen Energy 2012, 37, 13865 13871
  47. 47
    Gascon, J.; Aguado, S.; Kapteijn, F. Micropor. Mesopor. Mater. 2008, 113, 132 138
  48. 48
    Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558
  49. 49
    Blöchl, P. E. Phys. Rev. B 1994, 50, 17953
  50. 50
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865 3868
  51. 51
    Hendon, C. H.; Tiana, D.; Fontecave, M.; Sanchez, C.; D’arras, L.; Sassoye, C.; Rozes, L.; Mellot-Draznieks, C.; Walsh, A. J. Am. Chem. Soc. 2013, 135, 10942 10945
  52. 52
    De La Pierre, M.; Orlando, R.; Maschio, L.; Doll, K.; Ugliengo, P.; Dovesi, R. J. Comput. Chem. 2011, 32, 1775 1784
  53. 53
    He, L.; Liu, F.; Hautier, G.; Oliveira, M. J.; Marques, M. A.; Vila, F. D.; Rehr, J.; Rignanese, G.-M.; Zhou, A. Phys. Rev. B 2014, 89, 064305
  54. 54
    Henkelman, G.; Arnaldsson, A.; Jónsson, H. Comput. Mater. Sci. 2006, 36, 354 360
  55. 55
    Tafipolsky, M.; Amirjalayer, S.; Schmid, R. J. Comput. Chem. 2007, 28, 1169 1176
  56. 56
    Ponder, J. W.; Richards, F. M. J. Comput. Chem. 1987, 8, 1016 1024
  57. 57
    Pappu, R. V.; Hart, R. K.; Ponder, J. W. J. Phys. Chem. B 1998, 102, 9725 9742
  58. 58
    W. Eaton, J.; Bateman, D.; Hauberg, S. GNU Octave Manual, Version 3; Network Theory Limited: Godalming, U.K., 2008.
  59. 59
    Otero de la Roza, A.; Luaña, V. Comput. Theor. Chem. 2011, 975, 111 115
  60. 60
    Tiana, D.; Francisco, E.; Blanco, M. A.; Pendás, A. M. J. Phys. Chem. A 2009, 113, 7963 7971
  61. 61
    Peng, Z.; Ewig, C. S.; Hwang, M.-J.; Waldman, M.; Hagler, A. T. J. Phys. Chem. A 1997, 101, 7243 7252
  62. 62
    https://github.com/WMD-Bath/BTW-FF; Walsh Materials Design Group: Bath, U.K. (accessed June 11, 2014) .
  63. 63
    Talin, A. A.; Centrone, A.; Ford, A. C.; Foster, M. E.; Stavila, V.; Haney, P.; Kinney, R. A.; Szalai, V.; El Gabaly, F.; Yoon, H. P. Science 2014, 343, 66 69
  64. 64
    Butler, K. T.; Hendon, C. H.; Walsh, A. J. Am. Chem. Soc. 2014, 136, 2703 2706
  65. 65
    Wu, H.; Yildirim, T.; Zhou, W. J. Phys. Chem. Lett. 2013, 4, 925 930
  66. 66
    Kuc, A.; Enyashin, A.; Seifert, G. J. Phys. Chem. B 2007, 111, 8179 8186
  67. 67
    Skelton, J. M.; Parker, S. C.; Togo, A.; Tanaka, I.; Walsh, A. Phys. Rev. B 2014, 89, 205203
  68. 68
    Civalleri, B.; Napoli, F.; Noel, Y.; Roetti, C.; Dovesi, R. CrystEngComm 2006, 8, 364 371
  69. 69
    Miller, W.; Smith, C.; Mackenzie, D.; Evans, K. J. Mater. Sci. 2009, 44, 5441 5451
  70. 70
    Han, S. S.; Goddard, W. A. J. Phys. Chem. C 2007, 111, 15185 15191
  71. 71
    Sun, Y.; Sun, H. J. Mol. Model. 2014, 20, 1 15
  72. 72
    Lock, N.; Christensen, M.; Wu, Y.; Peterson, V. K.; Thomsen, M. K.; Piltz, R. O.; Ramirez-Cuesta, A. J.; McIntyre, G. J.; Norén, K.; Kutteh, R. Dalton Trans. 2013, 42, 1996 2007

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 103 publications.

  1. Omer Tayfuroglu, Abdulkadir Kocak, Yunus Zorlu. Modeling Gas Adsorption and Mechanistic Insights into Flexibility in Isoreticular Metal–Organic Frameworks Using High-Dimensional Neural Network Potentials. Langmuir 2025, 41 (11) , 7323-7335. https://doi.org/10.1021/acs.langmuir.4c04578
  2. Josef M. Gallmetzer, Jakob Gamper, Stefanie Kröll, Thomas S. Hofer. Comparative Study of UMCM-9 Polymorphs: Structural, Dynamic, and Hydrogen Storage Properties via Atomistic Simulations. The Journal of Physical Chemistry C 2025, 129 (11) , 5645-5655. https://doi.org/10.1021/acs.jpcc.4c07872
  3. Abdelazim M. A. Abdelgawwad, Antonio Francés-Monerris. easyPARM: Automated, Versatile, and Reliable Force Field Parameters for Metal-Containing Molecules with Unique Labeling of Coordinating Atoms. Journal of Chemical Theory and Computation 2025, 21 (4) , 1817-1830. https://doi.org/10.1021/acs.jctc.4c01272
  4. Jakob Gamper, Josef M. Gallmetzer, Risnita Vicky Listyarini, Alexander K. H. Weiss, Thomas S. Hofer. Equipartitioning of Molecular Degrees of Freedom in MD Simulations of Gaseous Systems via an Advanced Thermostatization Strategy. Journal of Chemical Theory and Computation 2025, 21 (1) , 102-113. https://doi.org/10.1021/acs.jctc.4c01580
  5. Yifei Yue, Saad Aldin Mohamed, N. Duane Loh, Jianwen Jiang. Toward a Generalizable Machine-Learned Potential for Metal–Organic Frameworks. ACS Nano 2025, 19 (1) , 933-949. https://doi.org/10.1021/acsnano.4c12369
  6. Hossein Mashhadimoslem, Mohammad Ali Abdol, Peyman Karimi, Kourosh Zanganeh, Ahmed Shafeen, Ali Elkamel, Milad Kamkar. Computational and Machine Learning Methods for CO2 Capture Using Metal–Organic Frameworks. ACS Nano 2024, 18 (35) , 23842-23875. https://doi.org/10.1021/acsnano.3c13001
  7. Yuudai Iwai, Sotaro Kusumoto, Ryo Suzuki, Masaru Tachibana, Kazuki Komatsu, Takashi Kikuchi, Saori I. Kawaguchi, Hirokazu Kadobayashi, Yuji Masubuchi, Yuzuki Yamamoto, Yoshiki Ozawa, Masaaki Abe, Kenji Hirai, Benjamin Le Ouay, Masaaki Ohba, Ryo Ohtani. Mechanical Properties of Modulative Undulating Layers in Two-Dimensional Metal–Organic Frameworks. Chemistry of Materials 2024, 36 (11) , 5446-5455. https://doi.org/10.1021/acs.chemmater.4c00355
  8. Kyeongrim Kim, Jihan Kim. Development of a Transferable Force Field between Metal–Organic Framework and Its Polymorph. ACS Omega 2023, 8 (46) , 44328-44337. https://doi.org/10.1021/acsomega.3c06937
  9. Risnita Vicky Listyarini, Jakob Gamper, Thomas S. Hofer. Storage and Diffusion of Carbon Dioxide in the Metal Organic Framework MOF-5─A Semi-empirical Molecular Dynamics Study. The Journal of Physical Chemistry B 2023, 127 (43) , 9378-9389. https://doi.org/10.1021/acs.jpcb.3c04155
  10. Thomas S. Hofer, Risnita Vicky Listyarini, Emir Hajdarevic, Lukas Maier, Felix R. S. Purtscher, Jakob Gamper, Friedrich Hanser. Beyond the Status Quo: Density Functional Tight Binding and Neural Network Potentials as a Versatile Simulation Strategy to Characterize Host–Guest Interactions in Metal- and Covalent Organic Frameworks. The Journal of Physical Chemistry Letters 2023, 14 (26) , 6018-6027. https://doi.org/10.1021/acs.jpclett.3c00941
  11. Felix R. S. Purtscher, Leo Christanell, Moritz Schulte, Stefan Seiwald, Markus Rödl, Isabell Ober, Leah K. Maruschka, Hassan Khoder, Heidi A. Schwartz, El-Eulmi Bendeif, Thomas S. Hofer. Structural Properties of Metal–Organic Frameworks at Elevated Thermal Conditions via a Combined Density Functional Tight Binding Molecular Dynamics (DFTB MD) Approach. The Journal of Physical Chemistry C 2023, 127 (3) , 1560-1575. https://doi.org/10.1021/acs.jpcc.2c05103
  12. Siddarth K. Achar, Jacob J. Wardzala, Leonardo Bernasconi, Linfeng Zhang, J. Karl Johnson. Combined Deep Learning and Classical Potential Approach for Modeling Diffusion in UiO-66. Journal of Chemical Theory and Computation 2022, 18 (6) , 3593-3606. https://doi.org/10.1021/acs.jctc.2c00010
  13. Vadim V. Korolev, Yuriy M. Nevolin, Thomas A. Manz, Pavel V. Protsenko. Parametrization of Nonbonded Force Field Terms for Metal–Organic Frameworks Using Machine Learning Approach. Journal of Chemical Information and Modeling 2021, 61 (12) , 5774-5784. https://doi.org/10.1021/acs.jcim.1c01124
  14. Musen Zhou, Jingqi Wang, Jose Garcia, Yu Liu, Jianzhong Wu. Modeling Multicomponent Gas Adsorption in Nanoporous Materials with Two Versions of Nonlocal Classical Density Functional Theory. Industrial & Engineering Chemistry Research 2021, 60 (47) , 17016-17025. https://doi.org/10.1021/acs.iecr.1c02929
  15. Amir H. Farmahini, Shreenath Krishnamurthy, Daniel Friedrich, Stefano Brandani, Lev Sarkisov. Performance-Based Screening of Porous Materials for Carbon Capture. Chemical Reviews 2021, 121 (17) , 10666-10741. https://doi.org/10.1021/acs.chemrev.0c01266
  16. Siwarut Siwaipram, Philippe A. Bopp, Julian Keupp, Ladawan Pukdeejorhor, Jean-Christophe Soetens, Sareeya Bureekaew, Rochus Schmid. Molecular Insight into the Swelling of a MOF: A Force-Field Investigation of Methanol Uptake in MIL-88B(Fe)–Cl. The Journal of Physical Chemistry C 2021, 125 (23) , 12837-12847. https://doi.org/10.1021/acs.jpcc.1c01033
  17. Bo Yang, Xin-Ping Wu, Laura Gagliardi, Donald G. Truhlar. Importance of Lattice Constants in QM/MM Calculations on Metal–Organic Frameworks. The Journal of Physical Chemistry B 2021, 125 (22) , 5786-5793. https://doi.org/10.1021/acs.jpcb.1c02328
  18. Shanshan Wang, Madeleine C. Oliver, Yao An, Enyi Chen, Zhibin Su, Alfred Kleinhammes, Yue Wu, Liangliang Huang. A Computational Study of Isopropyl Alcohol Adsorption and Diffusion in UiO-66 Metal–Organic Framework: The Role of Missing Linker Defect. The Journal of Physical Chemistry B 2021, 125 (14) , 3690-3699. https://doi.org/10.1021/acs.jpcb.0c11252
  19. Arkajyoti Sengupta, Zhen Li, Lin Frank Song, Pengfei Li, Kenneth M. Merz, Jr.. Parameterization of Monovalent Ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB Water Models. Journal of Chemical Information and Modeling 2021, 61 (2) , 869-880. https://doi.org/10.1021/acs.jcim.0c01390
  20. Ryther Anderson, Diego A. Gómez-Gualdrón. Large-Scale Free Energy Calculations on a Computational Metal–Organic Frameworks Database: Toward Synthetic Likelihood Predictions. Chemistry of Materials 2020, 32 (19) , 8106-8119. https://doi.org/10.1021/acs.chemmater.0c00744
  21. Jenna L. Mancuso, Austin M. Mroz, Khoa N. Le, Christopher H. Hendon. Electronic Structure Modeling of Metal–Organic Frameworks. Chemical Reviews 2020, 120 (16) , 8641-8715. https://doi.org/10.1021/acs.chemrev.0c00148
  22. Athulya S. Palakkal, Renjith S. Pillai. Tuning the Ultra-Micropore Size of Fluorinated MOFs (M′F6-Ni-L) for CO2 Capture from Flue Gases by Advanced Computational Methods. The Journal of Physical Chemistry C 2020, 124 (31) , 16975-16989. https://doi.org/10.1021/acs.jpcc.0c03633
  23. Ross J. Verploegh, Ambarish Kulkarni, Salah Eddine Boulfelfel, Jonathan C. Haydak, Dai Tang, David S. Sholl. Screening Diffusion of Small Molecules in Flexible Zeolitic Imidazolate Frameworks Using a DFT-Parameterized Force Field. The Journal of Physical Chemistry C 2019, 123 (14) , 9153-9167. https://doi.org/10.1021/acs.jpcc.9b00733
  24. Johannes P. Dürholt, Guillaume Fraux, François-Xavier Coudert, Rochus Schmid. Ab Initio Derived Force Fields for Zeolitic Imidazolate Frameworks: MOF-FF for ZIFs. Journal of Chemical Theory and Computation 2019, 15 (4) , 2420-2432. https://doi.org/10.1021/acs.jctc.8b01041
  25. Yao Sun, Junfeng Gao, Yuan Cheng, Yong-Wei Zhang, Kaiyang Zeng. Design of the Hybrid Metal–Organic Frameworks as Potential Supramolecular Piezo-/Ferroelectrics. The Journal of Physical Chemistry C 2019, 123 (5) , 3122-3129. https://doi.org/10.1021/acs.jpcc.8b08442
  26. Cigdem Altintas, Seda Keskin. Molecular Simulations of MOF Membranes and Performance Predictions of MOF/Polymer Mixed Matrix Membranes for CO2/CH4 Separations. ACS Sustainable Chemistry & Engineering 2019, 7 (2) , 2739-2750. https://doi.org/10.1021/acssuschemeng.8b05832
  27. Yongjian Yang, Yun Kyung Shin, Shichun Li, Thomas D. Bennett, Adri C. T. van Duin, John C. Mauro. Enabling Computational Design of ZIFs Using ReaxFF. The Journal of Physical Chemistry B 2018, 122 (41) , 9616-9624. https://doi.org/10.1021/acs.jpcb.8b08094
  28. Jurn Heinen, Nicholas C. Burtch, Krista S. Walton, and David Dubbeldam . Flexible Force Field Parameterization through Fitting on the Ab Initio-Derived Elastic Tensor. Journal of Chemical Theory and Computation 2017, 13 (8) , 3722-3730. https://doi.org/10.1021/acs.jctc.7b00310
  29. Matthew Witman, Sanliang Ling, Sudi Jawahery, Peter G. Boyd, Maciej Haranczyk, Ben Slater, and Berend Smit . The Influence of Intrinsic Framework Flexibility on Adsorption in Nanoporous Materials. Journal of the American Chemical Society 2017, 139 (15) , 5547-5557. https://doi.org/10.1021/jacs.7b01688
  30. Peter G. Boyd, Seyed Mohamad Moosavi, Matthew Witman, and Berend Smit . Force-Field Prediction of Materials Properties in Metal-Organic Frameworks. The Journal of Physical Chemistry Letters 2017, 8 (2) , 357-363. https://doi.org/10.1021/acs.jpclett.6b02532
  31. Damien E. Coupry, Matthew A. Addicoat, and Thomas Heine . Extension of the Universal Force Field for Metal–Organic Frameworks. Journal of Chemical Theory and Computation 2016, 12 (10) , 5215-5225. https://doi.org/10.1021/acs.jctc.6b00664
  32. J. Wieme, L. Vanduyfhuys, S. M. J. Rogge, M. Waroquier, and V. Van Speybroeck . Exploring the Flexibility of MIL-47(V)-Type Materials Using Force Field Molecular Dynamics Simulations. The Journal of Physical Chemistry C 2016, 120 (27) , 14934-14947. https://doi.org/10.1021/acs.jpcc.6b04422
  33. Joshua Borycz, Davide Tiana, Emmanuel Haldoupis, Jeffrey C. Sung, Omar K. Farha, J. Ilja Siepmann, and Laura Gagliardi . CO2 Adsorption in M-IRMOF-10 (M = Mg, Ca, Fe, Cu, Zn, Ge, Sr, Cd, Sn, Ba). The Journal of Physical Chemistry C 2016, 120 (23) , 12819-12830. https://doi.org/10.1021/acs.jpcc.6b02235
  34. Jessica K. Bristow, Katrine L. Svane, Davide Tiana, Jonathan M. Skelton, Julian D. Gale, and Aron Walsh . Free Energy of Ligand Removal in the Metal–Organic Framework UiO-66. The Journal of Physical Chemistry C 2016, 120 (17) , 9276-9281. https://doi.org/10.1021/acs.jpcc.6b01659
  35. Ádám Madarász, Dénes Berta, and Robert S. Paton . Development of a True Transition State Force Field from Quantum Mechanical Calculations. Journal of Chemical Theory and Computation 2016, 12 (4) , 1833-1844. https://doi.org/10.1021/acs.jctc.5b01237
  36. Mohammad Alaghemandi and Rochus Schmid . Model Study of Thermoresponsive Behavior of Metal–Organic Frameworks Modulated by Linker Functionalization. The Journal of Physical Chemistry C 2016, 120 (12) , 6835-6841. https://doi.org/10.1021/acs.jpcc.5b12331
  37. Samuel O. Odoh, Christopher J. Cramer, Donald G. Truhlar, and Laura Gagliardi . Quantum-Chemical Characterization of the Properties and Reactivities of Metal–Organic Frameworks. Chemical Reviews 2015, 115 (12) , 6051-6111. https://doi.org/10.1021/cr500551h
  38. Luca Murg, Shao-Chun Lee, Vitor F. Grizzi, Y Z. Enhanced exploration of LiF–NaF thermal conductivity through transferable equivariant graph neural networks. Journal of Applied Physics 2025, 137 (6) https://doi.org/10.1063/5.0244036
  39. Wim Temmerman, Ruben Goeminne, Kuber Singh Rawat, Veronique Van Speybroeck. Computational Modeling of Reticular Materials: The Past, the Present, and the Future. Advanced Materials 2024, 9 https://doi.org/10.1002/adma.202412005
  40. Sandro Wieser, Egbert Zojer. Machine learned force-fields for an Ab-initio quality description of metal-organic frameworks. npj Computational Materials 2024, 10 (1) https://doi.org/10.1038/s41524-024-01205-w
  41. Wenchuan Liu, Jie Liu, Lijing Ma, Dengwei Jing. Understanding the adsorption properties of CO2 and N2 by a typical MOF structure: Molecular dynamics and weak interaction visualization. Chemical Engineering Science 2024, 296 , 120233. https://doi.org/10.1016/j.ces.2024.120233
  42. Reza Ghanavati, Alma C. Escobosa, Thomas A. Manz. An automated protocol to construct flexibility parameters for classical forcefields: applications to metal–organic frameworks. RSC Advances 2024, 14 (31) , 22714-22762. https://doi.org/10.1039/D4RA01859A
  43. Konstantin Stracke, Jack D. Evans. The use of collective variables and enhanced sampling in the simulations of existing and emerging microporous materials. Nanoscale 2024, 16 (19) , 9186-9196. https://doi.org/10.1039/D4NR01024H
  44. Nathan London, Dil K. Limbu, Mohammad R. Momeni, Farnaz A. Shakib. DL_POLY Quantum 2.0: A modular general-purpose software for advanced path integral simulations. The Journal of Chemical Physics 2024, 160 (13) https://doi.org/10.1063/5.0197822
  45. L. Vanduyfhuys, M. Wahiduzzaman, S. M. J. Rogge, G. Maurin, V. van Speybroeck. Theoretical Understanding and Insights on Flexible Metal–Organic Frameworks. 2024, 231-303. https://doi.org/10.1039/9781839166617-00231
  46. Hai Lin, Yan Zhang, Soroosh Pezeshki, Adam W. Duster, Bo Wang, Xin-Ping Wu, Shi-Wen Zheng, Laura Gagliardi, Donald G. Truhlar. QMMM 2023: A program for combined quantum mechanical and molecular mechanical modeling and simulations. Computer Physics Communications 2024, 295 , 108987. https://doi.org/10.1016/j.cpc.2023.108987
  47. Esteban Acuna-Yeomans, J.J. Gutiérrez-Sevillano, David Dubbeldam, Sofia Calero. A simulation study of linker vacancy distribution and its effect on UiO-66 stability. Microporous and Mesoporous Materials 2024, 366 , 112922. https://doi.org/10.1016/j.micromeso.2023.112922
  48. Sarvaree Bano, Ashutosh Pandey, Bhawana Jain. Metal-organic frameworks: computational modeling in ionic compounds. 2024, 167-192. https://doi.org/10.1016/B978-0-443-15259-7.00018-8
  49. Michael Ingham, Alex Aziz, Devis Di Tommaso, Rachel Crespo-Otero. Simulating excited states in metal organic frameworks: from light-absorption to photochemical CO 2 reduction. Materials Advances 2023, 4 (22) , 5388-5419. https://doi.org/10.1039/D3MA00518F
  50. Indrani Choudhuri, Jingyun Ye, Donald G. Truhlar. Computational quantum chemistry of metal–organic frameworks. Chemical Physics Reviews 2023, 4 (3) https://doi.org/10.1063/5.0153656
  51. Yusuf Shaidu, Alex Smith, Eric Taw, Jeffrey B. Neaton. Carbon Capture Phenomena in Metal-Organic Frameworks with Neural Network Potentials. PRX Energy 2023, 2 (2) https://doi.org/10.1103/PRXEnergy.2.023005
  52. Sven M. J. Rogge. Computational Modelling of MOF Mechanics: From Elastic Behaviour to Phase Transformations. 2023, 113-204. https://doi.org/10.1039/9781839166594-00113
  53. Mostafa Yousefzadeh Borzehandani, Majid Namayandeh Jorabchi, Emilia Abdulmalek, Mohd Basyaruddin Abdul Rahman, Muhammad Alif Mohammad Latif. Exploring the Potential of a Highly Scalable Metal-Organic Framework CALF-20 for Selective Gas Adsorption at Low Pressure. Polymers 2023, 15 (3) , 760. https://doi.org/10.3390/polym15030760
  54. Maciej Haranczyk, Giulia Lo Dico. Big Data Science in Nanoporous Materials. 2023, 319-342. https://doi.org/10.1002/9781119819783.ch12
  55. Mohammad Yasir Khan, M. Shahid. A contemporary report on explications of flexible metal-organic frameworks with regards to structural simulation, dynamics and material applications. Polyhedron 2022, 225 , 116041. https://doi.org/10.1016/j.poly.2022.116041
  56. Sandro Wieser, Tomas Kamencek, Rochus Schmid, Natalia Bedoya-Martínez, Egbert Zojer. Exploring the Impact of the Linker Length on Heat Transport in Metal–Organic Frameworks. Nanomaterials 2022, 12 (13) , 2142. https://doi.org/10.3390/nano12132142
  57. Omer Tayfuroglu, Abdulkadir Kocak, Yunus Zorlu. A neural network potential for the IRMOF series and its application for thermal and mechanical behaviors. Physical Chemistry Chemical Physics 2022, 24 (19) , 11882-11897. https://doi.org/10.1039/D1CP05973D
  58. Yuhan Yang, David S. Sholl. A systematic examination of the impacts of MOF flexibility on intracrystalline molecular diffusivities. Journal of Materials Chemistry A 2022, 10 (8) , 4242-4253. https://doi.org/10.1039/D1TA09267G
  59. Ralph Freund, Stefano Canossa, Seth M. Cohen, Wei Yan, Hexiang Deng, Vincent Guillerm, Mohamed Eddaoudi, David G. Madden, David Fairen‐Jimenez, Hao Lyu, Lauren K. Macreadie, Zhe Ji, Yuanyuan Zhang, Bo Wang, Frederik Haase, Christof Wöll, Orysia Zaremba, Jacopo Andreo, Stefan Wuttke, Christian S. Diercks. 25 Jahre retikuläre Chemie. Angewandte Chemie 2021, 133 (45) , 24142-24173. https://doi.org/10.1002/ange.202101644
  60. Ralph Freund, Stefano Canossa, Seth M. Cohen, Wei Yan, Hexiang Deng, Vincent Guillerm, Mohamed Eddaoudi, David G. Madden, David Fairen‐Jimenez, Hao Lyu, Lauren K. Macreadie, Zhe Ji, Yuanyuan Zhang, Bo Wang, Frederik Haase, Christof Wöll, Orysia Zaremba, Jacopo Andreo, Stefan Wuttke, Christian S. Diercks. 25 Years of Reticular Chemistry. Angewandte Chemie International Edition 2021, 60 (45) , 23946-23974. https://doi.org/10.1002/anie.202101644
  61. Hilal Daglar, Ilknur Erucar, Seda Keskin. Recent advances in simulating gas permeation through MOF membranes. Materials Advances 2021, 2 (16) , 5300-5317. https://doi.org/10.1039/D1MA00026H
  62. Qiang Zhang, Yohanes Pramudya, Wolfgang Wenzel, Christof Wöll. Modeling the Layer-by-Layer Growth of HKUST-1 Metal-Organic Framework Thin Films. Nanomaterials 2021, 11 (7) , 1631. https://doi.org/10.3390/nano11071631
  63. Jelle Wieme, Veronique Van Speybroeck. Unravelling thermal stress due to thermal expansion mismatch in metal–organic frameworks for methane storage. Journal of Materials Chemistry A 2021, 9 (8) , 4898-4906. https://doi.org/10.1039/D0TA09462E
  64. Shaivya Gupta, Utkarsh Jain, Bayu Tri Murti, Athika Darumas Putri, Ashutosh Tiwari, Nidhi Chauhan. Nanohybrid-based immunosensor prepared for Helicobacter pylori BabA antigen detection through immobilized antibody assembly with @ Pdnano/rGO/PEDOT sensing platform. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-78068-w
  65. Matthew Witman, Sanliang Ling, Vitalie Stavila, Pavithra Wijeratne, Hiroyasu Furukawa, Mark D. Allendorf. Design principles for the ultimate gas deliverable capacity material: nonporous to porous deformations without volume change. Molecular Systems Design & Engineering 2020, 5 (9) , 1491-1503. https://doi.org/10.1039/D0ME00122H
  66. Hilal Daglar, Seda Keskin. Recent advances, opportunities, and challenges in high-throughput computational screening of MOFs for gas separations. Coordination Chemistry Reviews 2020, 422 , 213470. https://doi.org/10.1016/j.ccr.2020.213470
  67. Oxana V. Kharissova, Boris I. Kharisov, Lucy T. González. Recent trends on density functional theory–assisted calculations of structures and properties of metal–organic frameworks and metal–organic frameworks-derived nanocarbons. Journal of Materials Research 2020, 35 (11) , 1424-1438. https://doi.org/10.1557/jmr.2020.109
  68. Wei Zhao, Qing Li, Xian-Hui Huang, Li-Hua Bie, Jun Gao. Toward the Prediction of Multi-Spin State Charges of a Heme Model by Random Forest Regression. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00162
  69. Niall J. English. Dynamical properties of organo lead-halide perovskites and their interfaces to titania: insights from Density Functional Theory. Heliyon 2020, 6 (3) , e03427. https://doi.org/10.1016/j.heliyon.2020.e03427
  70. Xin‐Ping Wu, Indrani Choudhuri, Donald G. Truhlar. Computational Studies of Photocatalysis with Metal–Organic Frameworks. ENERGY & ENVIRONMENTAL MATERIALS 2019, 2 (4) , 251-263. https://doi.org/10.1002/eem2.12051
  71. Taoyi Chen, Thomas A. Manz. A collection of forcefield precursors for metal–organic frameworks. RSC Advances 2019, 9 (63) , 36492-36507. https://doi.org/10.1039/C9RA07327B
  72. David Dubbeldam, Krista S. Walton, Thijs J. H. Vlugt, Sofia Calero. Design, Parameterization, and Implementation of Atomic Force Fields for Adsorption in Nanoporous Materials. Advanced Theory and Simulations 2019, 2 (11) https://doi.org/10.1002/adts.201900135
  73. Arni Sturluson, Melanie T. Huynh, Alec R. Kaija, Caleb Laird, Sunghyun Yoon, Feier Hou, Zhenxing Feng, Christopher E. Wilmer, Yamil J. Colón, Yongchul G. Chung, Daniel W. Siderius, Cory M. Simon. The role of molecular modelling and simulation in the discovery and deployment of metal-organic frameworks for gas storage and separation. Molecular Simulation 2019, 45 (14-15) , 1082-1121. https://doi.org/10.1080/08927022.2019.1648809
  74. Siwarut Siwaipram, Philippe A. Bopp, Jean-Christophe Soetens, Rochus Schmid, Sareeya Bureekaew. Development of a MOF-FF-compatible interaction model for liquid methanol and Cl− in methanol. Journal of Molecular Liquids 2019, 285 , 526-534. https://doi.org/10.1016/j.molliq.2019.04.068
  75. Yi Luo, Momin Ahmad, Alexander Schug, Manuel Tsotsalas. Rising Up: Hierarchical Metal–Organic Frameworks in Experiments and Simulations. Advanced Materials 2019, 31 (26) https://doi.org/10.1002/adma.201901744
  76. Jae Hwa Lee, Sungeun Jeoung, Yongchul G. Chung, Hoi Ri Moon. Elucidation of flexible metal-organic frameworks: Research progresses and recent developments. Coordination Chemistry Reviews 2019, 389 , 161-188. https://doi.org/10.1016/j.ccr.2019.03.008
  77. A Castañeda, M Jurado, O. Matz, M Calatayud, E Rojas, A Maubert. Hydrogen adsorption in Metal-Organic Frameworks Cu-BTC and Fe-BTC:A comparative theoretical study.. Journal of Physics: Conference Series 2019, 1221 (1) , 012016. https://doi.org/10.1088/1742-6596/1221/1/012016
  78. Aran Lamaire, Jelle Wieme, Sven M. J. Rogge, Michel Waroquier, Veronique Van Speybroeck. On the importance of anharmonicities and nuclear quantum effects in modelling the structural properties and thermal expansion of MOF-5. The Journal of Chemical Physics 2019, 150 (9) https://doi.org/10.1063/1.5085649
  79. Siwarut Siwaipram, Sarawoot Impeng, Philippe A. Bopp, Sareeya Bureekaew. Density Functional Theory Studies of Catalytic Sites in Metal- Organic Frameworks. 2019https://doi.org/10.5772/intechopen.80698
  80. Wan Wei, Kang Zhang, Zhiwei Qiao, Jianwen Jiang. Functional UiO-66 for the removal of sulfur-containing compounds in gas and liquid mixtures: A molecular simulation study. Chemical Engineering Journal 2019, 356 , 737-745. https://doi.org/10.1016/j.cej.2018.08.029
  81. Anna A. Simagina, Mikhail V. Polynski, Alexander V. Vinogradov, Evgeny A. Pidko. Towards rational design of metal-organic framework-based drug delivery systems. Russian Chemical Reviews 2018, 87 (9) , 831-858. https://doi.org/10.1070/RCR4797
  82. Jurn Heinen, David Dubbeldam. On flexible force fields for metal–organic frameworks: Recent developments and future prospects. WIREs Computational Molecular Science 2018, 8 (4) https://doi.org/10.1002/wcms.1363
  83. M. Mahfoudh, N. Khenoussi, A. Haj Said. Submicron Particles of Metal–Organic Framework HKUST-1 with Negative Surface Charge and Their Electrophoretic Deposition on ITO. Theoretical and Experimental Chemistry 2018, 54 (3) , 206-209. https://doi.org/10.1007/s11237-018-9563-9
  84. Louis Vanduyfhuys, Steven Vandenbrande, Jelle Wieme, Michel Waroquier, Toon Verstraelen, Veronique Van Speybroeck. Extension of the QuickFF force field protocol for an improved accuracy of structural, vibrational, mechanical and thermal properties of metal–organic frameworks. Journal of Computational Chemistry 2018, 39 (16) , 999-1011. https://doi.org/10.1002/jcc.25173
  85. Alysson Duarte Rodrigues, Karim Fahsi, Xavier Dumail, Nathalie Masquelez, Arie van der Lee, Sonia Mallet‐Ladeira, Romain Sibille, Jean‐Sébastien Filhol, Sylvain G. Dutremez. Joint Experimental and Computational Investigation of the Flexibility of a Diacetylene‐Based Mixed‐Linker MOF: Revealing the Existence of Two Low‐Temperature Phase Transitions and the Presence of Colossal Positive and Giant Negative Thermal Expansions. Chemistry – A European Journal 2018, 24 (7) , 1586-1605. https://doi.org/10.1002/chem.201703711
  86. Naseem A. Ramsahye, Guillaume Maurin. Modeling of Diffusion in MOFs. 2018, 63-97. https://doi.org/10.1016/B978-0-12-805057-6.00003-X
  87. Alexander G. Demidov, Michael E. Fortunato, Coray M. Colina. Update 0.2 to “pysimm: A python package for simulation of molecular systems”. SoftwareX 2018, 7 , 70-73. https://doi.org/10.1016/j.softx.2018.02.006
  88. Xin-Ping Wu, Laura Gagliardi, Donald G. Truhlar. Combined quantum mechanical and molecular mechanical method for metal–organic frameworks: proton topologies of NU-1000. Physical Chemistry Chemical Physics 2018, 20 (3) , 1778-1786. https://doi.org/10.1039/C7CP06751H
  89. Peter G. Boyd, Yongjin Lee, Berend Smit. Computational development of the nanoporous materials genome. Nature Reviews Materials 2017, 2 (8) https://doi.org/10.1038/natrevmats.2017.37
  90. Kazuki Doitomi, Hajime Hirao. Hybrid computational approaches for deriving quantum mechanical insights into metal–organic frameworks. Tetrahedron Letters 2017, 58 (24) , 2309-2317. https://doi.org/10.1016/j.tetlet.2017.04.088
  91. Frank José Salas, Edgar Núñez-Rojas, José Alejandre. Stability of formic acid/pyridine and isonicotinamide/formamide cocrystals by molecular dynamics simulations. Theoretical Chemistry Accounts 2017, 136 (1) https://doi.org/10.1007/s00214-016-2024-4
  92. S. M. J. Rogge, A. Bavykina, J. Hajek, H. Garcia, A. I. Olivos-Suarez, A. Sepúlveda-Escribano, A. Vimont, G. Clet, P. Bazin, F. Kapteijn, M. Daturi, E. V. Ramos-Fernandez, F. X. Llabrés i Xamena, V. Van Speybroeck, J. Gascon. Metal–organic and covalent organic frameworks as single-site catalysts. Chemical Society Reviews 2017, 46 (11) , 3134-3184. https://doi.org/10.1039/C7CS00033B
  93. Jessica K. Bristow, Keith T. Butler, Katrine L. Svane, Julian D. Gale, Aron Walsh. Chemical bonding at the metal–organic framework/metal oxide interface: simulated epitaxial growth of MOF-5 on rutile TiO 2. Journal of Materials Chemistry A 2017, 5 (13) , 6226-6232. https://doi.org/10.1039/C7TA00356K
  94. Adhitya Mangala Putra Moeljadi, Rochus Schmid, Hajime Hirao. Dioxygen binding to Fe-MOF-74: microscopic insights from periodic QM/MM calculations. Canadian Journal of Chemistry 2016, 94 (12) , 1144-1150. https://doi.org/10.1139/cjc-2016-0284
  95. Guillaume Maurin. Role of Molecular Simulations in the Field of MOFs. 2016, 765-794. https://doi.org/10.1002/9783527693078.ch25
  96. Khalid A. H. Alzahrani, Robert J. Deeth. Molecular modeling of zinc paddlewheel molecular complexes and the pores of a flexible metal organic framework. Journal of Molecular Modeling 2016, 22 (4) https://doi.org/10.1007/s00894-016-2949-5
  97. François-Xavier Coudert, Alain H. Fuchs. Computational characterization and prediction of metal–organic framework properties. Coordination Chemistry Reviews 2016, 307 , 211-236. https://doi.org/10.1016/j.ccr.2015.08.001
  98. Guillaume Maurin. Role of molecular simulations in the structure exploration of Metal-Organic Frameworks: Illustrations through recent advances in the field. Comptes Rendus. Chimie 2016, 19 (1-2) , 207-215. https://doi.org/10.1016/j.crci.2015.07.013
  99. Johannes P. Dürholt, Raimondas Galvelis, Rochus Schmid. Coarse graining of force fields for metal–organic frameworks. Dalton Transactions 2016, 45 (10) , 4370-4379. https://doi.org/10.1039/C5DT03865K
  100. Jessica K. Bristow, Jonathan M. Skelton, Katrine L. Svane, Aron Walsh, Julian D. Gale. A general forcefield for accurate phonon properties of metal–organic frameworks. Physical Chemistry Chemical Physics 2016, 18 (42) , 29316-29329. https://doi.org/10.1039/C6CP05106E
Load all citations

Journal of Chemical Theory and Computation

Cite this: J. Chem. Theory Comput. 2014, 10, 10, 4644–4652
Click to copy citationCitation copied!
https://doi.org/10.1021/ct500515h
Published August 27, 2014

Copyright © 2014 American Chemical Society. This publication is licensed under these Terms of Use.

Article Views

7239

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Comparative illustrations of the repeating units of Zn-containing MOF-5, IRMOF-10 and IRMOF-14 with the organic ligands shown underneath each structure. Torsion angle (atom types 170-913-902-912) labeled as x has been highlighted.

    Figure 2

    Figure 2. Comparative illustrations of the repeating units of Cu-containing HKUST-1 and Zr-containing UiO-66 and UiO-67 with the organic ligands shown underneath each structure. Torsion angle (atom types 912-903-903-912) labeled as y has been highlighted.

    Figure 3

    Figure 3. Atom type definitions used for MOF-5/IRMOF-10/IRMOF-14.

    Figure 4

    Figure 4. Definition of atom types for UiO-66 and UiO-67.

    Figure 5

    Figure 5. Definition of atom types for HKUST-1.

    Figure 6

    Figure 6. Energy/volume curves for MOF-5, IRMOF-10, IRMOF-14, UiO-66, UiO-67 and HKUST-1, from which the bulk moduli were derived via an equation of state.

    Figure 7

    Figure 7. Γ-point vibrational frequencies between 500–3500 cm–1 for MOF-5, IRMOF-10, IRMOF-14, UiO-66, UiO-67, and HKUST-1. DFT calculated (left) and BTW-FF calculated (right). Note: DFT (PBEsol) frequencies for HKUST-1 could not be computed owing to the computational expense.

    Figure 8

    Figure 8. Thermal expansion profiles for MOF-5, IRMOF-10, IRMOF-14, UiO-66, UiO-67, and HKUST-1. In contrast to standard quasi-harmonic approaches, molecular dynamic simulations include high order anharmonicity from phonon–phonon interactions. Shown is the difference in a parameter at a given temperature, with respect to the a parameter at 1 K. Error bars indicate the variation in the lattice constants at each temperature due to thermal fluctuations.

    Figure 9

    Figure 9. Temperature dependence of the predicted volumetric heat capacities for MOF-5, IRMOF-10, IRMOF-14, UiO-66, UiO-67, and HKUST-1.

  • References


    This article references 72 other publications.

    1. 1
      Millward, A. R.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 17998 17999
    2. 2
      Bernini, M. C.; Fairen-Jimenez, D.; Pasinetti, M.; Ramirez-Pastor, A. J.; Snurr, R. Q. J. Mater. Chem. B 2014, 2, 766 774
    3. 3
      Hendon, C. H.; Tiana, D.; Walsh, A. Phys. Chem. Chem. Phys. 2012, 14, 13120 13132
    4. 4
      Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G. APL Mater. 2013, 1, 011002
    5. 5
      Wang, C.; Chen, S.; Yang, J.-H.; Lang, L.; Xiang, H.; Gong, X.; Walsh, A.; Wei, S.-H. Chem. Mater. 2014, 26, 3411
    6. 6
      Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; van Schilfgaarde, M.; Walsh, A. Nano Lett. 2014, 14, 2584 2590
    7. 7
      Zakutayev, A.; Zhang, X.; Nagaraja, A.; Yu, L.; Lany, S.; Mason, T. O.; Ginley, D. S.; Zunger, A. J. Am. Chem. Soc. 2013, 135, 10048 10054
    8. 8
      Scanlon, D. O.; Walsh, A. Appl. Phys. Lett. 2012, 100, 251911
    9. 9
      Jackson, A. J.; Walsh, A. J. Mater. Chem. A 2014, 2, 7829 7836
    10. 10
      Lewis, G.; Catlow, C. J. Phys. C 1985, 18, 1149
    11. 11
      Catlow, C.; Guo, Z.; Miskufova, M.; Shevlin, S.; Smith, A.; Sokol, A.; Walsh, A.; Wilson, D.; Woodley, S. Philos. Trans. R. Soc. A 2010, 368, 3379 3456
    12. 12
      Greathouse, J. A.; Allendorf, M. D. J. Am. Chem. Soc. 2006, 128, 10678 10679
    13. 13
      Schmid, R.; Tafipolsky, M. J. Am. Chem. Soc. 2008, 130, 12600 12601
    14. 14
      Salles, F.; Ghoufi, A.; Maurin, G.; Bell, R. G.; Mellot-Draznieks, C.; Férey, G. Angew. Chem., Int. Ed. 2008, 47, 8487 8491
    15. 15
      McDaniel, J. G.; Yu, K.; Schmidt, J. J. Phys. Chem. C 2012, 116, 1892 1903
    16. 16
      Greathouse, J. A.; Allendorf, M. D. J. Phys. Chem. C 2008, 112, 5795 5802
    17. 17
      Vanduyfhuys, L.; Verstraelen, T.; Vandichel, M.; Waroquier, M.; Van Speybroeck, V. J. Chem. Theory Comput. 2012, 8, 3217 3231
    18. 18
      Yang, Q.; Liu, D.; Zhong, C.; Li, J.-R. Chem. Rev. 2013, 113, 8261 8323
    19. 19
      Babarao, R.; Jiang, J. Langmuir 2008, 24, 6270 6278
    20. 20
      Wilmer, C. E.; Leaf, M.; Lee, C. Y.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Snurr, R. Q. Nat. Chem. 2011, 4, 83 89
    21. 21
      Yazaydin, A. O.; Snurr, R. Q.; Park, T.; Koh, K.; Liu, J.; LeVan, M. D.; Benin, A. I.; Jakubczak, P.; Lanuza, M.; Galloway, D. B. J. Am. Chem. Soc. 2009, 131, 18198 18199
    22. 22
      Sikora, B. J.; Winnegar, R.; Proserpio, D. M.; Snurr, R. Q. Micropor. Mesopor. Mater. 2014, 186, 207 213
    23. 23
      Fu, J.; Sun, H. J. Phys. Chem. C 2009, 113, 21815 21824
    24. 24
      Zhang, L.; Hu, Z.; Jiang, J. J. Am. Chem. Soc. 2013, 135, 3722 3728
    25. 25
      Ghoufi, A.; Maurin, G. J. Phys. Chem. C 2010, 114, 6496 6502
    26. 26
      Zhang, L.; Wu, G.; Jiang, J. J. Phys. Chem. C 2014, 118, 8788 8794
    27. 27
      Yang, Q.; Zhong, C. J. Phys. Chem. B 2006, 110, 17776 17783
    28. 28
      Düren, T.; Bae, Y.; Snurr, R. Q. Chem. Soc. Rev. 2009, 38, 1237 1247
    29. 29
      Wu, D.; Wang, C.; Liu, B.; Liu, D.; Yang, Q.; Zhong, C. AIChE J. 2012, 58, 2078 2084
    30. 30
      Rappé, A. K.; Casewit, C. J.; Colwell, K.; Goddard Iii, W.; Skiff, W. J. Am. Chem. Soc. 1992, 114, 10024 10035
    31. 31
      Haldoupis, E.; Nair, S.; Sholl, D. S. J. Am. Chem. Soc. 2012, 134, 4313 4323
    32. 32
      Addicoat, M. A.; Vankova, N.; Akter, F. I.; Heine, T. J. Chem. Theory Comput. 2014, 10, 880 891
    33. 33
      Tafipolsky, M.; Amirjalayer, S.; Schmid, R. J. Phys. Chem. C 2010, 114, 14402 14409
    34. 34
      Bureekaew, S.; Amirjalayer, S.; Tafipolsky, M.; Spickermann, C.; Roy, T. K.; Schmid, R. Phys. Status Solidi B 2013, 250, 1128 1141
    35. 35
      Allinger, N. L.; Yuh, Y. H.; Lii, J. H. J. Am. Chem. Soc. 1989, 111, 8551 8566
    36. 36
      Allinger, N. L.; Li, F.; Yan, L. J. Comput. Chem. 1990, 11, 848 867
    37. 37
      Bader, R. F. Acc. Chem. Res. 1985, 18, 9 15
    38. 38
      Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276 279
    39. 39
      Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469 472
    40. 40
      Yang, Q.; Guillerm, V.; Ragon, F.; Wiersum, A. D.; Llewellyn, P. L.; Zhong, C.; Devic, T.; Serre, C.; Maurin, G. Chem. Commun. 2012, 48, 9831 9833
    41. 41
      Chui, S. S.-Y.; Lo, S. M.-F.; Charmant, J. P.; Orpen, A. G.; Williams, I. D. Science 1999, 283, 1148 1150
    42. 42
      Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc. 2008, 130, 13850 13851
    43. 43
      Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Chem. Eur. J. A 2011, 17, 6643 6651
    44. 44
      Valenzano, L.; Civalleri, B.; Chavan, S.; Bordiga, S.; Nilsen, M. H.; Jakobsen, S.; Lillerud, K. P.; Lamberti, C. Chem. Mater. 2011, 23, 1700 1718
    45. 45
      Wiersum, A. D.; Soubeyrand-Lenoir, E.; Yang, Q.; Moulin, B.; Guillerm, V.; Yahia, M. B.; Bourrelly, S.; Vimont, A.; Miller, S.; Vagner, C. Asian J. Chem. 2011, 6, 3270 3280
    46. 46
      Lin, K.-S.; Adhikari, A. K.; Ku, C.-N.; Chiang, C.-L.; Kuo, H. Int. J. Hydrogen Energy 2012, 37, 13865 13871
    47. 47
      Gascon, J.; Aguado, S.; Kapteijn, F. Micropor. Mesopor. Mater. 2008, 113, 132 138
    48. 48
      Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558
    49. 49
      Blöchl, P. E. Phys. Rev. B 1994, 50, 17953
    50. 50
      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865 3868
    51. 51
      Hendon, C. H.; Tiana, D.; Fontecave, M.; Sanchez, C.; D’arras, L.; Sassoye, C.; Rozes, L.; Mellot-Draznieks, C.; Walsh, A. J. Am. Chem. Soc. 2013, 135, 10942 10945
    52. 52
      De La Pierre, M.; Orlando, R.; Maschio, L.; Doll, K.; Ugliengo, P.; Dovesi, R. J. Comput. Chem. 2011, 32, 1775 1784
    53. 53
      He, L.; Liu, F.; Hautier, G.; Oliveira, M. J.; Marques, M. A.; Vila, F. D.; Rehr, J.; Rignanese, G.-M.; Zhou, A. Phys. Rev. B 2014, 89, 064305
    54. 54
      Henkelman, G.; Arnaldsson, A.; Jónsson, H. Comput. Mater. Sci. 2006, 36, 354 360
    55. 55
      Tafipolsky, M.; Amirjalayer, S.; Schmid, R. J. Comput. Chem. 2007, 28, 1169 1176
    56. 56
      Ponder, J. W.; Richards, F. M. J. Comput. Chem. 1987, 8, 1016 1024
    57. 57
      Pappu, R. V.; Hart, R. K.; Ponder, J. W. J. Phys. Chem. B 1998, 102, 9725 9742
    58. 58
      W. Eaton, J.; Bateman, D.; Hauberg, S. GNU Octave Manual, Version 3; Network Theory Limited: Godalming, U.K., 2008.
    59. 59
      Otero de la Roza, A.; Luaña, V. Comput. Theor. Chem. 2011, 975, 111 115
    60. 60
      Tiana, D.; Francisco, E.; Blanco, M. A.; Pendás, A. M. J. Phys. Chem. A 2009, 113, 7963 7971
    61. 61
      Peng, Z.; Ewig, C. S.; Hwang, M.-J.; Waldman, M.; Hagler, A. T. J. Phys. Chem. A 1997, 101, 7243 7252
    62. 62
      https://github.com/WMD-Bath/BTW-FF; Walsh Materials Design Group: Bath, U.K. (accessed June 11, 2014) .
    63. 63
      Talin, A. A.; Centrone, A.; Ford, A. C.; Foster, M. E.; Stavila, V.; Haney, P.; Kinney, R. A.; Szalai, V.; El Gabaly, F.; Yoon, H. P. Science 2014, 343, 66 69
    64. 64
      Butler, K. T.; Hendon, C. H.; Walsh, A. J. Am. Chem. Soc. 2014, 136, 2703 2706
    65. 65
      Wu, H.; Yildirim, T.; Zhou, W. J. Phys. Chem. Lett. 2013, 4, 925 930
    66. 66
      Kuc, A.; Enyashin, A.; Seifert, G. J. Phys. Chem. B 2007, 111, 8179 8186
    67. 67
      Skelton, J. M.; Parker, S. C.; Togo, A.; Tanaka, I.; Walsh, A. Phys. Rev. B 2014, 89, 205203
    68. 68
      Civalleri, B.; Napoli, F.; Noel, Y.; Roetti, C.; Dovesi, R. CrystEngComm 2006, 8, 364 371
    69. 69
      Miller, W.; Smith, C.; Mackenzie, D.; Evans, K. J. Mater. Sci. 2009, 44, 5441 5451
    70. 70
      Han, S. S.; Goddard, W. A. J. Phys. Chem. C 2007, 111, 15185 15191
    71. 71
      Sun, Y.; Sun, H. J. Mol. Model. 2014, 20, 1 15
    72. 72
      Lock, N.; Christensen, M.; Wu, Y.; Peterson, V. K.; Thomsen, M. K.; Piltz, R. O.; Ramirez-Cuesta, A. J.; McIntyre, G. J.; Norén, K.; Kutteh, R. Dalton Trans. 2013, 42, 1996 2007
  • Supporting Information

    Supporting Information


    Structural parameters, including bond lengths, angles, and unit cell parameters for each structure. Potential parameter sets and data used to plot modal heat capacities. This material is available free of charge via the Internet at http://pubs.acs.org


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.