ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Electrostatic Potential Derived Atomic Charges for Periodic Systems Using a Modified Error Functional

View Author Information
Centre for Catalysis Research and Innovation and Department of Chemistry, University of Ottawa, Ottawa, Canada, K1N 6N5
* Corresponding author. E-mail: [email protected]
Cite this: J. Chem. Theory Comput. 2009, 5, 10, 2866–2878
Publication Date (Web):August 27, 2009
https://doi.org/10.1021/ct9003405
Copyright © 2009 American Chemical Society

    Article Views

    5516

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    A method to generate electrostatic potential (ESP) derived atomic charges in crystalline solids from periodic quantum mechanical calculations, termed the REPEAT method, is presented. Conventional ESP fitting procedures developed for molecular systems, in general, will not work for crystalline systems because the electrostatic potential in periodic systems is ill-defined up to a constant offset at each spatial position. In this work the problem is circumvented by introducing a new error functional which acts on the relative differences of the potential and not on its absolute values, as it is currently done with molecular ESP charge derivation methods. We formally demonstrate that the new functional reduces to the conventional error functional used in molecular ESP approaches when the simulation box of the periodic calculation becomes infinitely large. Several tests are presented to validate the new technique. For the periodic calculation of isolated molecules, the REPEAT charges are found to be in good agreement with those determined with established molecular ESP charge derivation methods. For siliceous sodalite, it is demonstrated that conventional molecular ESP approaches generate ‘unphysical’ charges, whereas the REPEAT method produces charges that are both chemically intuitive and consistent between different periodic electronic structure packages. The new approach is employed to generate partial atomic charges of various microporous materials and compared to both experimentally derived and molecular fragment ESP charges. This method can be used to generate partial atomic charges to be used in simulations of microporous and nanoporous materials, such as zeolites and metal organic framework materials.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 264 publications.

    1. Thomas Reichenbach, Severin Sylla, Leonhard Mayrhofer, Pedro Antonio Romero, Paul Schwarz, Michael Moseler, Gianpietro Moras. An All-Atom Force Field for Dry and Water-Lubricated Carbon Tribological Interfaces. The Journal of Physical Chemistry C 2024, 128 (11) , 4699-4721. https://doi.org/10.1021/acs.jpcc.3c07471
    2. Karuppasamy Gopalsamy, Dong Fan, Supriyo Naskar, Yann Magnin, Guillaume Maurin. Engineering of an Isoreticular Series of CALF-20 Metal–Organic Frameworks for CO2 Capture. ACS Applied Engineering Materials 2024, 2 (1) , 96-103. https://doi.org/10.1021/acsaenm.3c00622
    3. Zheng Li, Zhen Xu, Chao Gao. Selective Proximate Antarafacial Distribution of Oxidized Functional Groups on Graphene Oxide. The Journal of Physical Chemistry C 2024, 128 (3) , 1323-1331. https://doi.org/10.1021/acs.jpcc.3c06315
    4. Hannes Gustafsson, Melania Kozdra, Berend Smit, Senja Barthel, Amber Mace. Predicting Ion Diffusion from the Shape of Potential Energy Landscapes. Journal of Chemical Theory and Computation 2024, 20 (1) , 18-29. https://doi.org/10.1021/acs.jctc.3c01005
    5. Ali Ghamartale, Sohrab Zendehboudi. High Throughput Prescreening of Asphaltene Chemical Inhibitors Using Molecular Dynamics Approach. Energy & Fuels 2024, 38 (1) , 228-244. https://doi.org/10.1021/acs.energyfuels.3c03056
    6. Yann Magnin, Estelle Dirand, Guillaume Maurin, Philip L. Llewellyn. Abnormal CO2 and H2O Diffusion in CALF-20(Zn) Metal–Organic Framework: Fundamental Understanding of CO2 Capture. ACS Applied Nano Materials 2023, 6 (21) , 19963-19971. https://doi.org/10.1021/acsanm.3c03752
    7. Turan Selman Erkal, Norazanita Shamsuddin, Serdal Kirmizialtin, A. Ozgur Yazaydin. Computational Investigation of Structure–Function Relationship in Fluorine-Functionalized MOFs for PFOA Capture from Water. The Journal of Physical Chemistry C 2023, 127 (6) , 3204-3216. https://doi.org/10.1021/acs.jpcc.2c07737
    8. Jake Burner, Jun Luo, Andrew White, Adam Mirmiran, Ohmin Kwon, Peter G. Boyd, Stephen Maley, Marco Gibaldi, Scott Simrod, Victoria Ogden, Tom K. Woo. ARC–MOF: A Diverse Database of Metal-Organic Frameworks with DFT-Derived Partial Atomic Charges and Descriptors for Machine Learning. Chemistry of Materials 2023, 35 (3) , 900-916. https://doi.org/10.1021/acs.chemmater.2c02485
    9. Silda Peters, E. Varathan, Renjith S. Pillai. Investigation of Guest-Induced Flexibility in Pyrazine Derivative of ALFFIVE MOF via Molecular Simulation. Langmuir 2023, 39 (4) , 1373-1385. https://doi.org/10.1021/acs.langmuir.2c02027
    10. Rama Oktavian, Raymond Schireman, Lawson T. Glasby, Guanming Huang, Federica Zanca, David Fairen-Jimenez, Michael T. Ruggiero, Peyman Z. Moghadam. Computational Characterization of Zr-Oxide MOFs for Adsorption Applications. ACS Applied Materials & Interfaces 2022, 14 (51) , 56938-56947. https://doi.org/10.1021/acsami.2c13391
    11. Marco Gibaldi, Ohmin Kwon, Andrew White, Jake Burner, Tom K. Woo. The HEALED SBU Library of Chemically Realistic Building Blocks for Construction of Hypothetical Metal–Organic Frameworks. ACS Applied Materials & Interfaces 2022, 14 (38) , 43372-43386. https://doi.org/10.1021/acsami.2c13100
    12. Dong Fan, Aydin Ozcan, Naseem A. Ramsahye, Guillaume Maurin, Rocio Semino. Putting Forward NUS-8-CO2H/PIM-1 as a Mixed Matrix Membrane for CO2 Capture. ACS Applied Materials & Interfaces 2022, 14 (14) , 16820-16829. https://doi.org/10.1021/acsami.2c00090
    13. Yann Magnin, Estelle Dirand, Alejandro Orsikowsky, Mélanie Plainchault, Véronique Pugnet, Philippe Cordier, Philip L. Llewellyn. A Step in Carbon Capture from Wet Gases: Understanding the Effect of Water on CO2 Adsorption and Diffusion in UiO-66. The Journal of Physical Chemistry C 2022, 126 (6) , 3211-3220. https://doi.org/10.1021/acs.jpcc.1c09914
    14. Christina Ertural, Ralf P. Stoffel, Peter C. Müller, C. Alexander Vogt, Richard Dronskowski. First-Principles Plane-Wave-Based Exploration of Cathode and Anode Materials for Li- and Na-Ion Batteries Involving Complex Nitrogen-Based Anions. Chemistry of Materials 2022, 34 (2) , 652-668. https://doi.org/10.1021/acs.chemmater.1c03349
    15. F. Pelin Kinik, Andres Ortega-Guerrero, Fatmah Mish Ebrahim, Christopher P. Ireland, Ozge Kadioglu, Amber Mace, Mehrdad Asgari, Berend Smit. Toward Optimal Photocatalytic Hydrogen Generation from Water Using Pyrene-Based Metal–Organic Frameworks. ACS Applied Materials & Interfaces 2021, 13 (48) , 57118-57131. https://doi.org/10.1021/acsami.1c16464
    16. Dario Vassetti, Ismail Can Oǧuz, Frédéric Labat. Generalizing Continuum Solvation in Crystal to Nonaqueous Solvents: Implementation, Parametrization, and Application to Molecules and Surfaces. Journal of Chemical Theory and Computation 2021, 17 (10) , 6432-6448. https://doi.org/10.1021/acs.jctc.1c00611
    17. Amir H. Farmahini, Shreenath Krishnamurthy, Daniel Friedrich, Stefano Brandani, Lev Sarkisov. Performance-Based Screening of Porous Materials for Carbon Capture. Chemical Reviews 2021, 121 (17) , 10666-10741. https://doi.org/10.1021/acs.chemrev.0c01266
    18. Arianjel F. Hernandez, Rebekah K. Impastato, Mohammad I. Hossain, Brooks D. Rabideau, T. Grant Glover. Water Bridges Substitute for Defects in Amine-Functionalized UiO-66, Boosting CO2 Adsorption. Langmuir 2021, 37 (35) , 10439-10449. https://doi.org/10.1021/acs.langmuir.1c01149
    19. Nikhil V. S. Avula, Anwesa Karmakar, Rahul Kumar, Sundaram Balasubramanian. Efficient Parametrization of Force Field for the Quantitative Prediction of the Physical Properties of Ionic Liquid Electrolytes. Journal of Chemical Theory and Computation 2021, 17 (7) , 4274-4290. https://doi.org/10.1021/acs.jctc.1c00268
    20. Srinivasu Kancharlapalli, Arun Gopalan, Maciej Haranczyk, Randall Q. Snurr. Fast and Accurate Machine Learning Strategy for Calculating Partial Atomic Charges in Metal–Organic Frameworks. Journal of Chemical Theory and Computation 2021, 17 (5) , 3052-3064. https://doi.org/10.1021/acs.jctc.0c01229
    21. Shyamapada Nandi, Sujing Wang, Mohammad Wahiduzzaman, Vibhav Yadav, Kiran Taksande, Guillaume Maurin, Christian Serre, Sabine Devautour-Vinot. Multivariate Sulfonic-Based Titanium Metal–Organic Frameworks as Super-protonic Conductors. ACS Applied Materials & Interfaces 2021, 13 (17) , 20194-20200. https://doi.org/10.1021/acsami.1c03644
    22. Kyung Ho Cho, Paulo G. M. Mileo, Ji Sun Lee, U-Hwang Lee, Jaedeuk Park, Sung June Cho, Sachin K. Chitale, Guillaume Maurin, Jong-San Chang. Defective Zr-Fumarate MOFs Enable High-Efficiency Adsorption Heat Allocations. ACS Applied Materials & Interfaces 2021, 13 (1) , 1723-1734. https://doi.org/10.1021/acsami.0c15901
    23. Jake Burner, Ludwig Schwiedrzik, Mykhaylo Krykunov, Jun Luo, Peter G. Boyd, Tom K. Woo. High-Performing Deep Learning Regression Models for Predicting Low-Pressure CO2 Adsorption Properties of Metal–Organic Frameworks. The Journal of Physical Chemistry C 2020, 124 (51) , 27996-28005. https://doi.org/10.1021/acs.jpcc.0c06334
    24. Daisuke Yokogawa, Kayo Suda. Electrostatic Potential Fitting Method Using Constrained Spatial Electron Density Expanded with Preorthogonal Natural Atomic Orbitals. The Journal of Physical Chemistry A 2020, 124 (46) , 9665-9673. https://doi.org/10.1021/acs.jpca.0c07425
    25. Ali Ghamartale, Sohrab Zendehboudi, Nima Rezaei. New Molecular Insights into Aggregation of Pure and Mixed Asphaltenes in the Presence of n-Octylphenol Inhibitor. Energy & Fuels 2020, 34 (10) , 13186-13207. https://doi.org/10.1021/acs.energyfuels.0c02443
    26. Vadim V. Korolev, Artem Mitrofanov, Ekaterina I. Marchenko, Nickolay N. Eremin, Valery Tkachenko, Stepan N. Kalmykov. Transferable and Extensible Machine Learning-Derived Atomic Charges for Modeling Hybrid Nanoporous Materials. Chemistry of Materials 2020, 32 (18) , 7822-7831. https://doi.org/10.1021/acs.chemmater.0c02468
    27. Ali Raza, Arni Sturluson, Cory M. Simon, Xiaoli Fern. Message Passing Neural Networks for Partial Charge Assignment to Metal–Organic Frameworks. The Journal of Physical Chemistry C 2020, 124 (35) , 19070-19082. https://doi.org/10.1021/acs.jpcc.0c04903
    28. Athulya S. Palakkal, Renjith S. Pillai. Tuning the Ultra-Micropore Size of Fluorinated MOFs (M′F6-Ni-L) for CO2 Capture from Flue Gases by Advanced Computational Methods. The Journal of Physical Chemistry C 2020, 124 (31) , 16975-16989. https://doi.org/10.1021/acs.jpcc.0c03633
    29. Changlong Zou, Drace R. Penley, Eun Hyun Cho, Li-Chiang Lin. Efficient and Accurate Charge Assignments via a Multilayer Connectivity-Based Atom Contribution (m-CBAC) Approach. The Journal of Physical Chemistry C 2020, 124 (21) , 11428-11437. https://doi.org/10.1021/acs.jpcc.0c01524
    30. Kathryn S. Deeg, Daiane Damasceno Borges, Daniele Ongari, Nakul Rampal, Leopold Talirz, Aliaksandr V. Yakutovich, Johanna M. Huck, Berend Smit. In Silico Discovery of Covalent Organic Frameworks for Carbon Capture. ACS Applied Materials & Interfaces 2020, 12 (19) , 21559-21568. https://doi.org/10.1021/acsami.0c01659
    31. Tomas Kamencek, Sandro Wieser, Hirotaka Kojima, Natalia Bedoya-Martínez, Johannes P. Dürholt, Rochus Schmid, Egbert Zojer. Evaluating Computational Shortcuts in Supercell-Based Phonon Calculations of Molecular Crystals: The Instructive Case of Naphthalene. Journal of Chemical Theory and Computation 2020, 16 (4) , 2716-2735. https://doi.org/10.1021/acs.jctc.0c00119
    32. Yoshiki Ishii, Nobuyuki Matubayasi. Self-Consistent Scheme Combining MD and Order-N DFT Methods: An Improved Set of Nonpolarizable Force Fields for Ionic Liquids. Journal of Chemical Theory and Computation 2020, 16 (1) , 651-665. https://doi.org/10.1021/acs.jctc.9b00793
    33. Eun Hyun Cho, Li-Chiang Lin. Electrostatic Potential Optimized Molecular Models for Molecular Simulations: CO, CO2, COS, H2S, N2, N2O, and SO2. Journal of Chemical Theory and Computation 2019, 15 (11) , 6323-6332. https://doi.org/10.1021/acs.jctc.9b00653
    34. Ming-Yang Kan, Ju Ho Shin, Chi-Ta Yang, Chung-Kai Chang, Li-Wei Lee, Bo-Hao Chen, Kuang-Lieh Lu, Jong Suk Lee, Li-Chiang Lin, Dun-Yen Kang. Activation-Controlled Structure Deformation of Pillared-Bilayer Metal–Organic Framework Membranes for Gas Separations. Chemistry of Materials 2019, 31 (18) , 7666-7677. https://doi.org/10.1021/acs.chemmater.9b02539
    35. Seung-Ik Kim, Seulchan Lee, Yongchul G. Chung, Youn-Sang Bae. The Origin of p-Xylene Selectivity in a DABCO Pillar-Layered Metal–Organic Framework: A Combined Experimental and Computational Investigation. ACS Applied Materials & Interfaces 2019, 11 (34) , 31227-31236. https://doi.org/10.1021/acsami.9b11343
    36. Mohammad R. Momeni, Christopher J. Cramer. Computational Screening of Roles of Defects and Metal Substitution on Reactivity of Different Single- vs Double-Node Metal–Organic Frameworks for Sarin Decomposition. The Journal of Physical Chemistry C 2019, 123 (24) , 15157-15165. https://doi.org/10.1021/acs.jpcc.9b03817
    37. Johannes P. Dürholt, Guillaume Fraux, François-Xavier Coudert, Rochus Schmid. Ab Initio Derived Force Fields for Zeolitic Imidazolate Frameworks: MOF-FF for ZIFs. Journal of Chemical Theory and Computation 2019, 15 (4) , 2420-2432. https://doi.org/10.1021/acs.jctc.8b01041
    38. Hana Dureckova, Mykhaylo Krykunov, Mohammad Zein Aghaji, Tom K. Woo. Robust Machine Learning Models for Predicting High CO2 Working Capacity and CO2/H2 Selectivity of Gas Adsorption in Metal Organic Frameworks for Precombustion Carbon Capture. The Journal of Physical Chemistry C 2019, 123 (7) , 4133-4139. https://doi.org/10.1021/acs.jpcc.8b10644
    39. Song Wang, Sheng Dai, De-en Jiang. Continuously Tunable Pore Size for Gas Separation via a Bilayer Nanoporous Graphene Membrane. ACS Applied Nano Materials 2019, 2 (1) , 379-384. https://doi.org/10.1021/acsanm.8b01967
    40. Daniele Ongari, Peter G. Boyd, Ozge Kadioglu, Amber K. Mace, Seda Keskin, Berend Smit. Evaluating Charge Equilibration Methods To Generate Electrostatic Fields in Nanoporous Materials. Journal of Chemical Theory and Computation 2019, 15 (1) , 382-401. https://doi.org/10.1021/acs.jctc.8b00669
    41. Shanelle Suepaul, Katherine A. Forrest, Tony Pham, Brian Space. Investigating the Effects of Linker Extension on H2 Sorption in the rht-Metal–Organic Framework NU-111 by Molecular Simulations. Crystal Growth & Design 2018, 18 (12) , 7599-7610. https://doi.org/10.1021/acs.cgd.8b01398
    42. Andrzej Gładysiak, Kathryn S. Deeg, Iurii Dovgaliuk, Arunraj Chidambaram, Kaili Ordiz, Peter G. Boyd, Seyed Mohamad Moosavi, Daniele Ongari, Jorge A. R. Navarro, Berend Smit, Kyriakos C. Stylianou. Biporous Metal–Organic Framework with Tunable CO2/CH4 Separation Performance Facilitated by Intrinsic Flexibility. ACS Applied Materials & Interfaces 2018, 10 (42) , 36144-36156. https://doi.org/10.1021/acsami.8b13362
    43. Ryther Anderson, Jacob Rodgers, Edwin Argueta, Achay Biong, Diego A. Gómez-Gualdrón. Role of Pore Chemistry and Topology in the CO2 Capture Capabilities of MOFs: From Molecular Simulation to Machine Learning. Chemistry of Materials 2018, 30 (18) , 6325-6337. https://doi.org/10.1021/acs.chemmater.8b02257
    44. Mohammad R. Momeni, Christopher J. Cramer. Structural Characterization of Pristine and Defective [Zr12(μ3-O)8(μ3-OH)8(μ2-OH)6]18+ Double-Node Metal–Organic Framework and Predicted Applications for Single-Site Catalytic Hydrolysis of Sarin. Chemistry of Materials 2018, 30 (13) , 4432-4439. https://doi.org/10.1021/acs.chemmater.8b01913
    45. Jongwon Choi, Li-Chiang Lin, Jeffrey C. Grossman. Role of Structural Defects in the Water Adsorption Properties of MOF-801. The Journal of Physical Chemistry C 2018, 122 (10) , 5545-5552. https://doi.org/10.1021/acs.jpcc.8b00014
    46. Ryther Anderson, Benjamin Schweitzer, Ting Wu, Moises A. Carreon, and Diego A. Gómez-Gualdrón . Molecular Simulation Insights on Xe/Kr Separation in a Set of Nanoporous Crystalline Membranes. ACS Applied Materials & Interfaces 2018, 10 (1) , 582-592. https://doi.org/10.1021/acsami.7b14791
    47. Edwin Argueta, Jeena Shaji, Arun Gopalan, Peilin Liao, Randall Q. Snurr, and Diego A. Gómez-Gualdrón . Molecular Building Block-Based Electronic Charges for High-Throughput Screening of Metal–Organic Frameworks for Adsorption Applications. Journal of Chemical Theory and Computation 2018, 14 (1) , 365-376. https://doi.org/10.1021/acs.jctc.7b00841
    48. Hongda Zhang and Randall Q. Snurr . Computational Study of Water Adsorption in the Hydrophobic Metal–Organic Framework ZIF-8: Adsorption Mechanism and Acceleration of the Simulations. The Journal of Physical Chemistry C 2017, 121 (43) , 24000-24010. https://doi.org/10.1021/acs.jpcc.7b06405
    49. Yujin Ji, Lifeng Ding, Yuanyuan Cheng, Hao Zhou, Siyuan Yang, Fan Li, and Youyong Li . Understanding the Effect of Ligands on C2H2 Storage and C2H2/CH4, C2H2/CO2 Separation in Metal–Organic Frameworks with Open Cu(II) Sites. The Journal of Physical Chemistry C 2017, 121 (43) , 24104-24113. https://doi.org/10.1021/acs.jpcc.7b08370
    50. Jiamei Yu, Lin-Hua Xie, Jian-Rong Li, Yuguang Ma, Jorge M. Seminario, and Perla B. Balbuena . CO2 Capture and Separations Using MOFs: Computational and Experimental Studies. Chemical Reviews 2017, 117 (14) , 9674-9754. https://doi.org/10.1021/acs.chemrev.6b00626
    51. Daniele Ongari, Davide Tiana, Samuel J. Stoneburner, Laura Gagliardi, and Berend Smit . Origin of the Strong Interaction between Polar Molecules and Copper(II) Paddle-Wheels in Metal Organic Frameworks. The Journal of Physical Chemistry C 2017, 121 (28) , 15135-15144. https://doi.org/10.1021/acs.jpcc.7b02302
    52. Ariana Torres-Knoop, Ali Poursaeidesfahani, Thijs J. H. Vlugt, and David Dubbeldam . Behavior of the Enthalpy of Adsorption in Nanoporous Materials Close to Saturation Conditions. Journal of Chemical Theory and Computation 2017, 13 (7) , 3326-3339. https://doi.org/10.1021/acs.jctc.6b01193
    53. Mykhaylo Krykunov, Christopher Demone, Jason W.-H. Lo, and Tom K. Woo . A New Split Charge Equilibration Model and REPEAT Electrostatic Potential Fitted Charges for Periodic Frameworks with a Net Charge. Journal of Chemical Theory and Computation 2017, 13 (6) , 2858-2869. https://doi.org/10.1021/acs.jctc.6b00998
    54. Yifei Michelle Liu and Berend Smit . Predicting Product Distribution of Propene Dimerization in Nanoporous Materials. ACS Catalysis 2017, 7 (6) , 3940-3948. https://doi.org/10.1021/acscatal.7b00712
    55. Matthew Witman, Sanliang Ling, Sudi Jawahery, Peter G. Boyd, Maciej Haranczyk, Ben Slater, and Berend Smit . The Influence of Intrinsic Framework Flexibility on Adsorption in Nanoporous Materials. Journal of the American Chemical Society 2017, 139 (15) , 5547-5557. https://doi.org/10.1021/jacs.7b01688
    56. Ziqi Tian, Shannon M. Mahurin, Sheng Dai, and De-en Jiang . Ion-Gated Gas Separation through Porous Graphene. Nano Letters 2017, 17 (3) , 1802-1807. https://doi.org/10.1021/acs.nanolett.6b05121
    57. Pengfei Li and Kenneth M. Merz, Jr. . Metal Ion Modeling Using Classical Mechanics. Chemical Reviews 2017, 117 (3) , 1564-1686. https://doi.org/10.1021/acs.chemrev.6b00440
    58. Matthew Witman, Sanliang Ling, Andrzej Gladysiak, Kyriakos C. Stylianou, Berend Smit, Ben Slater, and Maciej Haranczyk . Rational Design of a Low-Cost, High-Performance Metal–Organic Framework for Hydrogen Storage and Carbon Capture. The Journal of Physical Chemistry C 2017, 121 (2) , 1171-1181. https://doi.org/10.1021/acs.jpcc.6b10363
    59. Sean P. Collins and Tom K. Woo . Split-Charge Equilibration Parameters for Generating Rapid Partial Atomic Charges in Metal–Organic Frameworks and Porous Polymer Networks for High-Throughput Screening. The Journal of Physical Chemistry C 2017, 121 (1) , 903-910. https://doi.org/10.1021/acs.jpcc.6b10804
    60. Song Li, Yongchul G. Chung, and Randall Q. Snurr . High-Throughput Screening of Metal–Organic Frameworks for CO2 Capture in the Presence of Water. Langmuir 2016, 32 (40) , 10368-10376. https://doi.org/10.1021/acs.langmuir.6b02803
    61. Ziqi Tian, Sheng Dai, and De-en Jiang . Site Partition: Turning One Site into Two for Adsorbing CO2. The Journal of Physical Chemistry Letters 2016, 7 (13) , 2568-2572. https://doi.org/10.1021/acs.jpclett.6b01141
    62. Rocio Mercado, Bess Vlaisavljevich, Li-Chiang Lin, Kyuho Lee, Yongjin Lee, Jarad A. Mason, Dianne J. Xiao, Miguel I. Gonzalez, Matthew T. Kapelewski, Jeffrey B. Neaton, and Berend Smit . Force Field Development from Periodic Density Functional Theory Calculations for Gas Separation Applications Using Metal–Organic Frameworks. The Journal of Physical Chemistry C 2016, 120 (23) , 12590-12604. https://doi.org/10.1021/acs.jpcc.6b03393
    63. Ariana Torres-Knoop, Nicholas C. Burtch, Ali Poursaeidesfahani, Sayee P. Balaji, Ramses Kools, Florent X. Smit, Krista S. Walton, Thijs J.H. Vlugt, and David Dubbeldam . Optimization of Particle Transfers in the Gibbs Ensemble for Systems with Strong and Directional Interactions Using CBMC, CFCMC, and CB/CFCMC. The Journal of Physical Chemistry C 2016, 120 (17) , 9148-9159. https://doi.org/10.1021/acs.jpcc.5b11607
    64. Dalar Nazarian, Jeffrey S. Camp, and David S. Sholl . A Comprehensive Set of High-Quality Point Charges for Simulations of Metal–Organic Frameworks. Chemistry of Materials 2016, 28 (3) , 785-793. https://doi.org/10.1021/acs.chemmater.5b03836
    65. Andrea Gabrieli, Marco Sant, Pierfranco Demontis, and Giuseppe B. Suffritti . Partial Charges in Periodic Systems: Improving Electrostatic Potential (ESP) Fitting via Total Dipole Fluctuations and Multiframe Approaches. Journal of Chemical Theory and Computation 2015, 11 (8) , 3829-3843. https://doi.org/10.1021/acs.jctc.5b00503
    66. Hyun Seung Koh, Malay Kumar Rana, Antek G. Wong-Foy, and Donald J. Siegel . Predicting Methane Storage in Open-Metal-Site Metal–Organic Frameworks. The Journal of Physical Chemistry C 2015, 119 (24) , 13451-13458. https://doi.org/10.1021/acs.jpcc.5b02768
    67. Ariana Torres-Knoop, Jurn Heinen, Rajamani Krishna, and David Dubbeldam . Entropic Separation of Styrene/Ethylbenzene Mixtures by Exploitation of Subtle Differences in Molecular Configurations in Ordered Crystalline Nanoporous Adsorbents. Langmuir 2015, 31 (12) , 3771-3778. https://doi.org/10.1021/acs.langmuir.5b00363
    68. Jesse G. McDaniel, Song Li, Emmanouil Tylianakis, Randall Q. Snurr, and J. R. Schmidt . Evaluation of Force Field Performance for High-Throughput Screening of Gas Uptake in Metal–Organic Frameworks. The Journal of Physical Chemistry C 2015, 119 (6) , 3143-3152. https://doi.org/10.1021/jp511674w
    69. Kyuho Lee, Joshua D. Howe, Li-Chiang Lin, Berend Smit, and Jeffrey B. Neaton . Small-Molecule Adsorption in Open-Site Metal–Organic Frameworks: A Systematic Density Functional Theory Study for Rational Design. Chemistry of Materials 2015, 27 (3) , 668-678. https://doi.org/10.1021/cm502760q
    70. Brad A. Wells, Caspar De Bruin-Dickason, and Alan L. Chaffee . Charge Equilibration Based on Atomic Ionization in Metal–Organic Frameworks. The Journal of Physical Chemistry C 2015, 119 (1) , 456-466. https://doi.org/10.1021/jp510415h
    71. Bo Wang, Shaohong L. Li, and Donald G. Truhlar . Modeling the Partial Atomic Charges in Inorganometallic Molecules and Solids and Charge Redistribution in Lithium-Ion Cathodes. Journal of Chemical Theory and Computation 2014, 10 (12) , 5640-5650. https://doi.org/10.1021/ct500790p
    72. Miguel Jorge, Michael Fischer, José R. B. Gomes, Christophe Siquet, João C. Santos, and Alírio E. Rodrigues . Accurate Model for Predicting Adsorption of Olefins and Paraffins on MOFs with Open Metal Sites. Industrial & Engineering Chemistry Research 2014, 53 (40) , 15475-15487. https://doi.org/10.1021/ie500310c
    73. Tony Pham, Katherine A. Forrest, Keith McLaughlin, Juergen Eckert, and Brian Space . Capturing the H2–Metal Interaction in Mg-MOF-74 Using Classical Polarization. The Journal of Physical Chemistry C 2014, 118 (39) , 22683-22690. https://doi.org/10.1021/jp508249c
    74. Michael Fernandez, Peter G. Boyd, Thomas D. Daff, Mohammad Zein Aghaji, and Tom K. Woo . Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO2 Capture. The Journal of Physical Chemistry Letters 2014, 5 (17) , 3056-3060. https://doi.org/10.1021/jz501331m
    75. José L. C. Fajín, M. Natália D. S. Cordeiro, and José R. B. Gomes . Density Functional Theory Study of the Water Dissociation on Platinum Surfaces: General Trends. The Journal of Physical Chemistry A 2014, 118 (31) , 5832-5840. https://doi.org/10.1021/jp411500j
    76. Zhongtao Zhang and C. Heath Turner . Water-Induced Interactions between Boron-Doped Carbon Nanotubes. The Journal of Physical Chemistry C 2014, 118 (31) , 17838-17846. https://doi.org/10.1021/jp505832s
    77. A. N. Rudenko, S. Bendt, and F. J. Keil . Multiscale Modeling of Water in Mg-MOF-74: From Electronic Structure Calculations to Adsorption Isotherms. The Journal of Physical Chemistry C 2014, 118 (29) , 16218-16227. https://doi.org/10.1021/jp503778m
    78. Edder J. García, Javier Pérez-Pellitero, Christian Jallut, and Gerhard D. Pirngruber . How to Optimize the Electrostatic Interaction between a Solid Adsorbent and CO2. The Journal of Physical Chemistry C 2014, 118 (18) , 9458-9467. https://doi.org/10.1021/jp500209v
    79. Li-Chiang Lin, Kyuho Lee, Laura Gagliardi, Jeffrey B. Neaton, and Berend Smit . Force-Field Development from Electronic Structure Calculations with Periodic Boundary Conditions: Applications to Gaseous Adsorption and Transport in Metal–Organic Frameworks. Journal of Chemical Theory and Computation 2014, 10 (4) , 1477-1488. https://doi.org/10.1021/ct500094w
    80. Anirban Mondal and Sundaram Balasubramanian . Quantitative Prediction of Physical Properties of Imidazolium Based Room Temperature Ionic Liquids through Determination of Condensed Phase Site Charges: A Refined Force Field. The Journal of Physical Chemistry B 2014, 118 (12) , 3409-3422. https://doi.org/10.1021/jp500296x
    81. Ariana Torres-Knoop, Sayee Prasaad Balaji, Thijs J. H. Vlugt, and David Dubbeldam . A Comparison of Advanced Monte Carlo Methods for Open Systems: CFCMC vs CBMC. Journal of Chemical Theory and Computation 2014, 10 (3) , 942-952. https://doi.org/10.1021/ct4009766
    82. Malay Kumar Rana, Hyun Seung Koh, Haroon Zuberi, and Donald J. Siegel . Methane Storage in Metal-Substituted Metal–Organic Frameworks: Thermodynamics, Usable Capacity, and the Impact of Enhanced Binding Sites. The Journal of Physical Chemistry C 2014, 118 (6) , 2929-2942. https://doi.org/10.1021/jp4104273
    83. Jihan Kim, Li-Chiang Lin, Kyuho Lee, Jeffrey B. Neaton, and Berend Smit . Efficient Determination of Accurate Force Fields for Porous Materials Using ab Initio Total Energy Calculations. The Journal of Physical Chemistry C 2014, 118 (5) , 2693-2701. https://doi.org/10.1021/jp412368m
    84. Pritha Ghosh, Ki Chul Kim, and Randall Q. Snurr . Modeling Water and Ammonia Adsorption in Hydrophobic Metal–Organic Frameworks: Single Components and Mixtures. The Journal of Physical Chemistry C 2014, 118 (2) , 1102-1110. https://doi.org/10.1021/jp410758t
    85. Michael Fischer and Robert G. Bell . Modeling CO2 Adsorption in Zeolites Using DFT-Derived Charges: Comparing System-Specific and Generic Models. The Journal of Physical Chemistry C 2013, 117 (46) , 24446-24454. https://doi.org/10.1021/jp4086969
    86. Qingyuan Yang, Dahuan Liu, Chongli Zhong, and Jian-Rong Li . Development of Computational Methodologies for Metal–Organic Frameworks and Their Application in Gas Separations. Chemical Reviews 2013, 113 (10) , 8261-8323. https://doi.org/10.1021/cr400005f
    87. Eugene S. Kadantsev, Peter G. Boyd, Thomas D. Daff, and Tom K. Woo . Fast and Accurate Electrostatics in Metal Organic Frameworks with a Robust Charge Equilibration Parameterization for High-Throughput Virtual Screening of Gas Adsorption. The Journal of Physical Chemistry Letters 2013, 4 (18) , 3056-3061. https://doi.org/10.1021/jz401479k
    88. Michael Fischer and Robert G. Bell . Identifying Promising Zeolite Frameworks for Separation Applications: A Building-Block-Based Approach. The Journal of Physical Chemistry C 2013, 117 (33) , 17099-17110. https://doi.org/10.1021/jp405507y
    89. Nicholas C. Burtch, Himanshu Jasuja, David Dubbeldam, and Krista S. Walton . Molecular-level Insight into Unusual Low Pressure CO2 Affinity in Pillared Metal–Organic Frameworks. Journal of the American Chemical Society 2013, 135 (19) , 7172-7180. https://doi.org/10.1021/ja310770c
    90. Tony Pham, Katherine A. Forrest, Patrick Nugent, Youssef Belmabkhout, Ryan Luebke, Mohamed Eddaoudi, Michael J. Zaworotko, and Brian Space . Understanding Hydrogen Sorption in a Metal–Organic Framework with Open-Metal Sites and Amide Functional Groups. The Journal of Physical Chemistry C 2013, 117 (18) , 9340-9354. https://doi.org/10.1021/jp402304a
    91. Ilknur Erucar and Seda Keskin . High CO2 Selectivity of an Amine-Functionalized Metal Organic Framework in Adsorption-Based and Membrane-Based Gas Separations. Industrial & Engineering Chemistry Research 2013, 52 (9) , 3462-3472. https://doi.org/10.1021/ie303343m
    92. Himanshu Jasuja, Nicholas C. Burtch, You-gui Huang, Yang Cai, and Krista S. Walton . Kinetic Water Stability of an Isostructural Family of Zinc-Based Pillared Metal–Organic Frameworks. Langmuir 2013, 29 (2) , 633-642. https://doi.org/10.1021/la304204k
    93. Yao Houndonougbo . Molecular Simulation of Carbon Capture in a Series of Isoreticular Zeolitic Imidazolate Materials. 2013, 83-98. https://doi.org/10.1021/bk-2013-1132.ch003
    94. Michael Fischer and Robert G. Bell . Influence of Zeolite Topology on CO2/N2 Separation Behavior: Force-Field Simulations Using a DFT-Derived Charge Model. The Journal of Physical Chemistry C 2012, 116 (50) , 26449-26463. https://doi.org/10.1021/jp3099768
    95. O. Assowe, O. Politano, V. Vignal, P. Arnoux, B. Diawara, O. Verners, and A. C. T. van Duin . Reactive Molecular Dynamics of the Initial Oxidation Stages of Ni(111) in Pure Water: Effect of an Applied Electric Field. The Journal of Physical Chemistry A 2012, 116 (48) , 11796-11805. https://doi.org/10.1021/jp306932a
    96. William Morris, Ning He, Keith G. Ray, Peter Klonowski, Hiroyasu Furukawa, Isaak N. Daniels, Yao A. Houndonougbo, Mark Asta, Omar M. Yaghi, and Brian B. Laird . A Combined Experimental-Computational Study on the Effect of Topology on Carbon Dioxide Adsorption in Zeolitic Imidazolate Frameworks. The Journal of Physical Chemistry C 2012, 116 (45) , 24084-24090. https://doi.org/10.1021/jp307170a
    97. Taku Watanabe and David S. Sholl . Accelerating Applications of Metal–Organic Frameworks for Gas Adsorption and Separation by Computational Screening of Materials. Langmuir 2012, 28 (40) , 14114-14128. https://doi.org/10.1021/la301915s
    98. Christopher E. Wilmer, Ki Chul Kim, and Randall Q. Snurr . An Extended Charge Equilibration Method. The Journal of Physical Chemistry Letters 2012, 3 (17) , 2506-2511. https://doi.org/10.1021/jz3008485
    99. Thomas A. Manz and David S. Sholl . Improved Atoms-in-Molecule Charge Partitioning Functional for Simultaneously Reproducing the Electrostatic Potential and Chemical States in Periodic and Nonperiodic Materials. Journal of Chemical Theory and Computation 2012, 8 (8) , 2844-2867. https://doi.org/10.1021/ct3002199
    100. Katherine A. Forrest, Tony Pham, Keith McLaughlin, Jonathan L. Belof, Abraham C. Stern, Michael J. Zaworotko, and Brian Space . Simulation of the Mechanism of Gas Sorption in a Metal–Organic Framework with Open Metal Sites: Molecular Hydrogen in PCN-61. The Journal of Physical Chemistry C 2012, 116 (29) , 15538-15549. https://doi.org/10.1021/jp306084t
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect