ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Robust Periodic Hartree−Fock Exchange for Large-Scale Simulations Using Gaussian Basis Sets

View Author Information
Physical Chemistry Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
* Corresponding author. E-mail: [email protected].
Cite this: J. Chem. Theory Comput. 2009, 5, 11, 3010–3021
Publication Date (Web):October 20, 2009
https://doi.org/10.1021/ct900494g
Copyright © 2009 American Chemical Society

    Article Views

    3599

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)

    Abstract

    Hartree−Fock exchange with a truncated Coulomb operator has recently been discussed in the context of periodic plane-waves calculations [Spencer, J.; Alavi, A. Phys. Rev. B: SolidState, 2008, 77, 193110]. In this work, this approach is extended to Gaussian basis sets, leading to a stable and accurate procedure for evaluating Hartree−Fock exchange at the Γ-point. Furthermore, it has been found that standard hybrid functionals can be transformed into short-range functionals without loss of accuracy. The well-defined short-range nature of the truncated exchange operator can naturally be exploited in integral screening procedures and makes this approach interesting for both condensed phase and gas phase systems. The presented Hartree−Fock implementation is massively parallel and scales up to ten thousands of cores. This makes it feasible to perform highly accurate calculations on systems containing thousands of atoms or ten thousands of basis functions. The applicability of this scheme is demonstrated by calculating the cohesive energy of a LiH crystal close to the Hartree−Fock basis set limit and by performing an electronic structure calculation of a complete protein (rubredoxin) in solution with a large and flexible basis set.

    Cited By

    This article is cited by 230 publications.

    1. Krystof Brezina, Hubert Beck, Ondrej Marsalek. Reducing the Cost of Neural Network Potential Generation for Reactive Molecular Systems. Journal of Chemical Theory and Computation 2023, Article ASAP.
    2. Thien Khuu, Tim Schleif, Ahmed Mohamed, Sayoni Mitra, Mark A. Johnson, Jesús Valdiviezo, Joseph P. Heindel, Teresa Head-Gordon. Intra-cluster Charge Migration upon Hydration of Protonated Formic Acid Revealed by Anharmonic Analysis of Cold Ion Vibrational Spectra. The Journal of Physical Chemistry A 2023, 127 (36) , 7501-7509. https://doi.org/10.1021/acs.jpca.3c03971
    3. Taehun Lee, Annabella Selloni. Deep and Shallow Gap States in Reduced and n-Type Doped m-ZrO2. The Journal of Physical Chemistry C 2023, 127 (28) , 13936-13944. https://doi.org/10.1021/acs.jpcc.3c02833
    4. Hsin-Yu Ko, Marcos F. Calegari Andrade, Zachary M. Sparrow, Ju-an Zhang, Robert A. DiStasio, Jr.. High-Throughput Condensed-Phase Hybrid Density Functional Theory for Large-Scale Finite-Gap Systems: The SeA Approach. Journal of Chemical Theory and Computation 2023, 19 (13) , 4182-4201. https://doi.org/10.1021/acs.jctc.2c00827
    5. Yannick J. Franzke, Christof Holzer, Josefine H. Andersen, Tomislav Begušić, Florian Bruder, Sonia Coriani, Fabio Della Sala, Eduardo Fabiano, Daniil A. Fedotov, Susanne Fürst, Sebastian Gillhuber, Robin Grotjahn, Martin Kaupp, Max Kehry, Marjan Krstić, Fabian Mack, Sourav Majumdar, Brian D. Nguyen, Shane M. Parker, Fabian Pauly, Ansgar Pausch, Eva Perlt, Gabriel S. Phun, Ahmadreza Rajabi, Dmitrij Rappoport, Bibek Samal, Tim Schrader, Manas Sharma, Enrico Tapavicza, Robert S. Treß, Vamsee Voora, Artur Wodyński, Jason M. Yu, Benedikt Zerulla, Filipp Furche, Christof Hättig, Marek Sierka, David P. Tew, Florian Weigend. TURBOMOLE: Today and Tomorrow. Journal of Chemical Theory and Computation 2023, Article ASAP.
    6. Zifei Chen, J. Curtis Beimborn, II, Nicholas Kirkwood, Salvy P. Russo, J. Mathias Weber, Paul Mulvaney. Size-Dependent Response of CdSe Quantum Dots to Hydrostatic Pressure. The Journal of Physical Chemistry C 2023, 127 (18) , 8657-8669. https://doi.org/10.1021/acs.jpcc.3c00998
    7. Michael J. Elser, Ellie Neige, Thomas Berger, Mario Chiesa, Elio Giamello, Keith McKenna, Thomas Risse, Oliver Diwald. On the Importance of Nanoparticle Necks and Carbon Impurities for Charge Trapping in TiO2. The Journal of Physical Chemistry C 2023, 127 (18) , 8778-8787. https://doi.org/10.1021/acs.jpcc.3c00430
    8. Francesco Ambrosio, Julia Wiktor, Alessandro Landi, Andrea Peluso. Charge Localization in Acene Crystals from Ab Initio Electronic Structure. The Journal of Physical Chemistry Letters 2023, 14 (13) , 3343-3351. https://doi.org/10.1021/acs.jpclett.3c00191
    9. Arsalan Hashemi, Pekka Peljo, Kari Laasonen. Understanding Electron Transfer Reactions Using Constrained Density Functional Theory: Complications Due to Surface Interactions. The Journal of Physical Chemistry C 2023, 127 (7) , 3398-3407. https://doi.org/10.1021/acs.jpcc.2c06537
    10. Sandeep Sharma, Alec F. White, Gregory Beylkin. Fast Exchange with Gaussian Basis Set Using Robust Pseudospectral Method. Journal of Chemical Theory and Computation 2022, 18 (12) , 7306-7320. https://doi.org/10.1021/acs.jctc.2c00720
    11. Xue-Ting Fan, Xiao-Jian Wen, Jun Cheng. Aligning Electronic Energy Levels in Pyridine-Assisted CO2 Activation at the GaP(110)/Water Interface Using Ab Initio Molecular Dynamics. ACS Catalysis 2022, 12 (20) , 12521-12529. https://doi.org/10.1021/acscatal.2c04121
    12. Christian S. Ahart, Kevin M. Rosso, Jochen Blumberger. Implementation and Validation of Constrained Density Functional Theory Forces in the CP2K Package. Journal of Chemical Theory and Computation 2022, 18 (7) , 4438-4446. https://doi.org/10.1021/acs.jctc.2c00284
    13. Nicklas Österbacka, Francesco Ambrosio, Julia Wiktor. Charge Localization in Defective BiVO4. The Journal of Physical Chemistry C 2022, 126 (6) , 2960-2970. https://doi.org/10.1021/acs.jpcc.1c09990
    14. Waldemar Kaiser, Marcelo Carignano, Asma A. Alothman, Edoardo Mosconi, Ali Kachmar, William A. Goddard III, Filippo De Angelis. First-Principles Molecular Dynamics in Metal-Halide Perovskites: Contrasting Generalized Gradient Approximation and Hybrid Functionals. The Journal of Physical Chemistry Letters 2021, 12 (49) , 11886-11893. https://doi.org/10.1021/acs.jpclett.1c03428
    15. Hsin-Yu Ko, Biswajit Santra, Robert A. DiStasio, Jr.. Enabling Large-Scale Condensed-Phase Hybrid Density Functional Theory-Based Ab Initio Molecular Dynamics II: Extensions to the Isobaric–Isoenthalpic and Isobaric–Isothermal Ensembles. Journal of Chemical Theory and Computation 2021, 17 (12) , 7789-7813. https://doi.org/10.1021/acs.jctc.0c01194
    16. Hanieh Ghodrati, Christoph Allolio. Toward Rational Design of Polarity Probes by Noncovalent Functionalization of Phosphorene. The Journal of Physical Chemistry C 2021, 125 (47) , 26099-26107. https://doi.org/10.1021/acs.jpcc.1c06662
    17. Mark Wentink, Julian Gaberle, Martik Aghajanian, Arash A. Mostofi, Neil J. Curson, Johannes Lischner, Steven R. Schofield, Alexander L. Shluger, Anthony J. Kenyon. Substitutional Tin Acceptor States in Black Phosphorus. The Journal of Physical Chemistry C 2021, 125 (41) , 22883-22889. https://doi.org/10.1021/acs.jpcc.1c07115
    18. Shaofu Wang, Hongqian Sang, Yun Jiang, Yuan Wang, Yi Xiong, Yanhua Yu, Rongxiang He, Bolei Chen, Xingzhong Zhao, Yumin Liu. Tailoring the Energy Band Structure and Interfacial Morphology of the ETL via Controllable Nanocluster Size Achieves High-Performance Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces 2021, 13 (41) , 48555-48568. https://doi.org/10.1021/acsami.1c11990
    19. Rasmus Kronberg, Heikki Lappalainen, Kari Laasonen. Hydrogen Adsorption on Defective Nitrogen-Doped Carbon Nanotubes Explained via Machine Learning Augmented DFT Calculations and Game-Theoretic Feature Attributions. The Journal of Physical Chemistry C 2021, 125 (29) , 15918-15933. https://doi.org/10.1021/acs.jpcc.1c03858
    20. Sandeep Sharma, Gregory Beylkin. Efficient Evaluation of Two-Center Gaussian Integrals in Periodic Systems. Journal of Chemical Theory and Computation 2021, 17 (7) , 3916-3922. https://doi.org/10.1021/acs.jctc.0c01195
    21. John J. Carey, James A. Quirk, Keith P. McKenna. Hole Polaron Migration in Bulk Phases of TiO2 Using Hybrid Density Functional Theory. The Journal of Physical Chemistry C 2021, 125 (22) , 12441-12450. https://doi.org/10.1021/acs.jpcc.1c03136
    22. Shanshan Dong, Jinyuan Hu, Shucai Xia, Binli Wang, Zhiqiang Wang, Tianjun Wang, Wei Chen, Zefeng Ren, Hongjun Fan, Dongxu Dai, Jun Cheng, Xueming Yang, Chuanyao Zhou. Origin of the Adsorption-State-Dependent Photoactivity of Methanol on TiO2(110). ACS Catalysis 2021, 11 (5) , 2620-2630. https://doi.org/10.1021/acscatal.0c03930
    23. Nicklas Österbacka, Julia Wiktor. Influence of Oxygen Vacancies on the Structure of BiVO4. The Journal of Physical Chemistry C 2021, 125 (2) , 1200-1207. https://doi.org/10.1021/acs.jpcc.0c08751
    24. Peize Lin, Xinguo Ren, Lixin He. Efficient Hybrid Density Functional Calculations for Large Periodic Systems Using Numerical Atomic Orbitals. Journal of Chemical Theory and Computation 2021, 17 (1) , 222-239. https://doi.org/10.1021/acs.jctc.0c00960
    25. Zhutian Ding, Annabella Selloni. Electron Trapping and Ion Leaching at the Li-Modified Quartz–Water Interface. The Journal of Physical Chemistry C 2020, 124 (49) , 26741-26747. https://doi.org/10.1021/acs.jpcc.0c07581
    26. James. A. Quirk, Vlado K. Lazarov, Keith P. McKenna. First-Principles Modeling of Oxygen-Deficient Anatase TiO2 Nanoparticles. The Journal of Physical Chemistry C 2020, 124 (43) , 23637-23647. https://doi.org/10.1021/acs.jpcc.0c06052
    27. Andres Ortega-Guerrero, Maria Fumanal, Gloria Capano, Berend Smit. From Isolated Porphyrin Ligands to Periodic Al-PMOF: A Comparative Study of the Optical Properties Using DFT/TDDFT. The Journal of Physical Chemistry C 2020, 124 (39) , 21751-21760. https://doi.org/10.1021/acs.jpcc.0c06885
    28. Timothy C. Ricard, Srinivasan S. Iyengar. Efficient and Accurate Approach To Estimate Hybrid Functional and Large Basis-Set Contributions to Condensed-Phase Systems and Molecule–Surface Interactions. Journal of Chemical Theory and Computation 2020, 16 (8) , 4790-4812. https://doi.org/10.1021/acs.jctc.9b01089
    29. Hsin-Yu Ko, Junteng Jia, Biswajit Santra, Xifan Wu, Roberto Car, Robert A. DiStasio Jr.. Enabling Large-Scale Condensed-Phase Hybrid Density Functional Theory Based Ab Initio Molecular Dynamics. 1. Theory, Algorithm, and Performance. Journal of Chemical Theory and Computation 2020, 16 (6) , 3757-3785. https://doi.org/10.1021/acs.jctc.9b01167
    30. Andres Ortega-Guerrero, Maria Fumanal, Gloria Capano, Ivano Tavernelli, Berend Smit. Insights into the Electronic Properties and Charge Transfer Mechanism of a Porphyrin Ruthenium-Based Metal–Organic Framework. Chemistry of Materials 2020, 32 (10) , 4194-4204. https://doi.org/10.1021/acs.chemmater.0c00356
    31. Jonathon Cottom, Anton Bochkarev, Emilia Olsson, Kamal Patel, Manveer Munde, Jürgen Spitaler, Maxim N. Popov, Michel Bosman, Alexander L. Shluger. Modeling of Diffusion and Incorporation of Interstitial Oxygen Ions at the TiN/SiO2 Interface. ACS Applied Materials & Interfaces 2019, 11 (39) , 36232-36243. https://doi.org/10.1021/acsami.9b10705
    32. John J. Carey, Keith P. McKenna. Screening Doping Strategies To Mitigate Electron Trapping at Anatase TiO2 Surfaces. The Journal of Physical Chemistry C 2019, 123 (36) , 22358-22367. https://doi.org/10.1021/acs.jpcc.9b05840
    33. Xiang-Yang Liu, Wen-Kai Chen, Wei-Hai Fang, Ganglong Cui. Nonadiabatic Dynamics Simulations Reveal Distinct Effects of the Thickness of PTB7 on Interfacial Electron and Hole Transfer Dynamics in PTB7@MoS2 Heterostructures. The Journal of Physical Chemistry Letters 2019, 10 (11) , 2949-2956. https://doi.org/10.1021/acs.jpclett.9b01066
    34. Xiang-Yang Liu, Xiao-Ying Xie, Wei-Hai Fang, Ganglong Cui. Theoretical Insights into Interfacial Electron Transfer between Zinc Phthalocyanine and Molybdenum Disulfide. The Journal of Physical Chemistry A 2018, 122 (50) , 9587-9596. https://doi.org/10.1021/acs.jpca.8b07816
    35. Zhizhang Shen, Eugene S. Ilton, Micah P. Prange, Christopher J. Mundy, Sebastien N. Kerisit. Diffusion Mechanisms of Radiolytic Species in Irradiated Al (Oxy-)Hydroxides. The Journal of Physical Chemistry C 2018, 122 (50) , 28990-28997. https://doi.org/10.1021/acs.jpcc.8b07809
    36. John J. Carey, Keith P. McKenna. Does Polaronic Self-Trapping Occur at Anatase TiO2 Surfaces?. The Journal of Physical Chemistry C 2018, 122 (48) , 27540-27553. https://doi.org/10.1021/acs.jpcc.8b09437
    37. Bo Wen, Wen-Jin Yin, Annabella Selloni, Li-Min Liu. Defects, Adsorbates, and Photoactivity of Rutile TiO2 (110): Insight by First-Principles Calculations. The Journal of Physical Chemistry Letters 2018, 9 (18) , 5281-5287. https://doi.org/10.1021/acs.jpclett.8b02286
    38. Andreas Irmler, Asbjörn M. Burow, Fabian Pauly. Robust Periodic Fock Exchange with Atom-Centered Gaussian Basis Sets. Journal of Chemical Theory and Computation 2018, 14 (9) , 4567-4580. https://doi.org/10.1021/acs.jctc.8b00122
    39. A. R. Elmaslmane, M. B. Watkins, K. P. McKenna. First-Principles Modeling of Polaron Formation in TiO2 Polymorphs. Journal of Chemical Theory and Computation 2018, 14 (7) , 3740-3751. https://doi.org/10.1021/acs.jctc.8b00199
    40. Borislav Naydenov, Samuel Torsney, Alejandro Santana Bonilla, Mohamed El Garah, Artur Ciesielski, Andrea Gualandi, Luca Mengozzi, Pier Giorgio Cozzi, Rafael Gutierrez, Paolo Samorì, Gianaurelio Cuniberti, John J. Boland. Self-Assembled Two-Dimensional Supramolecular Networks Characterized by Scanning Tunneling Microscopy and Spectroscopy in Air and under Vacuum. Langmuir 2018, 34 (26) , 7698-7707. https://doi.org/10.1021/acs.langmuir.8b01374
    41. Francesco Ambrosio, Zhendong Guo, Alfredo Pasquarello. Absolute Energy Levels of Liquid Water. The Journal of Physical Chemistry Letters 2018, 9 (12) , 3212-3216. https://doi.org/10.1021/acs.jpclett.8b00891
    42. Zongtang Fang, Monica Vasiliu, Kirk A. Peterson, David A. Dixon. Computational Study of Molecular Hydrogen Adsorption over Small (MO2)n Nanoclusters (M = Ti, Zr, Hf; n = 1 to 4). The Journal of Physical Chemistry A 2018, 122 (17) , 4338-4349. https://doi.org/10.1021/acs.jpca.7b12634
    43. Francesco Ambrosio, Julia Wiktor, Alfredo Pasquarello. pH-Dependent Surface Chemistry from First Principles: Application to the BiVO4(010)–Water Interface. ACS Applied Materials & Interfaces 2018, 10 (12) , 10011-10021. https://doi.org/10.1021/acsami.7b16545
    44. Hai-Anh Le, Toru Shiozaki. Occupied-Orbital Fast Multipole Method for Efficient Exact Exchange Evaluation. Journal of Chemical Theory and Computation 2018, 14 (3) , 1228-1234. https://doi.org/10.1021/acs.jctc.7b00880
    45. Soumya Ghosh, Janelle Castillo-Lora, Alexander V. Soudackov, James M. Mayer, Sharon Hammes-Schiffer. Theoretical Insights into Proton-Coupled Electron Transfer from a Photoreduced ZnO Nanocrystal to an Organic Radical. Nano Letters 2017, 17 (9) , 5762-5767. https://doi.org/10.1021/acs.nanolett.7b02642
    46. Michael C. Brennan, John E. Herr, Triet S. Nguyen-Beck, Jessica Zinna, Sergiu Draguta, Sergei Rouvimov, John Parkhill, and Masaru Kuno . Origin of the Size-Dependent Stokes Shift in CsPbBr3 Perovskite Nanocrystals. Journal of the American Chemical Society 2017, 139 (35) , 12201-12208. https://doi.org/10.1021/jacs.7b05683
    47. Rolf David, Hélène Jamet, Vincent Nivière, Yohann Moreau, and Anne Milet . Iron Hydroperoxide Intermediate in Superoxide Reductase: Protonation or Dissociation First? MM Dynamics and QM/MM Metadynamics Study. Journal of Chemical Theory and Computation 2017, 13 (6) , 2987-3004. https://doi.org/10.1021/acs.jctc.7b00126
    48. Maria Karelina and Heather J. Kulik . Systematic Quantum Mechanical Region Determination in QM/MM Simulation. Journal of Chemical Theory and Computation 2017, 13 (2) , 563-576. https://doi.org/10.1021/acs.jctc.6b01049
    49. Nico Holmberg and Kari Laasonen . Efficient Constrained Density Functional Theory Implementation for Simulation of Condensed Phase Electron Transfer Reactions. Journal of Chemical Theory and Computation 2017, 13 (2) , 587-601. https://doi.org/10.1021/acs.jctc.6b01085
    50. Heather J. Kulik, Jianyu Zhang, Judith P. Klinman, and Todd J. Martínez . How Large Should the QM Region Be in QM/MM Calculations? The Case of Catechol O-Methyltransferase. The Journal of Physical Chemistry B 2016, 120 (44) , 11381-11394. https://doi.org/10.1021/acs.jpcb.6b07814
    51. Jan Wilhelm, Mauro Del Ben, and Jürg Hutter . GW in the Gaussian and Plane Waves Scheme with Application to Linear Acenes. Journal of Chemical Theory and Computation 2016, 12 (8) , 3623-3635. https://doi.org/10.1021/acs.jctc.6b00380
    52. Francesco Ambrosio, Giacomo Miceli, and Alfredo Pasquarello . Structural, Dynamical, and Electronic Properties of Liquid Water: A Hybrid Functional Study. The Journal of Physical Chemistry B 2016, 120 (30) , 7456-7470. https://doi.org/10.1021/acs.jpcb.6b03876
    53. Vladimir V. Rybkin and Joost VandeVondele . Spin-Unrestricted Second-Order Møller–Plesset (MP2) Forces for the Condensed Phase: From Molecular Radicals to F-Centers in Solids. Journal of Chemical Theory and Computation 2016, 12 (5) , 2214-2223. https://doi.org/10.1021/acs.jctc.6b00015
    54. Dorothea Pinotsi, Luca Grisanti, Pierre Mahou, Ralph Gebauer, Clemens F. Kaminski, Ali Hassanali, and Gabriele S. Kaminski Schierle . Proton Transfer and Structure-Specific Fluorescence in Hydrogen Bond-Rich Protein Structures. Journal of the American Chemical Society 2016, 138 (9) , 3046-3057. https://doi.org/10.1021/jacs.5b11012
    55. Zhiqiang Wang, Bo Wen, Qunqing Hao, Li-Min Liu, Chuanyao Zhou, Xinchun Mao, Xiufeng Lang, Wen-Jin Yin, Dongxu Dai, Annabella Selloni, and Xueming Yang . Localized Excitation of Ti3+ Ions in the Photoabsorption and Photocatalytic Activity of Reduced Rutile TiO2. Journal of the American Chemical Society 2015, 137 (28) , 9146-9152. https://doi.org/10.1021/jacs.5b04483
    56. Nico Holmberg and Kari Laasonen . Ab Initio Electrochemistry: Exploring the Hydrogen Evolution Reaction on Carbon Nanotubes. The Journal of Physical Chemistry C 2015, 119 (28) , 16166-16178. https://doi.org/10.1021/acs.jpcc.5b04739
    57. Clelia Spreafico and Joost VandeVondele . Excess Electrons and Interstitial Li Atoms in TiO2 Anatase: Properties of the (101) Interface. The Journal of Physical Chemistry C 2015, 119 (27) , 15009-15018. https://doi.org/10.1021/acs.jpcc.5b04103
    58. Clelia Spreafico, Florian Schiffmann, and Joost VandeVondele . Structure and Mobility of Acetic Acid at the Anatase (101)/Acetonitrile Interface. The Journal of Physical Chemistry C 2014, 118 (12) , 6251-6260. https://doi.org/10.1021/jp4117563
    59. Jun Cheng, Joost VandeVondele, and Michiel Sprik . Identifying Trapped Electronic Holes at the Aqueous TiO2 Interface. The Journal of Physical Chemistry C 2014, 118 (10) , 5437-5444. https://doi.org/10.1021/jp500769q
    60. Philipp Tröster, Konstantin Lorenzen, and Paul Tavan . Polarizable Six-Point Water Models from Computational and Empirical Optimization. The Journal of Physical Chemistry B 2014, 118 (6) , 1589-1602. https://doi.org/10.1021/jp4125765
    61. Mandes Schönherr, Ben Slater, Jürg Hutter, and Joost VandeVondele . Dielectric Properties of Water Ice, the Ice Ih/XI Phase Transition, and an Assessment of Density Functional Theory. The Journal of Physical Chemistry B 2014, 118 (2) , 590-596. https://doi.org/10.1021/jp4103355
    62. Mauro Del Ben, Mandes Schönherr, Jürg Hutter, and Joost VandeVondele . Bulk Liquid Water at Ambient Temperature and Pressure from MP2 Theory. The Journal of Physical Chemistry Letters 2013, 4 (21) , 3753-3759. https://doi.org/10.1021/jz401931f
    63. Garold Murdachaew, Marie-Pierre Gaigeot, Lauri Halonen, and R. Benny Gerber . Dissociation of HCl into Ions on Wet Hydroxylated (0001) α-Quartz. The Journal of Physical Chemistry Letters 2013, 4 (20) , 3500-3507. https://doi.org/10.1021/jz4017969
    64. Mauro Del Ben, Jürg Hutter, and Joost VandeVondele . Electron Correlation in the Condensed Phase from a Resolution of Identity Approach Based on the Gaussian and Plane Waves Scheme. Journal of Chemical Theory and Computation 2013, 9 (6) , 2654-2671. https://doi.org/10.1021/ct4002202
    65. Mauro Del Ben, Jürg Hutter, and Joost VandeVondele . Second-Order Møller–Plesset Perturbation Theory in the Condensed Phase: An Efficient and Massively Parallel Gaussian and Plane Waves Approach. Journal of Chemical Theory and Computation 2012, 8 (11) , 4177-4188. https://doi.org/10.1021/ct300531w
    66. Joost VandeVondele, Urban Borštnik, and Jürg Hutter . Linear Scaling Self-Consistent Field Calculations with Millions of Atoms in the Condensed Phase. Journal of Chemical Theory and Computation 2012, 8 (10) , 3565-3573. https://doi.org/10.1021/ct200897x
    67. Victor M. Anisimov and Andrey A. Bliznyuk . Charge Transfer Effects in the GroEL–GroES Chaperonin Tetramer in Solution. The Journal of Physical Chemistry B 2012, 116 (22) , 6261-6268. https://doi.org/10.1021/jp211385e
    68. Joost VandeVondele, Philipp Tröster, Paul Tavan, and Gerald Mathias . Vibrational Spectra of Phosphate Ions in Aqueous Solution Probed by First-Principles Molecular Dynamics. The Journal of Physical Chemistry A 2012, 116 (10) , 2466-2474. https://doi.org/10.1021/jp211783z
    69. Claudio J. Margulis, Harsha V. R. Annapureddy, Pablo M. De Biase, David Coker, Jorge Kohanoff, and Mario G. Del Pópolo . Dry Excess Electrons in Room-Temperature Ionic Liquids. Journal of the American Chemical Society 2011, 133 (50) , 20186-20193. https://doi.org/10.1021/ja203412v
    70. Ivan S. Ufimtsev, Nathan Luehr, and Todd J. Martinez . Charge Transfer and Polarization in Solvated Proteins from Ab Initio Molecular Dynamics. The Journal of Physical Chemistry Letters 2011, 2 (14) , 1789-1793. https://doi.org/10.1021/jz200697c
    71. Manuel Guidon, Jürg Hutter and Joost VandeVondele. Auxiliary Density Matrix Methods for Hartree−Fock Exchange Calculations. Journal of Chemical Theory and Computation 2010, 6 (8) , 2348-2364. https://doi.org/10.1021/ct1002225
    72. Hiromasa Sato, Atsushi Ishikawa, Hikaru Saito, Taisuke Higashi, Kotaro Takeyasu, Toshiki Sugimoto. Critical impacts of interfacial water on C–H activation in photocatalytic methane conversion. Communications Chemistry 2023, 6 (1) https://doi.org/10.1038/s42004-022-00803-3
    73. Yoong-Kee Choe, Eiji Tsuchida, Kazuya Tokuda, Jun Otsuka, Yoshihiro Saito. First-principles molecular dynamics simulation study on Ti/Mn ions in aqueous sulfuric acid for use in redox flow battery. Journal of Energy Storage 2023, 72 , 108398. https://doi.org/10.1016/j.est.2023.108398
    74. Yuuki Adachi, Ján Brndiar, Martin Konôpka, Robert Turanský, Qiang Zhu, Huan Fei Wen, Yasuhiro Sugawara, Lev Kantorovich, Ivan Štich, Yan Jun Li. Tip-activated single-atom catalysis: CO oxidation on Au adatom on oxidized rutile TiO 2 surface. Science Advances 2023, 9 (39) https://doi.org/10.1126/sciadv.adi4799
    75. Shinya Hosokawa, Kentaro Kobayashi, Akihide Koura, Fuyuki Shimojo, Yasuhisa Tezuka, Jun-ichi Adachi, Yohei Onodera, Shinji Kohara, Hiroo Tajiri, Anand Chokkalingam, Toru Wakihara. Atomic and electronic structures of an Ag-containing 4A zeolite. Microporous and Mesoporous Materials 2023, 359 , 112662. https://doi.org/10.1016/j.micromeso.2023.112662
    76. Fabian Belleflamme, Jürg Hutter. Radicals in aqueous solution: assessment of density-corrected SCAN functional. Physical Chemistry Chemical Physics 2023, 25 (31) , 20817-20836. https://doi.org/10.1039/D3CP02517A
    77. Christoph Wilhelmer, Dominic Waldhoer, Lukas Cvitkovich, Diego Milardovich, Michael Waltl, Tibor Grasser. Over- and Undercoordinated Atoms as a Source of Electron and Hole Traps in Amorphous Silicon Nitride (a-Si3N4). Nanomaterials 2023, 13 (16) , 2286. https://doi.org/10.3390/nano13162286
    78. Konstantinos Konstantinou, Stephen R. Elliott. Atomistic Modeling of Charge‐Trapping Defects in Amorphous Ge‐Sb‐Te Phase‐Change Memory Materials. physica status solidi (RRL) – Rapid Research Letters 2023, 17 (8) https://doi.org/10.1002/pssr.202200496
    79. James A. Quirk, James A. Dawson. Design Principles for Grain Boundaries in Solid‐State Lithium‐Ion Conductors. Advanced Energy Materials 2023, 13 (32) https://doi.org/10.1002/aenm.202301114
    80. Xinming Qin, Honghui Shang, Jinlong Yang. Efficient implementation of analytical gradients for periodic hybrid functional calculations within fitted numerical atomic orbitals from NAO2GTO. Frontiers in Chemistry 2023, 11 https://doi.org/10.3389/fchem.2023.1232425
    81. Cherumannil Femina, M. Shanthil, Pookkottu K. Sajith, Reji Thomas. Anthracene-incorporated cyanostilbene based donor–acceptor systems: intramolecular charge transfer and aggregation induced emission. New Journal of Chemistry 2023, 47 (29) , 13810-13819. https://doi.org/10.1039/D3NJ00478C
    82. Qiming Sun. Exact exchange with range-separated algorithm for thermodynamic limit of periodic Hartree–Fock theory. The Journal of Chemical Physics 2023, 159 (2) https://doi.org/10.1063/5.0155815
    83. Daria Kieczka, Thomas Durrant, Katherine Milton, Kuan Eng Johnson Goh, Michel Bosman, Alexander Shluger. Defects in WS 2 monolayer calculated with a nonlocal functional: any difference from GGA?. Electronic Structure 2023, 5 (2) , 024001. https://doi.org/10.1088/2516-1075/acc55d
    84. Tammo van der Heide, Bálint Aradi, Ben Hourahine, Thomas Frauenheim, Thomas A. Niehaus. Hybrid functionals for periodic systems in the density functional tight-binding method. Physical Review Materials 2023, 7 (6) https://doi.org/10.1103/PhysRevMaterials.7.063802
    85. Zifei Chen, Anjay Manian, Yihan Dong, Salvy P. Russo, Paul Mulvaney. Ligand and solvent effects on the absorption spectra of CdS magic-sized clusters. The Journal of Chemical Physics 2023, 158 (17) https://doi.org/10.1063/5.0147609
    86. James A. Quirk, Keith P. McKenna. Small-polaron mediated recombination in titanium dioxide from first principles. Physical Review Research 2023, 5 (2) https://doi.org/10.1103/PhysRevResearch.5.023072
    87. Augustin Bussy, Ole Schütt, Jürg Hutter. Sparse tensor based nuclear gradients for periodic Hartree–Fock and low-scaling correlated wave function methods in the CP2K software package: A massively parallel and GPU accelerated implementation. The Journal of Chemical Physics 2023, 158 (16) https://doi.org/10.1063/5.0144493
    88. Dominic Waldhoer, Christian Schleich, Al-Moatasem El-Sayed, Tibor Grasser, , . Polarons as a universal source of leakage currents in amorphous oxides: a multiscale modeling approach. 2023, 10. https://doi.org/10.1117/12.2659249
    89. Rui-Fang Xie, Jing-Bin Zhang, Yang Wu, Laicai Li, Xiang-Yang Liu, Ganglong Cui. Non-negligible roles of charge transfer excitons in ultrafast excitation energy transfer dynamics of a double-walled carbon nanotube. The Journal of Chemical Physics 2023, 158 (5) https://doi.org/10.1063/5.0134353
    90. Bin Liu, Kaiqi Li, Jian Zhou, Liangcai Wu, Zhitang Song, Weisheng Zhao, Stephen R. Elliott, Zhimei Sun. Ultrahigh overall-performance phase-change memory by yttrium dragging. Journal of Materials Chemistry C 2023, 11 (4) , 1360-1368. https://doi.org/10.1039/D2TC04538A
    91. Jürg Hutter, Marcella Iannuzzi, Thomas D. Kühne. Ab Initio Molecular Dynamics: A Guide to Applications. 2023https://doi.org/10.1016/B978-0-12-821978-2.00096-9
    92. Fabian Ducry, Dominic Waldhoer, Theresia Knobloch, Miklos Csontos, Nadia Jimenez Olalla, Juerg Leuthold, Tibor Grasser, Mathieu Luisier. An ab initio study on resistance switching in hexagonal boron nitride. npj 2D Materials and Applications 2022, 6 (1) https://doi.org/10.1038/s41699-022-00340-6
    93. Christoph Wilhelmer, Dominic Waldhoer, Markus Jech, Al-Moatasem Bellah El-Sayed, Lukas Cvitkovich, Michael Waltl, Tibor Grasser. Ab initio investigations in amorphous silicon dioxide: Proposing a multi-state defect model for electron and hole capture. Microelectronics Reliability 2022, 139 , 114801. https://doi.org/10.1016/j.microrel.2022.114801
    94. Pei Jiang Low, Weibin Chu, Zhaogang Nie, Muhammad Shafiq Bin Mohd Yusof, Oleg V. Prezhdo, Zhi-Heng Loh. Observation of a transient intermediate in the ultrafast relaxation dynamics of the excess electron in strong-field-ionized liquid water. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-34981-4
    95. Al-Moatasem El-Sayed, Markus Jech, Dominic Waldhör, Alexander Makarov, Mikhail I. Vexler, Stanislav Tyaginov. Structure, electronic properties, and energetics of oxygen vacancies in varying concentrations of Si x Ge 1 − x O 2 . Physical Review Materials 2022, 6 (12) https://doi.org/10.1103/PhysRevMaterials.6.125002
    96. Javad Shirani, Sinan Abi Farraj, Shuaishuai Yuan, Kirk H. Bevan. First-principles redox energy estimates under the condition of satisfying the general form of Koopmans’ theorem: An atomistic study of aqueous iron. The Journal of Chemical Physics 2022, 157 (18) https://doi.org/10.1063/5.0098476
    97. Konstantinos Konstantinou, Felix C. Mocanu, Jaakko Akola. Electron localization in recrystallized models of the Ge 2 Sb 2 Te 5 phase-change memory material. Physical Review B 2022, 106 (18) https://doi.org/10.1103/PhysRevB.106.184103
    98. Giulia Righi, Julius Plescher, Franz-Philipp Schmidt, R. Kramer Campen, Stefano Fabris, Axel Knop-Gericke, Robert Schlögl, Travis E. Jones, Detre Teschner, Simone Piccinin. On the origin of multihole oxygen evolution in haematite photoanodes. Nature Catalysis 2022, 5 (10) , 888-899. https://doi.org/10.1038/s41929-022-00845-9
    99. Christian Schleich, Dominic Waldhor, Al-Moatasem El-Sayed, Konstantinos Tselios, Ben Kaczer, Tibor Grasser, Michael Waltl. Single- Versus Multi-Step Trap Assisted Tunneling Currents—Part II: The Role of Polarons. IEEE Transactions on Electron Devices 2022, 69 (8) , 4486-4493. https://doi.org/10.1109/TED.2022.3185965
    100. Xin Wang, Shuai Liu, Yang Chen, Yan Zheng, Laicai Li. Properties at the interface of the pristine CdSe and core–shell CdSe-ZnS quantum dots with ultrathin monolayers of two-dimensional MX2 (M: Mo, W; X: S, Se, Te) heterostructures from density functional theory. Journal of Molecular Modeling 2022, 28 (8) https://doi.org/10.1007/s00894-022-05194-9
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect