ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Polarizabilities of Polyacetylene from a Field-Counteracting Semilocal Functional

View Author Information
Physics Institute, University of Bayreuth, D-95445 Bayreuth, Germany
* Corresponding author e-mail: [email protected]
Cite this: J. Chem. Theory Comput. 2009, 5, 4, 712–718
Publication Date (Web):March 20, 2009
https://doi.org/10.1021/ct8005198
Copyright © 2009 American Chemical Society

    Article Views

    568

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Predicting the polarizabilities of extended conjugated molecules with semilocal functionals has been a long-standing problem in density functional theory. These difficulties are due to the absence of a term in the typical semilocal Kohn−Sham exchange potentials that has been named “ultranonlocal”. Such a term should develop in extended systems when an external electric field is applied, and it should counteract the field. We calculate the polarizabilities of polyacetylene molecules using the recently developed extended Becke−Johnson functional. Our results show that this functional predicts the polarizabilities with much better accuracy than typical semilocal functionals. Thus, the field-counteracting term in this functional, which is semilocal in the Kohn−Sham orbitals, can realistically describe real molecules. We discuss approaches of constructing an energy functional that corresponds to this potential functional, for example, via the Levy−Perdew virial relation.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 62 publications.

    1. Tomáš Rauch, Miguel A. L. Marques, Silvana Botti. Local Modified Becke-Johnson Exchange-Correlation Potential for Interfaces, Surfaces, and Two-Dimensional Materials. Journal of Chemical Theory and Computation 2020, 16 (4) , 2654-2660. https://doi.org/10.1021/acs.jctc.9b01147
    2. M. J. P. Hodgson, Eli Kraisler, Axel Schild, and E. K. U. Gross . How Interatomic Steps in the Exact Kohn–Sham Potential Relate to Derivative Discontinuities of the Energy. The Journal of Physical Chemistry Letters 2017, 8 (24) , 5974-5980. https://doi.org/10.1021/acs.jpclett.7b02615
    3. Fabien Tran and Peter Blaha . Importance of the Kinetic Energy Density for Band Gap Calculations in Solids with Density Functional Theory. The Journal of Physical Chemistry A 2017, 121 (17) , 3318-3325. https://doi.org/10.1021/acs.jpca.7b02882
    4. Fabien Tran, Peter Blaha, and Karlheinz Schwarz . How Close Are the Slater and Becke–Roussel Potentials in Solids?. Journal of Chemical Theory and Computation 2015, 11 (10) , 4717-4726. https://doi.org/10.1021/acs.jctc.5b00675
    5. Tiago F. T. Cerqueira, Micael J. T. Oliveira, and Miguel A. L. Marques . Benchmarking the AK13 Exchange Functional: Ionization Potentials and Electron Affinities. Journal of Chemical Theory and Computation 2014, 10 (12) , 5625-5629. https://doi.org/10.1021/ct500550s
    6. Daniel Vieira . Strong Correlations in Density-Functional Theory: A Model of Spin-Charge and Spin–Orbital Separations. Journal of Chemical Theory and Computation 2014, 10 (9) , 3641-3646. https://doi.org/10.1021/ct400223d
    7. D. Hofmann-Mees, H. Appel, M. Di Ventra, and S. Kümmel . Determining Excitation-Energy Transfer Times and Mechanisms from Stochastic Time-Dependent Density Functional Theory. The Journal of Physical Chemistry B 2013, 117 (46) , 14408-14419. https://doi.org/10.1021/jp404982d
    8. Micael J. T. Oliveira, Esa Räsänen, Stefano Pittalis, and Miguel A. L. Marques. Toward an All-Around Semilocal Potential for Electronic Exchange. Journal of Chemical Theory and Computation 2010, 6 (12) , 3664-3670. https://doi.org/10.1021/ct100448x
    9. Thilo Aschebrock, Timo Lebeda, Moritz Brütting, Rian Richter, Ingo Schelter, Stephan Kümmel. Exact exchange-like electric response from a meta-generalized gradient approximation: A semilocal realization of ultranonlocality. The Journal of Chemical Physics 2023, 159 (23) https://doi.org/10.1063/5.0173776
    10. Ishrat Naz, Fayyaz Ahmad, Bakhtiar Ul Haq, Hafeez Anwar, I.B. Khadka, M.M. Alsardia, Se-Hun Kim. First-principles calculations to investigate the Electronic and Optical Properties of Hexagonal, Triclinic, and Monoclinic Structures of α -BiFeO 3 . Materials Science and Engineering: B 2022, 284 , 115838. https://doi.org/10.1016/j.mseb.2022.115838
    11. Timo Lebeda, Thilo Aschebrock, Stephan Kümmel. First steps towards achieving both ultranonlocality and a reliable description of electronic binding in a meta-generalized gradient approximation. Physical Review Research 2022, 4 (2) https://doi.org/10.1103/PhysRevResearch.4.023061
    12. Eli Kraisler. Asymptotic Behavior of the Exchange‐Correlation Energy Density and the Kohn‐Sham Potential in Density Functional Theory: Exact Results and Strategy for Approximations. Israel Journal of Chemistry 2020, 60 (8-9) , 805-822. https://doi.org/10.1002/ijch.201900103
    13. Fabien Tran, Guillaume Baudesson, Jesús Carrete, Georg K. H. Madsen, Peter Blaha, Karlheinz Schwarz, David J. Singh. Shortcomings of meta-GGA functionals when describing magnetism. Physical Review B 2020, 102 (2) https://doi.org/10.1103/PhysRevB.102.024407
    14. Clark Miller, Antia Sanchez Botana. Cupratelike electronic and magnetic properties of layered transition-metal difluorides from first-principles calculations. Physical Review B 2020, 101 (19) https://doi.org/10.1103/PhysRevB.101.195116
    15. Rickard Armiento. Database-Driven High-Throughput Calculations and Machine Learning Models for Materials Design. 2020, 377-395. https://doi.org/10.1007/978-3-030-40245-7_17
    16. J. Kaczkowski. First-principles study of structural, electronic, ferroelectric, and vibrational properties of BiInO3 under high pressure. Journal of Physics and Chemistry of Solids 2019, 134 , 225-237. https://doi.org/10.1016/j.jpcs.2019.06.009
    17. Thilo Aschebrock, Stephan Kümmel. Ultranonlocality and accurate band gaps from a meta-generalized gradient approximation. Physical Review Research 2019, 1 (3) https://doi.org/10.1103/PhysRevResearch.1.033082
    18. Fabien Tran, Jan Doumont, Leila Kalantari, Ahmad W. Huran, Miguel A. L. Marques, Peter Blaha. Semilocal exchange-correlation potentials for solid-state calculations: Current status and future directions. Journal of Applied Physics 2019, 126 (11) https://doi.org/10.1063/1.5118863
    19. Ishrat Naz, Fayyaz Ahmad, Jaekyung Jang, Joo Yull Rhee. Ab-initio investigation of electronic structures of α-BiFeO3 with different exchange-correlation functionals. AIP Advances 2018, 8 (12) https://doi.org/10.1063/1.5064645
    20. Alexander Kaiser, Stephan Kümmel. Revealing the field-counteracting term in the exact Kohn-Sham correlation potential. Physical Review A 2018, 98 (5) https://doi.org/10.1103/PhysRevA.98.052505
    21. Julian Garhammer, Fabian Hofmann, Rickard Armiento, Stephan Kümmel. On the challenge to improve the density response with unusual gradient approximations. The European Physical Journal B 2018, 91 (7) https://doi.org/10.1140/epjb/e2018-90119-4
    22. Tim Gould, Leeor Kronik, Stefano Pittalis. Charge transfer excitations from exact and approximate ensemble Kohn-Sham theory. The Journal of Chemical Physics 2018, 148 (17) https://doi.org/10.1063/1.5022832
    23. Fabien Tran, Sohaib Ehsan, Peter Blaha. Assessment of the GLLB-SC potential for solid-state properties and attempts for improvement. Physical Review Materials 2018, 2 (2) https://doi.org/10.1103/PhysRevMaterials.2.023802
    24. J. Wildon O. Silva, Daniel Vieira. Construction of Exchange-Correlation Potentials for Strongly Interacting One-Dimensional Systems. Brazilian Journal of Physics 2017, 47 (4) , 393-399. https://doi.org/10.1007/s13538-017-0508-x
    25. Thilo Aschebrock, Rickard Armiento, Stephan Kümmel. Challenges for semilocal density functionals with asymptotically nonvanishing potentials. Physical Review B 2017, 96 (7) https://doi.org/10.1103/PhysRevB.96.075140
    26. Thilo Aschebrock, Rickard Armiento, Stephan Kümmel. Orbital nodal surfaces: Topological challenges for density functionals. Physical Review B 2017, 95 (24) https://doi.org/10.1103/PhysRevB.95.245118
    27. Fabien Tran, Peter Blaha, Markus Betzinger, Stefan Blügel. Approximations to the exact exchange potential: KLI versus semilocal. Physical Review B 2016, 94 (16) https://doi.org/10.1103/PhysRevB.94.165149
    28. S. Hiadsi, H. Bouafia, B. Sahli, B. Abidri, A. Bouaza, A. Akriche. Structural, mechanical, electronic and thermal properties of KZnF3 and AgZnF3 Perovskites: FP-(L)APW+lo calculations. Solid State Sciences 2016, 58 , 1-13. https://doi.org/10.1016/j.solidstatesciences.2016.05.005
    29. J. Kaczkowski. Electronic structure and lattice dynamics of rhombohedral BiAlO 3 from first-principles. Materials Chemistry and Physics 2016, 177 , 405-412. https://doi.org/10.1016/j.matchemphys.2016.04.045
    30. Prashant Singh, Manoj K. Harbola, M. Hemanadhan, Abhijit Mookerjee, D. D. Johnson. Better band gaps with asymptotically corrected local exchange potentials. Physical Review B 2016, 93 (8) https://doi.org/10.1103/PhysRevB.93.085204
    31. Sviataslau V. Kohut, Alexander M. Polgar, Viktor N. Staroverov. Origin of the step structure of molecular exchange–correlation potentials. Physical Chemistry Chemical Physics 2016, 18 (31) , 20938-20944. https://doi.org/10.1039/C6CP00878J
    32. Rogelio Cuevas-Saavedra, Paul W. Ayers, Viktor N. Staroverov. Kohn–Sham exchange-correlation potentials from second-order reduced density matrices. The Journal of Chemical Physics 2015, 143 (24) https://doi.org/10.1063/1.4937943
    33. V. Lutsker, B. Aradi, T. A. Niehaus. Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method. The Journal of Chemical Physics 2015, 143 (18) https://doi.org/10.1063/1.4935095
    34. Eli Kraisler, Tobias Schmidt, Stephan Kümmel, Leeor Kronik. Effect of ensemble generalization on the highest-occupied Kohn-Sham eigenvalue. The Journal of Chemical Physics 2015, 143 (10) https://doi.org/10.1063/1.4930119
    35. Thiago B. de Queiroz, Stephan Kümmel. Tuned range separated hybrid functionals for solvated low bandgap oligomers. The Journal of Chemical Physics 2015, 143 (3) https://doi.org/10.1063/1.4926468
    36. Fabien Tran, Peter Blaha, Markus Betzinger, Stefan Blügel. Comparison between exact and semilocal exchange potentials: An all-electron study for solids. Physical Review B 2015, 91 (16) https://doi.org/10.1103/PhysRevB.91.165121
    37. Eli Kraisler, Leeor Kronik. Elimination of the asymptotic fractional dissociation problem in Kohn-Sham density-functional theory using the ensemble-generalization approach. Physical Review A 2015, 91 (3) https://doi.org/10.1103/PhysRevA.91.032504
    38. Vojtěch Vlček, Gerd Steinle-Neumann, Linn Leppert, Rickard Armiento, Stephan Kümmel. Improved ground-state electronic structure and optical dielectric constants with a semilocal exchange functional. Physical Review B 2015, 91 (3) https://doi.org/10.1103/PhysRevB.91.035107
    39. J. Kaczkowski. Electronic structure and lattice dynamics of orthorhombic BiGaO3. Journal of Alloys and Compounds 2014, 613 , 175-180. https://doi.org/10.1016/j.jallcom.2014.06.025
    40. Michał Hapka, Łukasz Rajchel, Marcin Modrzejewski, Grzegorz Chałasiński, Małgorzata M. Szczęśniak. Tuned range-separated hybrid functionals in the symmetry-adapted perturbation theory. The Journal of Chemical Physics 2014, 141 (13) https://doi.org/10.1063/1.4896608
    41. Thiago B. de Queiroz, Stephan Kümmel. Charge-transfer excitations in low-gap systems under the influence of solvation and conformational disorder: Exploring range-separation tuning. The Journal of Chemical Physics 2014, 141 (8) https://doi.org/10.1063/1.4892937
    42. Tobias Schmidt, Eli Kraisler, Leeor Kronik, Stephan Kümmel. One-electron self-interaction and the asymptotics of the Kohn–Sham potential: an impaired relation. Phys. Chem. Chem. Phys. 2014, 16 (28) , 14357-14367. https://doi.org/10.1039/C3CP55433C
    43. T. Ben Nasr, H. Maghraoui-Meherzi, H. Ben Abdallah, R. Bennaceur. First principles calculations of electronic and optical properties of Ag2S. Solid State Sciences 2013, 26 , 65-71. https://doi.org/10.1016/j.solidstatesciences.2013.09.017
    44. Andreas Karolewski, Rickard Armiento, Stephan Kümmel. Electronic excitations and the Becke-Johnson potential: The need for and the problem of transforming model potentials to functional derivatives. Physical Review A 2013, 88 (5) https://doi.org/10.1103/PhysRevA.88.052519
    45. R. Armiento, S. Kümmel. Orbital Localization, Charge Transfer, and Band Gaps in Semilocal Density-Functional Theory. Physical Review Letters 2013, 111 (3) https://doi.org/10.1103/PhysRevLett.111.036402
    46. Andreas Karolewski, Leeor Kronik, Stephan Kümmel. Using optimally tuned range separated hybrid functionals in ground-state calculations: Consequences and caveats. The Journal of Chemical Physics 2013, 138 (20) https://doi.org/10.1063/1.4807325
    47. David Waroquiers, Aurélien Lherbier, Anna Miglio, Martin Stankovski, Samuel Poncé, Micael J. T. Oliveira, Matteo Giantomassi, Gian-Marco Rignanese, Xavier Gonze. Band widths and gaps from the Tran-Blaha functional: Comparison with many-body perturbation theory. Physical Review B 2013, 87 (7) https://doi.org/10.1103/PhysRevB.87.075121
    48. D. Hofmann, S. Kümmel. Self-interaction correction in a real-time Kohn-Sham scheme: Access to difficult excitations in time-dependent density functional theory. The Journal of Chemical Physics 2012, 137 (6) https://doi.org/10.1063/1.4742763
    49. D. Hofmann, S. Klüpfel, P. Klüpfel, S. Kümmel. Using complex degrees of freedom in the Kohn-Sham self-interaction correction. Physical Review A 2012, 85 (6) https://doi.org/10.1103/PhysRevA.85.062514
    50. D. Hofmann, T. Körzdörfer, S. Kümmel. Kohn-Sham Self-Interaction Correction in Real Time. Physical Review Letters 2012, 108 (14) https://doi.org/10.1103/PhysRevLett.108.146401
    51. Pavel D. Elkind, Viktor N. Staroverov. Energy expressions for Kohn–Sham potentials and their relation to the Slater–Janak theorem. The Journal of Chemical Physics 2012, 136 (12) https://doi.org/10.1063/1.3695372
    52. Valentina Lacivita, Michel Rèrat, Roberto Orlando, Mauro Ferrero, Roberto Dovesi. Calculation of longitudinal polarizability and second hyperpolarizability of polyacetylene with the coupled perturbed Hartree-Fock/Kohn-Sham scheme: Where it is shown how finite oligomer chains tend to the infinite periodic polymer. The Journal of Chemical Physics 2012, 136 (11) https://doi.org/10.1063/1.3690457
    53. P.V. Smith, M. Hermanowicz, G.A. Shah, M.W. Radny. Spin–orbit and modified Becke–Johnson potential effects on the electronic properties of bulk Ge: A density functional theory study. Computational Materials Science 2012, 54 , 37-42. https://doi.org/10.1016/j.commatsci.2011.09.037
    54. Alex P. Gaiduk, Viktor N. Staroverov. A generalized gradient approximation for exchange derived from the model potential of van Leeuwen and Baerends. The Journal of Chemical Physics 2012, 136 (6) https://doi.org/10.1063/1.3684261
    55. Adi Makmal, Stephan Kümmel, Leeor Kronik. Dissociation of diatomic molecules and the exact-exchange Kohn-Sham potential: The case of LiF. Physical Review A 2011, 83 (6) https://doi.org/10.1103/PhysRevA.83.062512
    56. David Koller, Fabien Tran, Peter Blaha. Merits and limits of the modified Becke-Johnson exchange potential. Physical Review B 2011, 83 (19) https://doi.org/10.1103/PhysRevB.83.195134
    57. Alex P. Gaiduk, Viktor N. Staroverov. Construction of integrable model Kohn-Sham potentials by analysis of the structure of functional derivatives. Physical Review A 2011, 83 (1) https://doi.org/10.1103/PhysRevA.83.012509
    58. Miguel A. L. Marques, Julien Vidal, Micael J. T. Oliveira, Lucia Reining, Silvana Botti. Density-based mixing parameter for hybrid functionals. Physical Review B 2011, 83 (3) https://doi.org/10.1103/PhysRevB.83.035119
    59. T. Körzdörfer, S. Kümmel. Single-particle and quasiparticle interpretation of Kohn-Sham and generalized Kohn-Sham eigenvalues for hybrid functionals. Physical Review B 2010, 82 (15) https://doi.org/10.1103/PhysRevB.82.155206
    60. C. Kamal, T. K. Ghanty, Arup Banerjee, Aparna Chakrabarti. The van der Waals coefficients between carbon nanostructures and small molecules: A time-dependent density functional theory study. The Journal of Chemical Physics 2009, 131 (16) https://doi.org/10.1063/1.3256238
    61. Benjamin G. Janesko, Gustavo E. Scuseria. The role of the reference state in long-range random phase approximation correlation. The Journal of Chemical Physics 2009, 131 (15) https://doi.org/10.1063/1.3250834
    62. Alex P. Gaiduk, Viktor N. Staroverov. How to tell when a model Kohn–Sham potential is not a functional derivative. The Journal of Chemical Physics 2009, 131 (4) https://doi.org/10.1063/1.3176515

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect