ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Results of the IEA Round Robin on Viscosity and Stability of Fast Pyrolysis Bio-oils

View Author Information
Pacific Northwest National Laboratory, Richland, Washington
Technical Research Center of Finland, Espoo, Finland
CanmetENERGY, Ottawa, Ontario, Canada
vTI-Institute of Wood Technology and Biology, Hamburg, Germany
Aston University, Birmingham, U.K.
Cite this: Energy Fuels 2012, 26, 6, 3769–3776
Publication Date (Web):May 15, 2012
https://doi.org/10.1021/ef300384t
Copyright © 2012 American Chemical Society

    Article Views

    813

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)

    Abstract

    An international round robin study of the stability of fast pyrolysis bio-oil was undertaken. Fifteen laboratories in five different countries contributed. Two bio-oil samples were distributed to the laboratories for stability testing and further analysis. The stability test was defined in a method provided with the bio-oil samples. Viscosity measurement was a key input. The change in viscosity of a sealed sample of bio-oil held for 24 h at 80 °C was the defining element of stability. Subsequent analyses included ultimate analysis, density, moisture, ash, filterable solids, and TAN/pH determination, and gel permeation chromatography. The results showed that kinematic viscosity measurement was more generally conducted and more reproducibly performed versus dynamic viscosity measurement. The variation in the results of the stability test was great and a number of reasons for the variation were identified. The subsequent analyses proved to be at the level of reproducibility, as found in earlier round robins on bio-oil analysis. Clearly, the analyses were more straightforward and reproducible with a bio-oil sample low in filterable solids (0.2%), compared to one with a higher (2%) solids loading. These results can be helpful in setting standards for use of bio-oil, which is just coming into the marketplace.

    Cited By

    This article is cited by 60 publications.

    1. Clarissa Baehr, Ramazan Acar, Chaima Hamrita, Klaus Raffelt, Nicolaus Dahmen. CO2 Solubility in Fast Pyrolysis Bio-oil. Industrial & Engineering Chemistry Research 2023, 62 (38) , 15378-15385. https://doi.org/10.1021/acs.iecr.3c02070
    2. Wang Yin, Zhiwen Wang, Huaizhou Yang, Robbie H. Venderbosch, Hero Jan Heeres. Catalytic Hydrotreatment of Biomass-Derived Fast Pyrolysis Liquids Using Ni and Cu-Based PRICAT Catalysts. Energy & Fuels 2022, 36 (23) , 14281-14291. https://doi.org/10.1021/acs.energyfuels.2c02485
    3. Junmeng Cai, Md. Maksudur Rahman, Shukai Zhang, Manobendro Sarker, Xingguang Zhang, Yuqing Zhang, Xi Yu, Elham H. Fini. Review on Aging of Bio-Oil from Biomass Pyrolysis and Strategy to Slowing Aging. Energy & Fuels 2021, 35 (15) , 11665-11692. https://doi.org/10.1021/acs.energyfuels.1c01214
    4. Anja Oasmaa, Jani Lehto, Yrjö Solantausta, Sirpa Kallio. Historical Review on VTT Fast Pyrolysis Bio-oil Production and Upgrading. Energy & Fuels 2021, 35 (7) , 5683-5695. https://doi.org/10.1021/acs.energyfuels.1c00177
    5. Philip Bulsink, Ferran de Miguel Mercader, Linda Sandström, Bert van de Beld, Fernando Preto, Alan Zacher, Anja Oasmaa, Nicolaus Dahmen, Axel Funke, Benjamin Bronson. Results of the International Energy Agency Bioenergy Round Robin on the Analysis of Heteroatoms in Biomass Liquefaction Oils. Energy & Fuels 2020, 34 (9) , 11123-11133. https://doi.org/10.1021/acs.energyfuels.0c02090
    6. Shukai Zhang, Chong Li, Xiaojuan Guo, Md Maksudur Rahman, Xingguang Zhang, Xi Yu, Junmeng Cai. Kinetic Analysis of Bio-Oil Aging by Using Pattern Search Method. Industrial & Engineering Chemistry Research 2020, 59 (4) , 1487-1494. https://doi.org/10.1021/acs.iecr.9b05629
    7. Yingxian Wang, Yuanhui Zhang, Zhidan Liu. Effect of Aging in Nitrogen and Air on the Properties of Biocrude Produced by Hydrothermal Liquefaction of Spirulina. Energy & Fuels 2019, 33 (10) , 9870-9878. https://doi.org/10.1021/acs.energyfuels.9b01846
    8. Braden Peterson, Chaiwat Engtrakul, A. Nolan Wilson, Stefano Dell’Orco, Kellene A. Orton, Steve Deutch, Matthew M. Yung, Anne K. Starace, Yves Parent, David Chiaramonti, Kimberly A. Magrini. Catalytic Hot-Gas Filtration with a Supported Heteropolyacid Catalyst for Preconditioning Biomass Pyrolysis Vapors. ACS Sustainable Chemistry & Engineering 2019, 7 (17) , 14941-14952. https://doi.org/10.1021/acssuschemeng.9b03188
    9. Miguel Ruiz, Eric Martin, Joël Blin, Laurent Van de Steene, and Francois Broust . Understanding the Secondary Reactions of Flash Pyrolysis Vapors inside a Hot Gas Filtration Unit. Energy & Fuels 2017, 31 (12) , 13785-13795. https://doi.org/10.1021/acs.energyfuels.7b02923
    10. Lydia Kyoung-Eun Park, Shoujie Ren, Sotira Yiacoumi, X. Philip Ye, Abhijeet P. Borole, and Costas Tsouris . pH Neutralization of Aqueous Bio-Oil from Switchgrass Intermediate Pyrolysis Using Process Intensification Devices. Energy & Fuels 2017, 31 (9) , 9455-9464. https://doi.org/10.1021/acs.energyfuels.7b00854
    11. Douglas C. Elliott, Dietrich Meier, Anja Oasmaa, Bert van de Beld, Anthony V. Bridgwater, and Magnus Marklund . Results of the International Energy Agency Round Robin on Fast Pyrolysis Bio-oil Production. Energy & Fuels 2017, 31 (5) , 5111-5119. https://doi.org/10.1021/acs.energyfuels.6b03502
    12. Yuanfei Mei, Ronghou Liu, Weixuan Wu, and Le Zhang . Effect of Hot Vapor Filter Temperature on Mass Yield, Energy Balance, and Properties of Products of the Fast Pyrolysis of Pine Sawdust. Energy & Fuels 2016, 30 (12) , 10458-10469. https://doi.org/10.1021/acs.energyfuels.6b01877
    13. Anja Oasmaa, Isabel Fonts, Manuel Raul Pelaez-Samaniego, Martha Estrella Garcia-Perez, and Manuel Garcia-Perez . Pyrolysis Oil Multiphase Behavior and Phase Stability: A Review. Energy & Fuels 2016, 30 (8) , 6179-6200. https://doi.org/10.1021/acs.energyfuels.6b01287
    14. Hyewon Hwang, Jae-Hoon Lee, Jaegwan Moon, Ung-Jin Kim, In-Gyu Choi, and Joon Weon Choi . Influence of K and Mg Concentration on the Storage Stability of Bio-Oil. ACS Sustainable Chemistry & Engineering 2016, 4 (8) , 4346-4353. https://doi.org/10.1021/acssuschemeng.6b00895
    15. Kristiina Iisa, Richard J. French, Kellene A. Orton, Matthew M. Yung, David K. Johnson, Jeroen ten Dam, Michael J. Watson, and Mark R. Nimlos . In Situ and ex Situ Catalytic Pyrolysis of Pine in a Bench-Scale Fluidized Bed Reactor System. Energy & Fuels 2016, 30 (3) , 2144-2157. https://doi.org/10.1021/acs.energyfuels.5b02165
    16. Stuart Black and Jack R. Ferrell, III . Determination of Carbonyl Groups in Pyrolysis Bio-oils Using Potentiometric Titration: Review and Comparison of Methods. Energy & Fuels 2016, 30 (2) , 1071-1077. https://doi.org/10.1021/acs.energyfuels.5b02511
    17. Jiajia Meng, Andrew Moore, David C. Tilotta, Stephen S. Kelley, Sushil Adhikari, and Sunkyu Park . Thermal and Storage Stability of Bio-Oil from Pyrolysis of Torrefied Wood. Energy & Fuels 2015, 29 (8) , 5117-5126. https://doi.org/10.1021/acs.energyfuels.5b00929
    18. Anja Oasmaa, Tom Sundqvist, Eeva Kuoppala, Manuel Garcia-Perez, Yrjö Solantausta, Christian Lindfors, and Ville Paasikallio . Controlling the Phase Stability of Biomass Fast Pyrolysis Bio-oils. Energy & Fuels 2015, 29 (7) , 4373-4381. https://doi.org/10.1021/acs.energyfuels.5b00607
    19. Jiajia Meng, Andrew Moore, David Tilotta, Stephen Kelley, and Sunkyu Park . Toward Understanding of Bio-Oil Aging: Accelerated Aging of Bio-Oil Fractions. ACS Sustainable Chemistry & Engineering 2014, 2 (8) , 2011-2018. https://doi.org/10.1021/sc500223e
    20. Eid Alsbou and Bob Helleur . Accelerated Aging of Bio-oil from Fast Pyrolysis of Hardwood. Energy & Fuels 2014, 28 (5) , 3224-3235. https://doi.org/10.1021/ef500399n
    21. Yantao Bi, Gang Wang, Quan Shi, Chunming Xu, and Jinsen Gao . Compositional Changes during Hydrodeoxygenation of Biomass Pyrolysis Oil. Energy & Fuels 2014, 28 (4) , 2571-2580. https://doi.org/10.1021/ef4024405
    22. Douglas C. Elliott, Anja Oasmaa, Dietrich Meier, Fernando Preto, and Anthony V. Bridgwater . Results of the IEA Round Robin on Viscosity and Aging of Fast Pyrolysis Bio-oils: Long-Term Tests and Repeatability. Energy & Fuels 2012, 26 (12) , 7362-7366. https://doi.org/10.1021/ef301607v
    23. Isha Sharma, Darryn Rackemann, Athukoralalage Don K. Deshan, Luqman Atanda, Adrian Baker, William O.S. Doherty, Lalehvash Moghaddam, Changrong Shi. Selective depolymerization of sugarcane bagasse anaerobic digestate to highly stable phenols-rich bio-oil with the iron-doped K-feldspar catalyst. Waste Management 2023, 172 , 11-24. https://doi.org/10.1016/j.wasman.2023.08.044
    24. Fuqiang Jin, Peng Liu, Lei Chen, Dongliang Hua, Xiaolu Yi. Study on the thermal stability of the bio-oil components by Py-GC/MS. Energy Reports 2023, 9 , 280-288. https://doi.org/10.1016/j.egyr.2023.04.001
    25. Praveen Kumar Ghodke, Bomma Ramanjaneylu, Sanjay Kumar. Stabilization of bio-oil derived from macroalgae biomass using reactive chromatography. Biomass Conversion and Biorefinery 2023, 13 (6) , 5261-5272. https://doi.org/10.1007/s13399-021-01533-7
    26. Ethan Struhs, Farid Sotoudehnia, Amin Mirkouei, Armando G. McDonald, M.M. Ramirez-Corredores. Effect of feedstocks and free-fall pyrolysis on bio-oil and biochar attributes. Journal of Analytical and Applied Pyrolysis 2022, 166 , 105616. https://doi.org/10.1016/j.jaap.2022.105616
    27. Natalia Montoya Sánchez, Felix Link, Garima Chauhan, Cibele Halmenschlager, Hanan E. M. El‐Sayed, Ranjit Sehdev, Rick Lehoux, Arno de Klerk. Conversion of waste to sustainable aviation fuel via Fischer–Tropsch synthesis: Front‐end design decisions. Energy Science & Engineering 2022, 10 (5) , 1763-1789. https://doi.org/10.1002/ese3.1072
    28. Yingxian Wang, Yuanhui Zhang, Kunio Yoshikawa, Hugang Li, Zhidan Liu. Effect of biomass origins and composition on stability of hydrothermal biocrude oil. Fuel 2021, 302 , 121138. https://doi.org/10.1016/j.fuel.2021.121138
    29. Anastasiya Y. Yadykova, Sergey O. Ilyin. Rheological, thermophysical, and morphological features of original and hydrogenated bio-oils. Sustainable Energy & Fuels 2021, 5 (17) , 4425-4433. https://doi.org/10.1039/D1SE00567G
    30. Young-Kwon Park, Jeong-Myeong Ha, Shinyoung Oh, Jechan Lee. Bio-oil upgrading through hydrogen transfer reactions in supercritical solvents. Chemical Engineering Journal 2021, 404 , 126527. https://doi.org/10.1016/j.cej.2020.126527
    31. Rana Mujahid, Jaehoon Kim. Aging stability of bio-oil produced from dewatered sewage sludge in subcritical water. The Journal of Supercritical Fluids 2020, 166 , 105011. https://doi.org/10.1016/j.supflu.2020.105011
    32. Rui Wang, Haoxi Ben. Accelerated Aging Process of Bio-Oil Model Compounds: A Mechanism Study. Frontiers in Energy Research 2020, 8 https://doi.org/10.3389/fenrg.2020.00079
    33. Martin Staš, Miloš Auersvald, Lukáš Kejla, Dan Vrtiška, Jiří Kroufek, David Kubička. Quantitative analysis of pyrolysis bio-oils: A review. TrAC Trends in Analytical Chemistry 2020, 126 , 115857. https://doi.org/10.1016/j.trac.2020.115857
    34. Nikolaos Montesantos, Marco Maschietti. Supercritical Carbon Dioxide Extraction of Lignocellulosic Bio-Oils: The Potential of Fuel Upgrading and Chemical Recovery. Energies 2020, 13 (7) , 1600. https://doi.org/10.3390/en13071600
    35. Stuart Black, Jack R. Ferrell. Accelerated aging of fast pyrolysis bio-oil: a new method based on carbonyl titration. RSC Advances 2020, 10 (17) , 10046-10054. https://doi.org/10.1039/D0RA00046A
    36. A. Krutof, K.A. Hawboldt. Thermodynamic model of fast pyrolysis bio-oil advanced distillation curves. Fuel 2020, 261 , 116446. https://doi.org/10.1016/j.fuel.2019.116446
    37. Zhihong Wu, Haoxi Ben, Yunyi Yang, Ying Luo, Kai Nie, Wei Jiang, Guangting Han. In-depth study on the effect of oxygen-containing functional groups in pyrolysis oil by P-31 NMR. RSC Advances 2019, 9 (47) , 27157-27166. https://doi.org/10.1039/C9RA04099D
    38. Christian Lindfors, Anja Oasmaa, Alexi Välimäki, Taina Ohra-aho, Henna Punkkinen, Cyril Bajamundi, Kristin Onarheim. Standard liquid fuel for industrial boilers from used wood. Biomass and Bioenergy 2019, 127 , 105265. https://doi.org/10.1016/j.biombioe.2019.105265
    39. Karl O. Albrecht, Mariefel V. Olarte, Huamin Wang. Upgrading Fast Pyrolysis Liquids. 2019, 207-255. https://doi.org/10.1002/9781119417637.ch7
    40. Heuntae Jo, Deepak Verma, Jaehoon Kim. Excellent aging stability of upgraded fast pyrolysis bio-oil in supercritical ethanol. Fuel 2018, 232 , 610-619. https://doi.org/10.1016/j.fuel.2018.06.005
    41. Anne E. Harman-Ware, Jack R. Ferrell. Characterization of catalytic fast pyrolysis oils: The importance of solvent selection for analytical method development. Journal of Analytical and Applied Pyrolysis 2018, 132 , 190-199. https://doi.org/10.1016/j.jaap.2018.02.021
    42. R. Lødeng, H. Bergem. Stabilisation of pyrolysis oils. 2018, 193-247. https://doi.org/10.1016/B978-0-08-101029-7.00006-0
    43. Ville Paasikallio, Konstantinos Kalogiannis, Angelos Lappas, Jani Lehto, Juha Lehtonen. Catalytic Fast Pyrolysis: Influencing Bio‐Oil Quality with the Catalyst‐to‐Biomass Ratio. Energy Technology 2017, 5 (1) , 94-103. https://doi.org/10.1002/ente.201600094
    44. Andrea de Rezende Pinho, Marlon B.B. de Almeida, Fabio Leal Mendes, Luiz Carlos Casavechia, Michael S. Talmadge, Christopher M. Kinchin, Helena L. Chum. Fast pyrolysis oil from pinewood chips co-processing with vacuum gas oil in an FCC unit for second generation fuel production. Fuel 2017, 188 , 462-473. https://doi.org/10.1016/j.fuel.2016.10.032
    45. Jack R. Ferrell, Mariefel V. Olarte, Earl D. Christensen, Asanga B. Padmaperuma, Raynella M. Connatser, Filip Stankovikj, Dietrich Meier, Ville Paasikallio. Standardization of chemical analytical techniques for pyrolysis bio‐oil: history, challenges, and current status of methods. Biofuels, Bioproducts and Biorefining 2016, 10 (5) , 496-507. https://doi.org/10.1002/bbb.1661
    46. Andrew R. Teixeira, Rachel Gantt, Kristeen E. Joseph, Saurabh Maduskar, Alex D. Paulsen, Christoph Krumm, Cheng Zhu, Paul J. Dauenhauer. Spontaneous Aerosol Ejection: Origin of Inorganic Particles in Biomass Pyrolysis. ChemSusChem 2016, 9 (11) , 1322-1328. https://doi.org/10.1002/cssc.201600112
    47. Douglas C. Elliott. Transportation Fuels from Biomass via Fast Pyrolysis and Hydroprocessing. 2016, 65-72. https://doi.org/10.1002/9781118957844.ch6
    48. Mariefel V. Olarte, Alan H. Zacher, Asanga B. Padmaperuma, Sarah D. Burton, Heather M. Job, Teresa L. Lemmon, Marie S. Swita, Leslie J. Rotness, Gary N. Neuenschwander, John G. Frye, Douglas C. Elliott. Stabilization of Softwood-Derived Pyrolysis Oils for Continuous Bio-oil Hydroprocessing. Topics in Catalysis 2016, 59 (1) , 55-64. https://doi.org/10.1007/s11244-015-0505-7
    49. Haoxi Ben, Jack R. Ferrell III. In-depth investigation on quantitative characterization of pyrolysis oil by 31 P NMR. RSC Advances 2016, 6 (21) , 17567-17573. https://doi.org/10.1039/C5RA23939G
    50. Hao Li, Shuqian Xia, Yang Li, Peisheng Ma, Chuang Zhao. Stability evaluation of fast pyrolysis oil from rice straw. Chemical Engineering Science 2015, 135 , 258-265. https://doi.org/10.1016/j.ces.2015.03.065
    51. Zixu Yang, Ajay Kumar, Raymond L. Huhnke. Review of recent developments to improve storage and transportation stability of bio-oil. Renewable and Sustainable Energy Reviews 2015, 50 , 859-870. https://doi.org/10.1016/j.rser.2015.05.025
    52. Dengyu Chen, Jianbin Zhou, Qisheng Zhang, Xifeng Zhu. Evaluation methods and research progresses in bio-oil storage stability. Renewable and Sustainable Energy Reviews 2014, 40 , 69-79. https://doi.org/10.1016/j.rser.2014.07.159
    53. Raynella M. Connatser, Samuel A. Lewis, James R. Keiser, Jae-Soon Choi. Measuring bio-oil upgrade intermediates and corrosive species with polarity-matched analytical approaches. Biomass and Bioenergy 2014, 70 , 557-563. https://doi.org/10.1016/j.biombioe.2014.09.003
    54. Joonhyuk Choi, Jae-Wook Choi, Dong Jin Suh, Jeong-Myeong Ha, Ji Won Hwang, Hyun Wook Jung, Kwan-Young Lee, Hee-Chul Woo. Production of brown algae pyrolysis oils for liquid biofuels depending on the chemical pretreatment methods. Energy Conversion and Management 2014, 86 , 371-378. https://doi.org/10.1016/j.enconman.2014.04.094
    55. A. Veses, M. Aznar, I. Martínez, J.D. Martínez, J.M. López, M.V. Navarro, M.S. Callén, R. Murillo, T. García. Catalytic pyrolysis of wood biomass in an auger reactor using calcium-based catalysts. Bioresource Technology 2014, 162 , 250-258. https://doi.org/10.1016/j.biortech.2014.03.146
    56. Alan H. Zacher, Mariefel V. Olarte, Daniel M. Santosa, Douglas C. Elliott, Susanne B. Jones. A review and perspective of recent bio-oil hydrotreating research. Green Chem. 2014, 16 (2) , 491-515. https://doi.org/10.1039/C3GC41382A
    57. Michael S. Talmadge, Robert M. Baldwin, Mary J. Biddy, Robert L. McCormick, Gregg T. Beckham, Glen A. Ferguson, Stefan Czernik, Kimberly A. Magrini-Bair, Thomas D. Foust, Peter D. Metelski, Casey Hetrick, Mark R. Nimlos. A perspective on oxygenated species in the refinery integration of pyrolysis oil. Green Chem. 2014, 16 (2) , 407-453. https://doi.org/10.1039/C3GC41951G
    58. Douglas C. Elliott. Transportation fuels from biomass via fast pyrolysis and hydroprocessing. WIREs Energy and Environment 2013, 2 (5) , 525-533. https://doi.org/10.1002/wene.74
    59. Chaturong Paenpong, Sudsakorn Inthidech, Adisak Pattiya. Effect of filter media size, mass flow rate and filtration stage number in a moving-bed granular filter on the yield and properties of bio-oil from fast pyrolysis of biomass. Bioresource Technology 2013, 139 , 34-42. https://doi.org/10.1016/j.biortech.2013.03.200
    60. Dietrich Meier, Bert van de Beld, Anthony V. Bridgwater, Douglas C. Elliott, Anja Oasmaa, Fernando Preto. State-of-the-art of fast pyrolysis in IEA bioenergy member countries. Renewable and Sustainable Energy Reviews 2013, 20 , 619-641. https://doi.org/10.1016/j.rser.2012.11.061

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect