ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Utility of the Hard/Soft Acid−Base Principle via the Fukui Function in Biological Systems

View Author Information
Quantum Theory Project, Department of Chemistry, University of Florida, 2328 New Physics Building, P.O. Box 118435, Gainesville, Florida 32611-8435
* Corresponding author phone: (352) 392-6973; fax: (352) 392-8722; e-mail: [email protected]
Cite this: J. Chem. Theory Comput. 2010, 6, 2, 548–559
Publication Date (Web):January 7, 2010
https://doi.org/10.1021/ct9005085
Copyright © 2010 American Chemical Society

    Article Views

    1612

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The hard/soft acid−base (HSAB) principle has long been known to be an excellent predictor of chemical reactivity. The Fukui function, a reactivity descriptor from conceptual density functional theory, has been shown to be related to the local softness of a system. The usefulness of the Fukui function is explored and demonstrated herein for three common biological problems: ligand docking, active site detection, and protein folding. In each type of study, a scoring function is developed on the basis of the local HSAB principle using atomic Fukui indices. Even with necessary approximations for its use in large systems, the Fukui function remains a useful descriptor for predicting chemical reactivity and understanding chemical systems.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 41 publications.

    1. Acassio Rocha-Santos, Elton José Ferreira Chaves, Igor Barden Grillo, Amanara Souza de Freitas, Demétrius Antônio Machado Araújo, Gerd Bruno Rocha. Thermochemical and Quantum Descriptor Calculations for Gaining Insight into Ricin Toxin A (RTA) Inhibitors. ACS Omega 2021, 6 (13) , 8764-8777. https://doi.org/10.1021/acsomega.0c02588
    2. Igor Barden Grillo, Gabriel A. Urquiza-Carvalho, Gerd Bruno Rocha. PRIMoRDiA: A Software to Explore Reactivity and Electronic Structure in Large Biomolecules. Journal of Chemical Information and Modeling 2020, 60 (12) , 5885-5890. https://doi.org/10.1021/acs.jcim.0c00655
    3. Javier Oller, David Adrian Saez, Esteban Vöhringer-Martinez. Atom-Condensed Fukui Function in Condensed Phases and Biological Systems and Its Application to Enzymatic Fixation of Carbon Dioxide. The Journal of Physical Chemistry A 2020, 124 (5) , 849-857. https://doi.org/10.1021/acs.jpca.9b07012
    4. Arshad Mehmood, Stephanie I. Jones, Peng Tao, Benjamin G. Janesko. An Orbital-Overlap Complement to Ligand and Binding Site Electrostatic Potential Maps. Journal of Chemical Information and Modeling 2018, 58 (9) , 1836-1846. https://doi.org/10.1021/acs.jcim.8b00370
    5. Ryan S. Wible and Thomas R. Sutter . Soft Cysteine Signaling Network: The Functional Significance of Cysteine in Protein Function and the Soft Acids/Bases Thiol Chemistry That Facilitates Cysteine Modification. Chemical Research in Toxicology 2017, 30 (3) , 729-762. https://doi.org/10.1021/acs.chemrestox.6b00428
    6. Maria Karelina and Heather J. Kulik . Systematic Quantum Mechanical Region Determination in QM/MM Simulation. Journal of Chemical Theory and Computation 2017, 13 (2) , 563-576. https://doi.org/10.1021/acs.jctc.6b01049
    7. Mohammed Azeezulla Nazrulla and Sailaja Krishnamurty , K. L. N. Phani . Discerning Site Selectivity on Graphene Nanoflakes Using Conceptual Density Functional Theory Based Reactivity Descriptors. The Journal of Physical Chemistry C 2014, 118 (40) , 23058-23069. https://doi.org/10.1021/jp505634q
    8. Sanjay Pratihar and Sujit Roy . Reactivity and Selectivity of Organotin Reagents in Allylation and Arylation: Nucleophilicity Parameter as a Guide. Organometallics 2011, 30 (12) , 3257-3269. https://doi.org/10.1021/om101030c
    9. E. Elamuruguporchelvi, P. Sangeetha, A. Manikandan, Saleem Javed, S. Muthu. Molecular, quantum computational, electron excitations, molecular surface properties and molecular docking studies on 3-methyl-2-phenylmorpholine. Chemical Physics Impact 2024, 8 , 100427. https://doi.org/10.1016/j.chphi.2023.100427
    10. Daniela Istrate, Luminita Crisan. Dipeptidyl Peptidase 4 Inhibitors in Type 2 Diabetes Mellitus Management: Pharmacophore Virtual Screening, Molecular Docking, Pharmacokinetic Evaluations, and Conceptual DFT Analysis. Processes 2023, 11 (11) , 3100. https://doi.org/10.3390/pr11113100
    11. José Abreu Salas, Roberto Espinosa Oliva, Pedro Mirabal, Emilio Lamazares, Karel Mena-Ulacia. Machine Learning Modeling Predicting Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) Inhibitors Structure-Activity Relationships Using Quantum DFT Descriptors. 2023, 1-9. https://doi.org/10.1109/CLEI60451.2023.10346152
    12. Igor B. Grillo, Gabriel A. Urquiza-Carvalho, Gerd B. Rocha. Quantum chemical descriptors based on semiempirical methods for large biomolecules. The Journal of Chemical Physics 2023, 158 (20) https://doi.org/10.1063/5.0132687
    13. Shu-Chun Chi, Hsing-Cheng Hsi, Chia-Ming Chang. Quantum Chemical GA-MLR, Cluster Model, and Conceptual DFT Descriptors Studies on the Binding Interaction of Estrogen Receptor Alpha with Endocrine Disrupting Chemicals. Crystals 2023, 13 (2) , 228. https://doi.org/10.3390/cryst13020228
    14. A. Saral, P. Sudha, S. Muthu, Ahmad Irfan. Spectroscopic profiling, DFT computations, molecular docking and molecular dynamic simulation of biologically active 5-isoquinolinesulfonic acid. Journal of Biomolecular Structure and Dynamics 2023, 41 (2) , 722-735. https://doi.org/10.1080/07391102.2021.2011417
    15. Jiangnan Wang, Xia Lv, Lu Huang, Long Li, Xueqin Li, Jinli Zhang. Construction of amphiphilic networks in blend membranes for CO2 separation. Korean Journal of Chemical Engineering 2023, 40 (1) , 175-184. https://doi.org/10.1007/s11814-022-1236-7
    16. Jhesua Valencia, Vivian Rubio, Gloria Puerto, Luisa Vasquez, Anthony Bernal, José R. Mora, Sebastian A. Cuesta, José Luis Paz, Braulio Insuasty, Rodrigo Abonia, Jairo Quiroga, Alberto Insuasty, Andres Coneo, Oscar Vidal, Edgar Márquez, Daniel Insuasty. QSAR Studies, Molecular Docking, Molecular Dynamics, Synthesis, and Biological Evaluation of Novel Quinolinone-Based Thiosemicarbazones against Mycobacterium tuberculosis. Antibiotics 2023, 12 (1) , 61. https://doi.org/10.3390/antibiotics12010061
    17. Igor Barden Grillo, Gabriel Aires Urquiza-Carvalho, Gerd Bruno Rocha. Quantum chemical descriptors as a modeling framework for large biological structures. 2023, 59-88. https://doi.org/10.1016/B978-0-32-390259-5.00009-3
    18. Paul Geerlings. From Density Functional Theory to Conceptual Density Functional Theory and Biosystems. Pharmaceuticals 2022, 15 (9) , 1112. https://doi.org/10.3390/ph15091112
    19. Mar Ríos‐Gutiérrez, Ramón Alain Miranda‐Quintana. Selectivity: An Electron Density Perspective. 2022, 187-208. https://doi.org/10.1002/9783527829941.ch10
    20. Yamini Sudha Sistla, Shumyla Mehraj. Molecular Simulations to Understand the Moisture, Carbon Dioxide, and Oxygen Barrier Properties of Pectin Films. Journal of Molecular Modeling 2022, 28 (4) https://doi.org/10.1007/s00894-022-05069-z
    21. Motahhare Emadoddin, Avat Arman Taherpour, Morteza Jamshidi. Photo-induced electron transfer of [C60 + Abacavir] nano-complex and feasibility of C60 fullerene application as a chemical shift reagent: a DFT/TD-DFT insights. Journal of the Iranian Chemical Society 2022, 19 (3) , 937-956. https://doi.org/10.1007/s13738-021-02360-3
    22. Vyshnavi Vennelakanti, Azadeh Nazemi, Rimsha Mehmood, Adam H. Steeves, Heather J. Kulik. Harder, better, faster, stronger: Large-scale QM and QM/MM for predictive modeling in enzymes and proteins. Current Opinion in Structural Biology 2022, 72 , 9-17. https://doi.org/10.1016/j.sbi.2021.07.004
    23. Yamini Sudha Sistla, Jai Singh. Screening of Organic Solvents for Separation of Thiophene and Iso-octane: Density Functional Theory and Molecular Dynamic Simulations. 2022, 785-804. https://doi.org/10.1007/978-3-030-96554-9_52
    24. A. Saral, P. Sudha, S. Muthu, Ahmad Irfan. Computational, spectroscopic and molecular docking investigation on a bioactive anti-cancer drug: 2-Methyl-8-nitro quinoline. Journal of Molecular Structure 2022, 1247 , 131414. https://doi.org/10.1016/j.molstruc.2021.131414
    25. Lena Decuyper, Katarina Magdalenić, Marie Verstraete, Marko Jukič, Izidor Sosič, Eric Sauvage, Ana Maria Amoroso, Olivier Verlaine, Bernard Joris, Stanislav Gobec, Matthias D'hooghe. α‐Unsaturated 3‐Amino‐1‐carboxymethyl‐β‐lactams as Bacterial PBP Inhibitors: Synthesis and Biochemical Assessment. Chemistry – A European Journal 2019, 25 (70) , 16128-16140. https://doi.org/10.1002/chem.201904139
    26. Ernesto López-Chávez, Alberto Garcia-Quiroz, Yesica A. Peña-Castañeda, José A. I. Díaz-Góngora, Fray de Landa Castillo-Alvarado. Quantum mechanical study of chemical reactivity of graphene doped with iron in aqueous medium for applications in biomedicine. Journal of Nanoparticle Research 2019, 21 (11) https://doi.org/10.1007/s11051-019-4687-y
    27. Chia Ming Chang. Rationalization and prediction of the impact of different metals and root exudates on carbon dioxide emission from soil. Science of The Total Environment 2019, 691 , 348-359. https://doi.org/10.1016/j.scitotenv.2019.06.447
    28. BR Raajaraman, N.R. Sheela, S. Muthu. Spectroscopic, quantum computational and molecular docking studies on 1-phenylcyclopentane carboxylic acid. Computational Biology and Chemistry 2019, 82 , 44-56. https://doi.org/10.1016/j.compbiolchem.2019.05.011
    29. Nejla Khatir–Hamdi, Malika Makhloufi-Chebli, Artur M.S. Silva, Méziane Brahimi, Hocine Grib. Proposal for an ecofriendly and economic strategy for efficient radioiodination of coumarin derivatives. Applied Radiation and Isotopes 2019, 151 , 265-273. https://doi.org/10.1016/j.apradiso.2019.06.024
    30. Przemysław Zaręba, Jolanta Jaśkowska, Izabela Czekaj, Grzegorz Satała. Design, synthesis and molecular modelling of new bulky Fananserin derivatives with altered pharmacological profile as potential antidepressants. Bioorganic & Medicinal Chemistry 2019, 27 (15) , 3396-3407. https://doi.org/10.1016/j.bmc.2019.06.028
    31. K.R. Santhy, M. Daniel Sweetlin, S. Muthu, M. Raja, Christina Susan Abraham. Optical, vibrational (FT-IR and FT-Raman), electronic and molecular docking investigations of 1 Phenyl Isatin. Optik 2019, 182 , 1211-1227. https://doi.org/10.1016/j.ijleo.2019.02.010
    32. Eduardo Guimarães Ratier de Arruda, Bruno Alves Rocha, Manoel Victor Frutuoso Barrionuevo, Heiðar Már Aðalsteinsson, Flávia Elisa Galdino, Watson Loh, Frederico Alves Lima, Camilla Abbehausen. The influence of Zn II coordination sphere and chemical structure over the reactivity of metallo-β-lactamase model compounds. Dalton Transactions 2019, 48 (9) , 2900-2916. https://doi.org/10.1039/C8DT03905D
    33. Christoph Sotriffer. Docking of Covalent Ligands: Challenges and Approaches. Molecular Informatics 2018, 37 (9-10) , 1800062. https://doi.org/10.1002/minf.201800062
    34. Martin K. L. Da Silva, Rafael Plana Simões, Ivana Cesarino. Evaluation of Reduced Graphene Oxide Modified with Antimony and Copper Nanoparticles for Levofloxacin Oxidation. Electroanalysis 2018, 30 (9) , 2066-2076. https://doi.org/10.1002/elan.201800265
    35. Karel Mena-Ulecia, Desmond MacLeod-Carey. Interactions of 2-phenyl-benzotriazole xenobiotic compounds with human Cytochrome P450-CYP1A1 by means of docking, molecular dynamics simulations and MM-GBSA calculations. Computational Biology and Chemistry 2018, 74 , 253-262. https://doi.org/10.1016/j.compbiolchem.2018.04.004
    36. Ning Zhang, Dongdong Peng, Hong Wu, Yanxiong Ren, Leixin Yang, Xingyu Wu, Yingzhen Wu, Zihan Qu, Zhongyi Jiang, Xingzhong Cao. Significantly enhanced CO2 capture properties by synergy of zinc ion and sulfonate in Pebax-pitch hybrid membranes. Journal of Membrane Science 2018, 549 , 670-679. https://doi.org/10.1016/j.memsci.2017.10.054
    37. Ivana Cesarino, Rafael Plana Simões, Francisco Carlos Lavarda, Augusto Batagin-Neto. Electrochemical oxidation of sulfamethazine on a glassy carbon electrode modified with graphene and gold nanoparticles. Electrochimica Acta 2016, 192 , 8-14. https://doi.org/10.1016/j.electacta.2016.01.178
    38. Mithun Parambath, Quentin S. Hanley, Francisco J. Martin-Martinez, Tristan Giesa, Markus J. Buehler, Carole C. Perry. The nature of the silicaphilic fluorescence of PDMPO. Physical Chemistry Chemical Physics 2016, 18 (8) , 5938-5948. https://doi.org/10.1039/C5CP05105C
    39. Eman M. El‐labbad, Mohammed A. H. Ismail, Dalal A. Abou Ei Ella, Marawan Ahmed, Feng Wang, Khaled H. Barakat, Khaled A. M. Abouzid. Discovery of Novel Peptidomimetics as Irreversible CHIKV Ns P 2 Protease Inhibitors Using Quantum Mechanical‐Based Ligand Descriptors. Chemical Biology & Drug Design 2015, 86 (6) , 1518-1527. https://doi.org/10.1111/cbdd.12621
    40. Carlos Cárdenas, Paul W. Ayers. How reliable is the hard–soft acid–base principle? An assessment from numerical simulations of electron transfer energies. Physical Chemistry Chemical Physics 2013, 15 (33) , 13959. https://doi.org/10.1039/c3cp51134k
    41. Carlos Cárdenas, Paul W. Ayers, Andrés Cedillo. Reactivity indicators for degenerate states in the density-functional theoretic chemical reactivity theory. The Journal of Chemical Physics 2011, 134 (17) https://doi.org/10.1063/1.3585610

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect