ACS Publications. Most Trusted. Most Cited. Most Read
Density Functional Partition Theory with Fractional Occupations
My Activity

Figure 1Loading Img
    Article

    Density Functional Partition Theory with Fractional Occupations
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Physics and Astronomy, University of California, Irvine, California 92697, Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, New Jersey 08854, Department of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08544, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, and Department of Chemistry, University of California, Irvine, California 92697
    * Corresponding author e-mail: [email protected]
    †UC Irvine Physics.
    ‡Rutgers University and Princeton University.
    §Purdue University.
    ∥UC Irvine Chemistry.
    Other Access Options

    Journal of Chemical Theory and Computation

    Cite this: J. Chem. Theory Comput. 2009, 5, 4, 827–833
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ct9000119
    Published March 26, 2009
    Copyright © 2009 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Partition theory (PT) is a formally exact methodology for calculating the density of any molecule or solid via separate calculations on individual fragments. Just as Kohn−Sham density functional theory (DFT) introduces noninteracting fermions in an effective potential that is defined to yield the exact density of the interacting problem, in PT a global effective potential is found that ensures that the sum of the fragment densities is that of the full system. By combining the two, density functional partition theory (DFPT) produces a DFT scheme that yields the (in principle) exact molecular density and energy via Kohn−Sham calculations on fragments. We give the full formalism and illustrate DFPT in the general case of noninteger fragment occupations.

    Copyright © 2009 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 68 publications.

    1. Matteo Capone, Marco Romanelli, Davide Castaldo, Giovanni Parolin, Alessandro Bello, Gabriel Gil, Mirko Vanzan. A Vision for the Future of Multiscale Modeling. ACS Physical Chemistry Au 2024, 4 (3) , 202-225. https://doi.org/10.1021/acsphyschemau.3c00080
    2. LinHaiProfessor, ChemistryZhiqiang Cao, Ph.D. Postdoctoral Associate, School of Polymer Science and Engineering, The University of Southern Mississippi, Sreerag M. Narayanan, PhD student, University of Miami. QM/MM Methods. 2024https://doi.org/10.1021/acsinfocus.7e7030
    3. Giovanni Macetti, Alessandro Genoni. Initial Maximum Overlap Method for Large Systems by the Quantum Mechanics/Extremely Localized Molecular Orbital Embedding Technique. Journal of Chemical Theory and Computation 2021, 17 (7) , 4169-4182. https://doi.org/10.1021/acs.jctc.1c00388
    4. Giovanni Macetti, Erna K. Wieduwilt, Alessandro Genoni. QM/ELMO: A Multi-Purpose Fully Quantum Mechanical Embedding Scheme Based on Extremely Localized Molecular Orbitals. The Journal of Physical Chemistry A 2021, 125 (13) , 2709-2726. https://doi.org/10.1021/acs.jpca.0c11450
    5. Martín A. Mosquera, Leighton O. Jones, Carlos H. Borca, Mark A. Ratner, George C. Schatz. Domain Separated Density Functional Theory for Reaction Energy Barriers and Optical Excitations. The Journal of Physical Chemistry A 2020, 124 (28) , 5954-5962. https://doi.org/10.1021/acs.jpca.0c03596
    6. Giovanni Macetti, Erna K. Wieduwilt, Xavier Assfeld, Alessandro Genoni. Localized Molecular Orbital-Based Embedding Scheme for Correlated Methods. Journal of Chemical Theory and Computation 2020, 16 (6) , 3578-3596. https://doi.org/10.1021/acs.jctc.0c00084
    7. Leighton O. Jones, Martín A. Mosquera, George C. Schatz, Mark A. Ratner. Embedding Methods for Quantum Chemistry: Applications from Materials to Life Sciences. Journal of the American Chemical Society 2020, 142 (7) , 3281-3295. https://doi.org/10.1021/jacs.9b10780
    8. Sebastian J. R. Lee, Matthew Welborn, Frederick R. Manby, Thomas F. Miller, III. Projection-Based Wavefunction-in-DFT Embedding. Accounts of Chemical Research 2019, 52 (5) , 1359-1368. https://doi.org/10.1021/acs.accounts.8b00672
    9. Bence Hégely, Péter R. Nagy, Mihály Kállay. Dual Basis Set Approach for Density Functional and Wave Function Embedding Schemes. Journal of Chemical Theory and Computation 2018, 14 (9) , 4600-4615. https://doi.org/10.1021/acs.jctc.8b00350
    10. Feizhi Ding, Takashi Tsuchiya, Frederick R. Manby, and Thomas F. Miller, III . Linear-Response Time-Dependent Embedded Mean-Field Theory. Journal of Chemical Theory and Computation 2017, 13 (9) , 4216-4227. https://doi.org/10.1021/acs.jctc.7b00666
    11. Feizhi Ding, Frederick R. Manby, and Thomas F. Miller, III . Embedded Mean-Field Theory with Block-Orthogonalized Partitioning. Journal of Chemical Theory and Computation 2017, 13 (4) , 1605-1615. https://doi.org/10.1021/acs.jctc.6b01065
    12. Qiming Sun and Garnet Kin-Lic Chan . Quantum Embedding Theories. Accounts of Chemical Research 2016, 49 (12) , 2705-2712. https://doi.org/10.1021/acs.accounts.6b00356
    13. Kaito Miyamoto, Thomas F. Miller, III, and Frederick R. Manby . Fock-Matrix Corrections in Density Functional Theory and Use in Embedded Mean-Field Theory. Journal of Chemical Theory and Computation 2016, 12 (12) , 5811-5822. https://doi.org/10.1021/acs.jctc.6b00685
    14. Tomasz A. Wesolowski, Sapana Shedge, and Xiuwen Zhou . Frozen-Density Embedding Strategy for Multilevel Simulations of Electronic Structure. Chemical Reviews 2015, 115 (12) , 5891-5928. https://doi.org/10.1021/cr500502v
    15. Alexey V. Akimov and Oleg V. Prezhdo . Large-Scale Computations in Chemistry: A Bird’s Eye View of a Vibrant Field. Chemical Reviews 2015, 115 (12) , 5797-5890. https://doi.org/10.1021/cr500524c
    16. Octavio Roncero, Alfredo Aguado, Fidel A. Batista-Romero, Margarita I. Bernal-Uruchurtu, and Ramón Hernández-Lamoneda . Density-Difference-Driven Optimized Embedding Potential Method To Study the Spectroscopy of Br2 in Water Clusters. Journal of Chemical Theory and Computation 2015, 11 (3) , 1155-1164. https://doi.org/10.1021/ct501140p
    17. Mark E. Fornace, Joonho Lee, Kaito Miyamoto, Frederick R. Manby, and Thomas F. Miller, III . Embedded Mean-Field Theory. Journal of Chemical Theory and Computation 2015, 11 (2) , 568-580. https://doi.org/10.1021/ct5011032
    18. Jonathan Nafziger and Adam Wasserman . Density-Based Partitioning Methods for Ground-State Molecular Calculations. The Journal of Physical Chemistry A 2014, 118 (36) , 7623-7639. https://doi.org/10.1021/jp504058s
    19. Savio Laricchia, Lucian A. Constantin, Eduardo Fabiano, and Fabio Della Sala . Laplacian-Level Kinetic Energy Approximations Based on the Fourth-Order Gradient Expansion: Global Assessment and Application to the Subsystem Formulation of Density Functional Theory. Journal of Chemical Theory and Computation 2014, 10 (1) , 164-179. https://doi.org/10.1021/ct400836s
    20. Csaba Daday, Carolin König, Omar Valsson, Johannes Neugebauer, and Claudia Filippi . State-Specific Embedding Potentials for Excitation-Energy Calculations. Journal of Chemical Theory and Computation 2013, 9 (5) , 2355-2367. https://doi.org/10.1021/ct400086a
    21. Timothy J. Giese, Haoyuan Chen, Thakshila Dissanayake, George M. Giambaşu, Hugh Heldenbrand, Ming Huang, Erich R. Kuechler, Tai-Sung Lee, Maria T. Panteva, Brian K. Radak, and Darrin M. York . A Variational Linear-Scaling Framework to Build Practical, Efficient Next-Generation Orbital-Based Quantum Force Fields. Journal of Chemical Theory and Computation 2013, 9 (3) , 1417-1427. https://doi.org/10.1021/ct3010134
    22. S. Laricchia, E. Fabiano, L. A. Constantin, and F. Della Sala . Generalized Gradient Approximations of the Noninteracting Kinetic Energy from the Semiclassical Atom Theory: Rationalization of the Accuracy of the Frozen Density Embedding Theory for Nonbonded Interactions. Journal of Chemical Theory and Computation 2011, 7 (8) , 2439-2451. https://doi.org/10.1021/ct200382w
    23. Georgios Fradelos, Jesse J. Lutz, Tomasz A. Wesołowski, Piotr Piecuch, and Marta Włoch . Embedding vs Supermolecular Strategies in Evaluating the Hydrogen-Bonding-Induced Shifts of Excitation Energies. Journal of Chemical Theory and Computation 2011, 7 (6) , 1647-1666. https://doi.org/10.1021/ct200101x
    24. Georgios Fradelos and Tomasz A. Wesolowski. The Importance of Going beyond Coulombic Potential in Embedding Calculations for Molecular Properties: The Case of Iso-G for Biliverdin in Protein-Like Environment. Journal of Chemical Theory and Computation 2011, 7 (1) , 213-222. https://doi.org/10.1021/ct100415h
    25. Yu Zhang and Adam Wasserman. Transferability of Atomic Properties in Molecular Partitioning: A Comparison. Journal of Chemical Theory and Computation 2010, 6 (11) , 3312-3318. https://doi.org/10.1021/ct100247q
    26. Giovanni Macetti, Alessandro Genoni. Initial Maximum Overlap Method Embedded with Extremely Localized Molecular Orbitals for Core-Ionized States of Large Systems. Molecules 2023, 28 (1) , 136. https://doi.org/10.3390/molecules28010136
    27. Kui Zhang, Adam Wasserman. Split electrons in partition density functional theory. The Journal of Chemical Physics 2022, 156 (22) , 224113. https://doi.org/10.1063/5.0091024
    28. Giovanni Macetti, Alessandro Genoni. Quantum mechanics/extremely localized molecular orbital embedding technique: Theoretical foundations and further validation. 2021, 269-285. https://doi.org/10.1016/bs.aiq.2021.05.004
    29. Martín A. Mosquera, Leighton O. Jones, Mark A. Ratner, George C. Schatz. Quantum embedding for material chemistry based on domain separation and open subsystems. International Journal of Quantum Chemistry 2020, 120 (21) https://doi.org/10.1002/qua.26184
    30. Bruno Senjean, Emmanuel Fromager. N ‐centered ensemble density‐functional theory for open systems. International Journal of Quantum Chemistry 2020, 120 (21) https://doi.org/10.1002/qua.26190
    31. Sebastian J. R. Lee, Feizhi Ding, Frederick R. Manby, Thomas F. Miller. Analytical gradients for projection-based wavefunction-in-DFT embedding. The Journal of Chemical Physics 2019, 151 (6) https://doi.org/10.1063/1.5109882
    32. Benjamin G. Janesko. Coupled alkali halide color centers: Fractional charge errors, fractional spin errors, and a failure of spin symmetry breaking produce challenging tests for condensed-phase electronic structure calculations. The Journal of Chemical Physics 2019, 151 (6) https://doi.org/10.1063/1.5111146
    33. Ming Chen, Roi Baer, Daniel Neuhauser, Eran Rabani. Overlapped embedded fragment stochastic density functional theory for covalently-bonded materials. The Journal of Chemical Physics 2019, 150 (3) https://doi.org/10.1063/1.5064472
    34. Martín A. Mosquera, Leighton O. Jones, Mark A. Ratner, George C. Schatz. Development of formalisms based on locally coupled open subsystems for calculations in molecular electronic structure and dynamics. Physical Review A 2018, 98 (6) https://doi.org/10.1103/PhysRevA.98.062505
    35. Niccolò Ricardi, Alexander Zech, Yann Gimbal-Zofka, Tomasz A. Wesolowski. Explicit vs. implicit electronic polarisation of environment of an embedded chromophore in frozen-density embedding theory. Physical Chemistry Chemical Physics 2018, 20 (41) , 26053-26062. https://doi.org/10.1039/C8CP05634J
    36. Yan Oueis, Adam Wasserman. Exact partition potential for model systems of interacting electrons in 1-D. The European Physical Journal B 2018, 91 (10) https://doi.org/10.1140/epjb/e2018-90196-3
    37. Martín A. Mosquera, Mark A. Ratner, George C. Schatz. Locally coupled open subsystems: A formalism for affordable electronic structure calculations featuring fractional charges and size consistency. The Journal of Chemical Physics 2018, 149 (3) https://doi.org/10.1063/1.5038557
    38. Mojdeh Banafsheh, Tomasz Adam Wesolowski. Nonadditive kinetic potentials from inverted Kohn–Sham problem. International Journal of Quantum Chemistry 2018, 118 (1) https://doi.org/10.1002/qua.25410
    39. Albrecht Goez, Johannes Neugebauer. Embedding Methods in Quantum Chemistry. 2018, 139-179. https://doi.org/10.1007/978-981-10-5651-2_7
    40. Daniele Varsano, Stefano Caprasecca, Emanuele Coccia. Theoretical description of protein field effects on electronic excitations of biological chromophores. Journal of Physics: Condensed Matter 2017, 29 (1) , 013002. https://doi.org/10.1088/0953-8984/29/1/013002
    41. Bence Hégely, Péter R. Nagy, György G. Ferenczy, Mihály Kállay. Exact density functional and wave function embedding schemes based on orbital localization. The Journal of Chemical Physics 2016, 145 (6) https://doi.org/10.1063/1.4960177
    42. S. M. Valone, Krishna Muralidharan, Keith Runge. Interatomic Potentials Including Chemistry. 2016, 107-194. https://doi.org/10.1007/978-3-319-24529-4_3
    43. Thomas Dresselhaus, Johannes Neugebauer. Part and whole in wavefunction/DFT embedding. Theoretical Chemistry Accounts 2015, 134 (8) https://doi.org/10.1007/s00214-015-1697-4
    44. Soroosh Pezeshki, Hai Lin. Recent developments in QM/MM methods towards open-boundary multi-scale simulations. Molecular Simulation 2015, 41 (1-3) , 168-189. https://doi.org/10.1080/08927022.2014.911870
    45. Farnaz Heidar-Zadeh, Paul W. Ayers. How pervasive is the Hirshfeld partitioning?. The Journal of Chemical Physics 2015, 142 (4) , 044107. https://doi.org/10.1063/1.4905123
    46. Soroosh Pezeshki, Hai Lin. Molecular dynamics simulations of ion solvation by flexible‐boundary QM/MM: On‐the‐fly partial charge transfer between QM and MM subsystems. Journal of Computational Chemistry 2014, 35 (24) , 1778-1788. https://doi.org/10.1002/jcc.23685
    47. Christoph R. Jacob, Johannes Neugebauer. Subsystem density‐functional theory. WIREs Computational Molecular Science 2014, 4 (4) , 325-362. https://doi.org/10.1002/wcms.1175
    48. Tomasz A. Wesolowski. Embedding potentials for excited states of embedded species. The Journal of Chemical Physics 2014, 140 (18) https://doi.org/10.1063/1.4870014
    49. Eduardo Fabiano, Savio Laricchia, Fabio Della Sala. Frozen density embedding with non-integer subsystems’ particle numbers. The Journal of Chemical Physics 2014, 140 (11) https://doi.org/10.1063/1.4868033
    50. Peter Elliott, Daniel Jensen, Adam Wasserman, Kieron Burke. Comment on “Application of partition density-functional theory to one-dimensional models”. Physical Review A 2014, 89 (2) https://doi.org/10.1103/PhysRevA.89.026501
    51. Leah Isseroff Bendavid, Emily Ann Carter. Status in Calculating Electronic Excited States in Transition Metal Oxides from First Principles. 2014, 47-98. https://doi.org/10.1007/128_2013_503
    52. Marie Humbert-Droz, Xiuwen Zhou, Sapana V. Shedge, Tomasz A. Wesolowski. How to choose the frozen density in Frozen-Density Embedding Theory-based numerical simulations of local excitations?. Theoretical Chemistry Accounts 2014, 133 (1) https://doi.org/10.1007/s00214-013-1405-1
    53. Michele Pavanello. On the subsystem formulation of linear-response time-dependent DFT. The Journal of Chemical Physics 2013, 138 (20) https://doi.org/10.1063/1.4807059
    54. S. Laricchia, E. Fabiano, F. Della Sala. Semilocal and hybrid density embedding calculations of ground-state charge-transfer complexes. The Journal of Chemical Physics 2013, 138 (12) https://doi.org/10.1063/1.4795825
    55. S. Maya Beyhan, Andreas W. Götz, Lucas Visscher. Bond energy decomposition analysis for subsystem density functional theory. The Journal of Chemical Physics 2013, 138 (9) https://doi.org/10.1063/1.4793629
    56. S. Laricchia, E. Fabiano, F. Della Sala. On the accuracy of frozen density embedding calculations with hybrid and orbital-dependent functionals for non-bonded interaction energies. The Journal of Chemical Physics 2012, 137 (1) https://doi.org/10.1063/1.4730748
    57. D R Bowler, T Miyazaki. \mathcal{O}(N) methods in electronic structure calculations. Reports on Progress in Physics 2012, 75 (3) , 036503. https://doi.org/10.1088/0034-4885/75/3/036503
    58. Sebastian Höfener, André Severo Pereira Gomes, Lucas Visscher. Molecular properties via a subsystem density functional theory formulation: A common framework for electronic embedding. The Journal of Chemical Physics 2012, 136 (4) https://doi.org/10.1063/1.3675845
    59. Georgios Fradelos, Jesse J. Lutz, Tomasz A. Wesołowski, Piotr Piecuch, Marta Włoch. Shifts in Excitation Energies Induced by Hydrogen Bonding: A Comparison of the Embedding and Supermolecular Time-Dependent Density Functional Theory Calculations with the Equation-of-Motion Coupled-Cluster Results. 2012, 219-248. https://doi.org/10.1007/978-94-007-2076-3_13
    60. Shuhao Wen, Kaushik Nanda, Yuanhang Huang, Gregory J. O. Beran. Practical quantum mechanics-based fragment methods for predicting molecular crystal properties. Physical Chemistry Chemical Physics 2012, 14 (21) , 7578. https://doi.org/10.1039/c2cp23949c
    61. Rougang Tang, Jonathan Nafziger, Adam Wasserman. Fragment occupations in partition density functional theory. Physical Chemistry Chemical Physics 2012, 14 (21) , 7780. https://doi.org/10.1039/c2cp23994a
    62. Jonathan Nafziger, Qin Wu, Adam Wasserman. Molecular binding energies from partition density functional theory. The Journal of Chemical Physics 2011, 135 (23) https://doi.org/10.1063/1.3667198
    63. Chen Huang, Emily A. Carter. Potential-functional embedding theory for molecules and materials. The Journal of Chemical Physics 2011, 135 (19) https://doi.org/10.1063/1.3659293
    64. Chen Huang, Michele Pavone, Emily A. Carter. Quantum mechanical embedding theory based on a unique embedding potential. The Journal of Chemical Physics 2011, 134 (15) https://doi.org/10.1063/1.3577516
    65. Xiuwen Zhou, Jakub W. Kaminski, Tomasz A. Wesolowski. Multi-scale modelling of solvatochromic shifts from frozen-density embedding theory with non-uniform continuum model of the solvent: the coumarin 153 case. Physical Chemistry Chemical Physics 2011, 13 (22) , 10565. https://doi.org/10.1039/c0cp02874f
    66. S. Laricchia, E. Fabiano, F. Della Sala. Frozen density embedding with hybrid functionals. The Journal of Chemical Physics 2010, 133 (16) https://doi.org/10.1063/1.3494537
    67. Peter Elliott, Kieron Burke, Morrel H. Cohen, Adam Wasserman. Partition density-functional theory. Physical Review A 2010, 82 (2) https://doi.org/10.1103/PhysRevA.82.024501
    68. Troy Van Voorhis, Tim Kowalczyk, Benjamin Kaduk, Lee-Ping Wang, Chiao-Lun Cheng, Qin Wu. The Diabatic Picture of Electron Transfer, Reaction Barriers, and Molecular Dynamics. Annual Review of Physical Chemistry 2010, 61 (1) , 149-170. https://doi.org/10.1146/annurev.physchem.012809.103324

    Journal of Chemical Theory and Computation

    Cite this: J. Chem. Theory Comput. 2009, 5, 4, 827–833
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ct9000119
    Published March 26, 2009
    Copyright © 2009 American Chemical Society

    Article Views

    1357

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.