ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Investigation of Different Mn–Fe Oxides as Oxygen Carrier for Chemical-Looping with Oxygen Uncoupling (CLOU)

View Author Information
Department of Environmental Inorganic Chemistry, Chalmers University of Technology, S-412 96 Göteborg, Sweden
Department of Energy and Environment, Chalmers University of Technology, S-412 96 Göteborg, Sweden
*Tel.: +46 31 7722887. Fax: +46 31 7722853. E-mail: [email protected]
Cite this: Energy Fuels 2013, 27, 1, 367–377
Publication Date (Web):November 23, 2012
https://doi.org/10.1021/ef301120r
Copyright © 2012 American Chemical Society

    Article Views

    1380

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The appropriate oxygen carrier for chemical-looping with oxygen uncoupling (CLOU) should be thermodynamically capable of being oxidized in the air reactor and also release gaseous O2 in the fuel reactor at appropriate temperatures and oxygen partial pressures. It should also be mechanically durable, cheap, and environmentally friendly. Iron–manganese oxides appear to be especially promising due to favorable thermodynamics. In this work, combined metal oxides of iron and manganese were investigated for the CLOU process. Particles with different ratios of Mn/Fe were produced using spray drying. The particles were calcined at 950 and 1100 °C for 4 h and then tested with respect to parameters important for CLOU. The crushing strength for these materials was between 0.1 to 1.7 N, depending on their composition and sintering temperature. The ability of the iron–manganese oxide particles to release oxygen in the gas phase was examined by decomposition of the material in a stream of N2. Moreover, the reaction with both methane and synthesis gas (50/50% CO/H2) was examined in a batch fluidized bed reactor. Here, the particles were alternately oxidized with 5% O2 and reduced in N2 or with fuel at 850 °C, 900 and 950 °C. From the results, it can be concluded that during the nitrogen period, the oxygen carriers with Mn3O4 content in the range from 20 wt % to 40 wt % release oxygen at 900 °C, whereas the materials with higher manganese content show no oxygen release. This is because they could not be oxidized to bixbyite. By decreasing the temperature from 900 to 850 °C, it was possible to oxidize oxygen carriers with manganese oxide content of 50 wt % and higher, and consequently, oxygen release during the nitrogen period was seen for these materials. This is in agreement with the phase diagram for this system. The reaction rate with methane follows the oxygen release trend very well. At the higher reaction temperature, 950 °C, oxygen carriers with manganese content in the range from 25% to 33% show the best gas conversion of methane. At 850 °C, on the other hand, high methane conversion is seen for particles with high manganese content. In fact, several particles had almost full conversion of methane to CO2 and H2O at 850 °C using a bed mass in the batch reactor corresponding to 70 kg oxygen carrier/MW.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 114 publications.

    1. Turna Barua, Samuel Horlick, Bihter Padak. Experimental Investigation of the Effects of Fluidizing Gas on Copper–Manganese Mixed Oxide’s Reactivity for Chemical Looping Combustion of CH4. Industrial & Engineering Chemistry Research 2022, 61 (21) , 7245-7254. https://doi.org/10.1021/acs.iecr.2c00633
    2. Feng Liu, Jinxin Dai, Jing Liu, Yingju Yang, Ruixue Fang. Density Functional Theory Study on the Reaction Mechanism of Spinel CoFe2O4 with CO during Chemical-Looping Combustion. The Journal of Physical Chemistry C 2019, 123 (28) , 17335-17342. https://doi.org/10.1021/acs.jpcc.9b03826
    3. Amit Mishra, Tianyang Li, Fanxing Li, Erik E. Santiso. Oxygen Vacancy Creation Energy in Mn-Containing Perovskites: An Effective Indicator for Chemical Looping with Oxygen Uncoupling. Chemistry of Materials 2019, 31 (3) , 689-698. https://doi.org/10.1021/acs.chemmater.8b03187
    4. P. Moldenhauer, A. Serrano, F. García-Labiano, L. F. de Diego, M. Biermann, T. Mattisson, A. Lyngfelt. Chemical-Looping Combustion of Kerosene and Gaseous Fuels with a Natural and a Manufactured Mn–Fe-Based Oxygen Carrier. Energy & Fuels 2018, 32 (8) , 8803-8816. https://doi.org/10.1021/acs.energyfuels.8b01588
    5. Davood Hosseini, Felix Donat, Sung Min Kim, Laetitia Bernard, Agnieszka M. Kierzkowska, Christoph R. Müller. Redox-Driven Restructuring of FeMnZr-Oxygen Carriers Enhances the Purity and Yield of H2 in a Chemical Looping Process. ACS Applied Energy Materials 2018, 1 (3) , 1294-1303. https://doi.org/10.1021/acsaem.8b00023
    6. Malin Hanning, Volkmar Frick, Tobias Mattisson, Magnus Rydén, and Anders Lyngfelt . Performance of Combined Manganese–Silicon Oxygen Carriers and Effects of Including Titanium. Energy & Fuels 2016, 30 (2) , 1171-1182. https://doi.org/10.1021/acs.energyfuels.5b02061
    7. Stefan Penthor, Karl Mayer, Tobias Pröll, and Hermann Hofbauer . Experimental Study of the Path of Nitrogen in Chemical Looping Combustion Using a Nickel-Based Oxygen Carrier. Energy & Fuels 2014, 28 (10) , 6604-6609. https://doi.org/10.1021/ef500744f
    8. Golnar Azimi, Henrik Leion, Tobias Mattisson, Magnus Rydén, Frans Snijkers, and Anders Lyngfelt . Mn–Fe Oxides with Support of MgAl2O4, CeO2, ZrO2 and Y2O3–ZrO2 for Chemical-Looping Combustion and Chemical-Looping with Oxygen Uncoupling. Industrial & Engineering Chemistry Research 2014, 53 (25) , 10358-10365. https://doi.org/10.1021/ie500994m
    9. Ivana Staničić, Joakim Brorsson, Anders Hellman, Magnus Rydén, Tobias Mattisson. Thermodynamic analysis on the fate of ash elements in chemical looping combustion of solid fuels – Manganese-Based oxygen carriers. Fuel 2024, 369 , 131676. https://doi.org/10.1016/j.fuel.2024.131676
    10. Chunfei Wu, Qi Huang, Zhicheng Xu, Ayesha Tariq Sipra, Ningbo Gao, Luciana Porto de Souza Vandenberghe, Sabrina Vieira, Carlos Ricardo Soccol, Ruikai Zhao, Shuai Deng, Sandra K.S. Boetcher, Shijian Lu, Huancong Shi, Dongya Zhao, Yupeng Xing, Yongdong Chen, Jiamei Zhu, Dongdong Feng, Yu Zhang, Lihua Deng, Guoping Hu, Paul A. Webley, Daxin Liang, Zhichen Ba, Agata Mlonka-Mędrala, Aneta Magdziarz, Norbert Miskolczi, Szabina Tomasek, Su Shiung Lam, Shin Ying Foong, Hui Suan Ng, Long Jiang, Xinlong Yan, Yongzhuo Liu, Ying Ji, Hongman Sun, Yu Zhang, Haiping Yang, Xiong Zhang, Mingzhe Sun, Daniel C.W. Tsang, Jin Shang, Christoph Muller, Margarita Rekhtina, Maximilian Krödel, Alexander H. Bork, Felix Donat, Lina Liu, Xin Jin, Wen Liu, Syed Saqline, Xianyue Wu, Yongqing Xu, Asim Laeeq Khan, Zakawat Ali, Haiqing Lin, Leiqing Hu, Jun Huang, Rasmeet Singh, Kaifang Wang, Xuezhong He, Zhongde Dai, Shouliang Yi, Alar Konist, Mais Hanna Suleiman Baqain, Yijun Zhao, Shaozeng Sun, Guoxing Chen, Xin Tu, Anke Weidenkaff, Sibudjing Kawi, Kang Hui Lim, Chunfeng Song, Qing Yang, Zhenyu Zhao, Xin Gao, Xia Jiang, Haiyan Ji, Toluleke E. Akinola, Adekola Lawal, Olajide S. Otitoju, Meihong Wang, Guojun Zhang, Lin Ma, Baraka C. Sempuga, Xinying Liu, Eni Oko, Michael Daramola, Zewei Yu, Siming Chen, Guojun Kang, Qingfang Li, Li Gao, Ling Liu, Hui Zhou. A comprehensive review of carbon capture science and technologies. Carbon Capture Science & Technology 2024, 11 , 100178. https://doi.org/10.1016/j.ccst.2023.100178
    11. Yaşar Görkem Bak, Deniz Uner. Solar Energy Driven Chemical Looping Air Separation. Journal of the Turkish Chemical Society Section B: Chemical Engineering 2024, 7 (1) , 53-60. https://doi.org/10.58692/jotcsb.1404612
    12. Turna Barua, Bihter Padak. Interaction of SO 2 with a Cu–Mn oxide oxygen carrier during chemical looping with oxygen uncoupling. Reaction Chemistry & Engineering 2024, 9 (4) , 888-900. https://doi.org/10.1039/D3RE00498H
    13. Beatriz Zornoza, Teresa Mendiara, Alberto Abad. Development of manganese-iron mixed oxides reinforced with titanium and prepared from minerals for their use as oxygen carriers. Applications in Energy and Combustion Science 2024, 17 , 100232. https://doi.org/10.1016/j.jaecs.2023.100232
    14. H. Evan Bush, Matthew Kury, Zachary Berquist, Tania Rivas, Madeline Finale, Kevin Albrecht, Andrea Ambrosini. Air separation and N2 purification with Ba0.15Sr0.85FeO3-δ via a two-step thermochemical process. Solar Energy 2024, 268 , 112268. https://doi.org/10.1016/j.solener.2023.112268
    15. Tenzin Dawa, Baharak Sajjadi. Exploring the potential of perovskite structures for chemical looping technology: A state-of-the-art review. Fuel Processing Technology 2024, 253 , 108022. https://doi.org/10.1016/j.fuproc.2023.108022
    16. Collin Schmidt, Hanzhong Shi, Debtanu Maiti, Bryan J. Hare, Venkat R. Bhethanabotla, John N. Kuhn. Chemical looping approaches to decarbonization via CO2 repurposing. Discover Chemical Engineering 2023, 3 (1) https://doi.org/10.1007/s43938-023-00030-9
    17. Ewelina Ksepko, Rafal Lysowski. Effective direct chemical looping coal combustion using bimetallic Ti‐supported Fe 2 O 3 ‐MnO 2 oxygen carriers. Greenhouse Gases: Science and Technology 2023, 13 (4) , 575-592. https://doi.org/10.1002/ghg.2223
    18. Xue Liu, Lin Li, Zhihao Zhou, Zhenkun Sun, Lunbo Duan. Oxygen uncoupling behaviour for ilmenite ore oxygen carrier generated from a calcination treatment mixed with natural manganese ore. The Canadian Journal of Chemical Engineering 2023, 101 (2) , 805-818. https://doi.org/10.1002/cjce.24432
    19. Fang Liu, Chen Song, Dan Zhu, Caifu Li, Lun Ai, Chunmei Xin, Xingyang Zeng, Liang Zeng, Neng Huang, Li Yang. Attrition and attrition-resistance of oxygen carrier in chemical looping process – A comprehensive review. Fuel 2023, 333 , 126304. https://doi.org/10.1016/j.fuel.2022.126304
    20. Wei Zhou, Jingyu Zhu, Yuru Liu, Haiming Wang, Ke Yin. Application of the magnetic material in incineration bottom ash as oxygen carrier for biomass chemical looping gasification. Chemical Engineering Journal 2023, 452 , 138935. https://doi.org/10.1016/j.cej.2022.138935
    21. Wenzheng Liang, Fengyin Wang, Cuiping Wang, Hairui Yang, Weiwei Cui, Guangxi Yue. Investigation on the oxygen-carrying performance and reaction kinetics of CaMnxFe1−xO3− perovskites prepared from red mud. Fuel 2023, 331 , 125929. https://doi.org/10.1016/j.fuel.2022.125929
    22. Beibei Yan, Zibiao Liu, Jian Wang, Yadong Ge, Junyu Tao, Zhanjun Cheng, Guanyi Chen. Mn-doped Ca2Fe2O5 oxygen carrier for chemical looping gasification of biogas residue: Effect of oxygen uncoupling. Chemical Engineering Journal 2022, 446 , 137086. https://doi.org/10.1016/j.cej.2022.137086
    23. Beatriz Zornoza, Teresa Mendiara, Alberto Abad. Evaluation of oxygen carriers based on manganese‑iron mixed oxides prepared from natural ores or industrial waste products for chemical looping processes. Fuel Processing Technology 2022, 234 , 107313. https://doi.org/10.1016/j.fuproc.2022.107313
    24. Xiangbo Feng, Zhiqiang Li, Shen Lin, Shaopeng Tian, Kongzhai Li. Enhanced performance of red mud for chemical-looping combustion of coal by the modification of transition metal oxides. Journal of the Energy Institute 2022, 102 , 22-31. https://doi.org/10.1016/j.joei.2022.02.012
    25. Iñaki Adánez-Rubio, Iván Samprón, María Teresa Izquierdo, Alberto Abad, Pilar Gayán, Juan Adánez. Coal and biomass combustion with CO2 capture by CLOU process using a magnetic Fe-Mn-supported CuO oxygen carrier. Fuel 2022, 314 , 122742. https://doi.org/10.1016/j.fuel.2021.122742
    26. Zichen Di, Duygu Yilmaz, Arijit Biswas, Fangqin Cheng, Henrik Leion. Spinel ferrite-contained industrial materials as oxygen carriers in chemical looping combustion. Applied Energy 2022, 307 , 118298. https://doi.org/10.1016/j.apenergy.2021.118298
    27. Amr Abdalla, Mohanned Mohamedali, Nader Mahinpey. CuO/ZrO2 modified by WO3 oxygen carriers for chemical looping with oxygen uncoupling. Fuel 2022, 310 , 122288. https://doi.org/10.1016/j.fuel.2021.122288
    28. Wenzheng Liang, Fengyin Wang, Cuiping Wang, Hairui Yang, Weiwei Cui, Guangxi Yue. Investigation on the Oxygen-Carrying Performance and Reaction Kinetics of Camnxfe1−Xo3−Δ Perovskites Prepared from Red Mud. SSRN Electronic Journal 2022, https://doi.org/10.2139/ssrn.4147116
    29. Wenhua Tong, Xinhang Du, Jiepeng Wang, Hao Yan, Tonghui Xie, Yabo Wang, Yongkui Zhang. Degradation and Phosphorus Immobilization Treatment of Organophosphate Esters Hazardous Waste by Fe-Mn Bimetallic Oxide. SSRN Electronic Journal 2022, 46 https://doi.org/10.2139/ssrn.4194517
    30. Huan Zhou, Guoqiang Wei, Qun Yi, Zheming Zhang, Yingjie Zhao, Yuke Zhang, Zhen Huang, Anqing Zheng, Kun Zhao, Zengli Zhao. Reactivity investigation on chemical looping gasification of coal with Iron-Manganese based oxygen carrier. Fuel 2022, 307 , 121772. https://doi.org/10.1016/j.fuel.2021.121772
    31. Xiaoyun Li, Anders Lyngfelt, Tobias Mattisson. An experimental study of a volatiles distributor for solid fuels chemical-looping combustion process. Fuel Processing Technology 2021, 220 , 106898. https://doi.org/10.1016/j.fuproc.2021.106898
    32. Wen Liu. Controlling lattice oxygen activity of oxygen carrier materials by design: a review and perspective. Reaction Chemistry & Engineering 2021, 6 (9) , 1527-1537. https://doi.org/10.1039/D1RE00209K
    33. Iñaki Adánez-Rubio, Hector Bautista, María Teresa Izquierdo, Pilar Gayán, Alberto Abad, Juan Adánez. Development of a magnetic Cu-based oxygen carrier for the chemical looping with oxygen uncoupling (CLOU) process. Fuel Processing Technology 2021, 218 , 106836. https://doi.org/10.1016/j.fuproc.2021.106836
    34. Z. T. Yaqub, B. O. Oboirien, A. T. Akintola. Process modeling of chemical looping combustion (CLC) of municipal solid waste. Journal of Material Cycles and Waste Management 2021, 23 (3) , 895-910. https://doi.org/10.1007/s10163-021-01180-0
    35. Ali Hedayati, Amir H. Soleimanisalim, Carl Johan Linderholm, Tobias Mattisson, Anders Lyngfelt. Experimental evaluation of manganese ores for chemical looping conversion of synthetic biomass volatiles in a 300 W reactor system. Journal of Environmental Chemical Engineering 2021, 9 (2) , 105112. https://doi.org/10.1016/j.jece.2021.105112
    36. Javier Moya, Javier Marugán, María Orfila, Manuel Antonio Díaz-Pérez, Juan Carlos Serrano-Ruiz. Improved Thermochemical Energy Storage Behavior of Manganese Oxide by Molybdenum Doping. Molecules 2021, 26 (3) , 583. https://doi.org/10.3390/molecules26030583
    37. Lei Yu, Wei Zhou, Zhenyi Luo, Haiming Wang, Wen Liu, Ke Yin. Developing Oxygen Carriers for Chemical Looping Biomass Processing: Challenges and Opportunities. Advanced Sustainable Systems 2020, 4 (12) , 2000099. https://doi.org/10.1002/adsu.202000099
    38. Huan Zhou, Qun Yi, Guoqiang Wei, Yuke Zhang, Yalei Hou, Zhen Huang, Anqing zheng, Zengli Zhao, Haibin Li. Reaction performance and lattice oxygen migration of MnFe2O4 oxygen carrier in methane-carbon dioxide reaction system. International Journal of Hydrogen Energy 2020, 45 (55) , 30254-30266. https://doi.org/10.1016/j.ijhydene.2020.08.103
    39. Rebecca A. B. Nascimento, Rodolfo L. B. A. Medeiros, Tiago R. Costa, Ângelo A. S. Oliveira, Heloísa P. Macedo, Marcus A. F. Melo, Dulce M. A. Melo. Mn/MgAl2O4 oxygen carriers for chemical looping combustion using coal: influence of the thermal treatment on the structure and reactivity. Journal of Thermal Analysis and Calorimetry 2020, 140 (6) , 2673-2685. https://doi.org/10.1007/s10973-019-09014-w
    40. Shuai Zhang, Xue Wang, Zhizhong Mao, Yanbing Li, Baosheng Jin, Rui Xiao. Effect of calcination condition on the performance of iron ore in chemical-looping combustion. Fuel Processing Technology 2020, 203 , 106395. https://doi.org/10.1016/j.fuproc.2020.106395
    41. Shen Lin, Zhenhua Gu, Xing Zhu, Yonggang Wei, Yanhui Long, Kun Yang, Fang He, Hua Wang, Kongzhai Li. Synergy of red mud oxygen carrier with MgO and NiO for enhanced chemical-looping combustion. Energy 2020, 197 , 117202. https://doi.org/10.1016/j.energy.2020.117202
    42. Ye Li, Zhenshan Li, Lei Liu, Ningsheng Cai. Measuring the fast oxidation kinetics of a manganese oxygen carrier using microfluidized bed thermogravimetric analysis. Chemical Engineering Journal 2020, 385 , 123970. https://doi.org/10.1016/j.cej.2019.123970
    43. Xin Tian, Mingze Su, Haibo Zhao. Kinetics of redox reactions of CuO@TiO2–Al2O3 for chemical looping combustion and chemical looping with oxygen uncoupling. Combustion and Flame 2020, 213 , 255-267. https://doi.org/10.1016/j.combustflame.2019.11.044
    44. Raúl Pérez-Vega, Alberto Abad, Pilar Gayán, Francisco García-Labiano, María T. Izquierdo, Luis F. de Diego, Juan Adánez. Coal combustion via Chemical Looping assisted by Oxygen Uncoupling with a manganese‑iron mixed oxide doped with titanium. Fuel Processing Technology 2020, 197 , 106184. https://doi.org/10.1016/j.fuproc.2019.106184
    45. M. A. Schnellmann, R. H. Görke, S. A. Scott, J. S. Dennis. Chemical Looping Technologies for CCS. 2019, 189-237. https://doi.org/10.1039/9781788012744-00189
    46. A. Abad, R. Pérez-Vega, L.F. de Diego, P. Gayán, M.T. Izquierdo, F. García-Labiano, J. Adánez. Thermochemical assessment of chemical looping assisted by oxygen uncoupling with a MnFe-based oxygen carrier. Applied Energy 2019, 251 , 113340. https://doi.org/10.1016/j.apenergy.2019.113340
    47. Zhi Xia, Wenju Wang, Guoping Wang. Study of the crystal structure effect and mechanism during chemical looping gasification of coal. Journal of the Energy Institute 2019, 92 (5) , 1284-1293. https://doi.org/10.1016/j.joei.2018.10.006
    48. Ashwani Kumar Dubey, Arunkumar Samanta, Pinaki Sarkar, Runa Dey, Vinod Kumar Saxena. Performance and Kinetic Evaluation of Synthesized CuO/SBA‐15 Oxygen Carrier for Chemical Looping with Oxygen Uncoupling. Energy Technology 2019, 7 (10) https://doi.org/10.1002/ente.201900407
    49. Ivana Staničić, Viktor Andersson, Malin Hanning, Tobias Mattisson, Rainer Backman, Henrik Leion. Combined manganese oxides as oxygen carriers for biomass combustion — Ash interactions. Chemical Engineering Research and Design 2019, 149 , 104-120. https://doi.org/10.1016/j.cherd.2019.07.004
    50. Tobias Mattisson, Sebastian Sundqvist, Patrick Moldenhauer, Henrik Leion, Anders Lyngfelt. Influence of heat treatment on manganese ores as oxygen carriers. International Journal of Greenhouse Gas Control 2019, 87 , 238-245. https://doi.org/10.1016/j.ijggc.2019.05.027
    51. Limin Hou, Qingbo Yu, Kun Wang, Tuo Wang, Fan Yang, Shuo Zhang. Oxygen storage capacity of substituted YBaCo4O7+δ oxygen carriers. Journal of Thermal Analysis and Calorimetry 2019, 137 (1) , 317-325. https://doi.org/10.1007/s10973-018-7903-6
    52. R. Pérez-Vega, A. Abad, M.T. Izquierdo, P. Gayán, L.F. de Diego, J. Adánez. Evaluation of Mn-Fe mixed oxide doped with TiO2 for the combustion with CO2 capture by Chemical Looping assisted by Oxygen Uncoupling. Applied Energy 2019, 237 , 822-835. https://doi.org/10.1016/j.apenergy.2018.12.064
    53. Jijiang Huang, Wen Liu, Wenting Hu, Ian Metcalfe, Yanhui Yang, Bin Liu. Phase interactions in Ni-Cu-Al2O3 mixed oxide oxygen carriers for chemical looping applications. Applied Energy 2019, 236 , 635-647. https://doi.org/10.1016/j.apenergy.2018.12.029
    54. Sebastian Sundqvist, Tobias Mattisson, Henrik Leion, Anders Lyngfelt. Oxygen release from manganese ores relevant for chemical looping with oxygen uncoupling conditions. Fuel 2018, 232 , 693-703. https://doi.org/10.1016/j.fuel.2018.06.024
    55. N. C. Preisner, T. Block, M. Linder, H. Leion. Stabilizing Particles of Manganese‐Iron Oxide with Additives for Thermochemical Energy Storage. Energy Technology 2018, 6 (11) , 2154-2165. https://doi.org/10.1002/ente.201800211
    56. Kevin J. Whitty, JoAnn S. Lighty, Tobias Mattisson. Chemical Looping with Oxygen Uncoupling ( CLOU ) Processes. 2018, 93-122. https://doi.org/10.1002/9783527809332.ch4
    57. Tobias Mattisson, Kevin J. Whitty. Oxygen Carriers for Chemical‐Looping with Oxygen Uncoupling ( CLOU ). 2018, 199-227. https://doi.org/10.1002/9783527809332.ch7
    58. Feng Liu, Jing Liu, Yingju Yang, Xufeng Wang. A mechanistic study of CO oxidation over spinel MnFe2O4 surface during chemical-looping combustion. Fuel 2018, 230 , 410-417. https://doi.org/10.1016/j.fuel.2018.05.079
    59. T.R. Costa, P. Gayán, A. Abad, F. García-Labiano, L.F. de Diego, D.M.A. Melo, J. Adánez. Mn-based oxygen carriers prepared by impregnation for Chemical Looping Combustion with diverse fuels. Fuel Processing Technology 2018, 178 , 236-250. https://doi.org/10.1016/j.fuproc.2018.05.019
    60. Fan Wu, Morris D. Argyle, Paul A. Dellenback, Maohong Fan. Progress in O2 separation for oxy-fuel combustion–A promising way for cost-effective CO2 capture: A review. Progress in Energy and Combustion Science 2018, 67 , 188-205. https://doi.org/10.1016/j.pecs.2018.01.004
    61. Jiawei Hu, Vladimir Galvita, Hilde Poelman, Guy Marin. Advanced Chemical Looping Materials for CO2 Utilization: A Review. Materials 2018, 11 (7) , 1187. https://doi.org/10.3390/ma11071187
    62. R. Bendoni, F. Miccio, V. Medri, E. Landi. Chemical looping combustion using geopolymer-based oxygen carriers. Chemical Engineering Journal 2018, 341 , 187-197. https://doi.org/10.1016/j.cej.2018.02.018
    63. Tobias Mattisson, Martin Keller, Carl Linderholm, Patrick Moldenhauer, Magnus Rydén, Henrik Leion, Anders Lyngfelt. Chemical-looping technologies using circulating fluidized bed systems: Status of development. Fuel Processing Technology 2018, 172 , 1-12. https://doi.org/10.1016/j.fuproc.2017.11.016
    64. Patrick Moldenhauer, Sebastian Sundqvist, Tobias Mattisson, Carl Linderholm. Chemical-looping combustion of synthetic biomass-volatiles with manganese-ore oxygen carriers. International Journal of Greenhouse Gas Control 2018, 71 , 239-252. https://doi.org/10.1016/j.ijggc.2018.02.021
    65. Limin Hou, Qingbo Yu, Tuo Wang, Kun Wang, Qin Qin, Zhenfei Qi. Kinetics of perovskite-like oxygen carriers for chemical looping air separation. Korean Journal of Chemical Engineering 2018, 35 (3) , 626-636. https://doi.org/10.1007/s11814-017-0332-6
    66. Raúl Pérez-Vega, Alberto Abad, Francisco García-Labiano, Pilar Gayán, Luis F. de Diego, María Teresa Izquierdo, Juan Adánez. Chemical Looping Combustion of gaseous and solid fuels with manganese-iron mixed oxide as oxygen carrier. Energy Conversion and Management 2018, 159 , 221-231. https://doi.org/10.1016/j.enconman.2018.01.007
    67. Matthias Schmitz, Carl Johan Linderholm, Anders Lyngfelt. Chemical looping combustion of four different solid fuels using a manganese-silicon-titanium oxygen carrier. International Journal of Greenhouse Gas Control 2018, 70 , 88-96. https://doi.org/10.1016/j.ijggc.2018.01.014
    68. Bachirou Guene Lougou, Yong Shuai, Zhang Guohua, Gédéon Chaffa, Clément Ahouannou, Heping Tan. Analysis of H2 and CO production via solar thermochemical reacting system of NiFe2O4 redox cycles combined with CH4 partial oxidation. International Journal of Hydrogen Energy 2018, 43 (12) , 5996-6010. https://doi.org/10.1016/j.ijhydene.2018.01.197
    69. Iñaki Adánez-Rubio, Alberto Abad, Pilar Gayán, Luis F. de Diego, Juan Adánez. CLOU process performance with a Cu-Mn oxygen carrier in the combustion of different types of coal with CO2 capture. Fuel 2018, 212 , 605-612. https://doi.org/10.1016/j.fuel.2017.10.065
    70. Zhenkun Sun, Dennis Y. Lu, Robin W. Hughes, Dimitrios Filippou. O2 uncoupling behaviour of ilmenite and manganese-modified ilmenite as oxygen carriers. Fuel Processing Technology 2018, 169 , 15-23. https://doi.org/10.1016/j.fuproc.2017.08.025
    71. Mai Bui, Claire S. Adjiman, André Bardow, Edward J. Anthony, Andy Boston, Solomon Brown, Paul S. Fennell, Sabine Fuss, Amparo Galindo, Leigh A. Hackett, Jason P. Hallett, Howard J. Herzog, George Jackson, Jasmin Kemper, Samuel Krevor, Geoffrey C. Maitland, Michael Matuszewski, Ian S. Metcalfe, Camille Petit, Graeme Puxty, Jeffrey Reimer, David M. Reiner, Edward S. Rubin, Stuart A. Scott, Nilay Shah, Berend Smit, J. P. Martin Trusler, Paul Webley, Jennifer Wilcox, Niall Mac Dowell. Carbon capture and storage (CCS): the way forward. Energy & Environmental Science 2018, 11 (5) , 1062-1176. https://doi.org/10.1039/C7EE02342A
    72. Iñaki Adánez-Rubio, Alberto Abad, Pilar Gayán, Francisco García-Labiano, Luis F. de Diego, Juan Adánez. Coal combustion with a spray granulated Cu-Mn mixed oxide for the Chemical Looping with Oxygen Uncoupling (CLOU) process. Applied Energy 2017, 208 , 561-570. https://doi.org/10.1016/j.apenergy.2017.09.098
    73. C. Linderholm, M. Schmitz, M. Biermann, M. Hanning, A. Lyngfelt. Chemical-looping combustion of solid fuel in a 100 kW unit using sintered manganese ore as oxygen carrier. International Journal of Greenhouse Gas Control 2017, 65 , 170-181. https://doi.org/10.1016/j.ijggc.2017.07.017
    74. Michael Wokon, Andreas Kohzer, Marc Linder. Investigations on thermochemical energy storage based on technical grade manganese-iron oxide in a lab-scale packed bed reactor. Solar Energy 2017, 153 , 200-214. https://doi.org/10.1016/j.solener.2017.05.034
    75. Michael Wokon, Tina Block, Sven Nicolai, Marc Linder, Martin Schmücker. Thermodynamic and kinetic investigation of a technical grade manganese-iron binary oxide for thermochemical energy storage. Solar Energy 2017, 153 , 471-485. https://doi.org/10.1016/j.solener.2017.05.045
    76. R. Pérez-Vega, A. Abad, P. Gayán, L.F. de Diego, F. García-Labiano, J. Adánez. Development of (Mn0.77Fe0.23)2O3 particles as an oxygen carrier for coal combustion with CO2 capture via in-situ gasification chemical looping combustion (iG-CLC) aided by oxygen uncoupling (CLOU). Fuel Processing Technology 2017, 164 , 69-79. https://doi.org/10.1016/j.fuproc.2017.04.019
    77. María Abián, Alberto Abad, María T. Izquierdo, Pilar Gayán, Luis F. de Diego, Francisco García-Labiano, Juan Adánez. Evaluation of (MnxFe1-x)2TiyOz Particles as Oxygen Carrier for Chemical Looping Combustion. Energy Procedia 2017, 114 , 302-308. https://doi.org/10.1016/j.egypro.2017.03.1171
    78. Kun Zhao, Fang He, Zhen Huang, Guoqiang Wei, Anqing Zheng, Haibin Li, Zengli Zhao. Perovskite-type LaFe1− x Mn x O3 (x=0, 0.3, 0.5, 0.7, 1.0) oxygen carriers for chemical-looping steam methane reforming: Oxidation activity and resistance to carbon formation. Korean Journal of Chemical Engineering 2017, 34 (6) , 1651-1660. https://doi.org/10.1007/s11814-016-0329-6
    79. Zhenkun Sun, Dennis Y. Lu, Firas N. Ridha, Robin W. Hughes, Dimitrios Filippou. Enhanced performance of ilmenite modified by CeO 2 , ZrO 2 , NiO, and Mn 2 O 3 as oxygen carriers in chemical looping combustion. Applied Energy 2017, 195 , 303-315. https://doi.org/10.1016/j.apenergy.2017.03.014
    80. Sebastian Sundqvist, Nazli Khalilian, Henrik Leion, Tobias Mattisson, Anders Lyngfelt. Manganese ores as oxygen carriers for chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU). Journal of Environmental Chemical Engineering 2017, 5 (3) , 2552-2563. https://doi.org/10.1016/j.jece.2017.05.007
    81. María Abián, Alberto Abad, María T. Izquierdo, Pilar Gayán, Luis F. de Diego, Francisco García-Labiano, Juan Adánez. Titanium substituted manganese-ferrite as an oxygen carrier with permanent magnetic properties for chemical looping combustion of solid fuels. Fuel 2017, 195 , 38-48. https://doi.org/10.1016/j.fuel.2017.01.030
    82. Elena Bazhenova, Karoliina Honkala. Screening the bulk properties and reducibility of Fe-doped Mn2O3 from first principles calculations. Catalysis Today 2017, 285 , 104-113. https://doi.org/10.1016/j.cattod.2017.02.004
    83. Zhen Huang, Fang He, Dezhen Chen, Kun Zhao, Guoqiang Wei, Anqing Zheng, Zengli Zhao, Haibin Li. Investigation on reactivity of iron nickel oxides in chemical looping dry reforming. Energy 2016, 116 , 53-63. https://doi.org/10.1016/j.energy.2016.09.101
    84. Nathan Galinsky, Marwan Sendi, Lindsay Bowers, Fanxing Li. CaMn1−B O3− (B = Al, V, Fe, Co, and Ni) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU). Applied Energy 2016, 174 , 80-87. https://doi.org/10.1016/j.apenergy.2016.04.046
    85. S.K. Haider, G. Azimi, L. Duan, E.J. Anthony, K. Patchigolla, J.E. Oakey, H. Leion, T. Mattisson, A. Lyngfelt. Enhancing properties of iron and manganese ores as oxygen carriers for chemical looping processes by dry impregnation. Applied Energy 2016, 163 , 41-50. https://doi.org/10.1016/j.apenergy.2015.10.142
    86. Antigoni Evdou, Vassilios Zaspalis, Lori Nalbandian. Ferrites as redox catalysts for chemical looping processes. Fuel 2016, 165 , 367-378. https://doi.org/10.1016/j.fuel.2015.10.049
    87. Tobias Mattisson, Dazheng Jing, Anders Lyngfelt, Magnus Rydén. Experimental investigation of binary and ternary combined manganese oxides for chemical-looping with oxygen uncoupling (CLOU). Fuel 2016, 164 , 228-236. https://doi.org/10.1016/j.fuel.2015.09.053
    88. S. T. Norberg, G. Azimi, S. Hull, H. Leion. In situ neutron powder diffraction study of the reaction M 2 O 3 ↔ M 3 O 4 ↔ MO, M = (Fe 0.2 Mn 0.8 ): implications for chemical looping with oxygen uncoupling. CrystEngComm 2016, 18 (29) , 5537-5546. https://doi.org/10.1039/C6CE00784H
    89. Sebastian Sundqvist, Mehdi Arjmand, Tobias Mattisson, Magnus Rydén, Anders Lyngfelt. Screening of different manganese ores for chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU). International Journal of Greenhouse Gas Control 2015, 43 , 179-188. https://doi.org/10.1016/j.ijggc.2015.10.027
    90. Malin Källén, Magnus Rydén, Anders Lyngfelt, Tobias Mattisson. Chemical-looping combustion using combined iron/manganese/silicon oxygen carriers. Applied Energy 2015, 157 , 330-337. https://doi.org/10.1016/j.apenergy.2015.03.136
    91. Nathan Galinsky, Amit Mishra, Jia Zhang, Fanxing Li. Ca1−A MnO3 (A = Sr and Ba) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU). Applied Energy 2015, 157 , 358-367. https://doi.org/10.1016/j.apenergy.2015.04.020
    92. Xin Tian, Haibo Zhao, Kun Wang, Jinchen Ma, Chuguang Zheng. Performance of cement decorated copper ore as oxygen carrier in chemical-looping with oxygen uncoupling. International Journal of Greenhouse Gas Control 2015, 41 , 210-218. https://doi.org/10.1016/j.ijggc.2015.07.015
    93. Ping Wang, Nicholas Means, Dushyant Shekhawat, David Berry, Mehrdad Massoudi. Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review. Energies 2015, 8 (10) , 10605-10635. https://doi.org/10.3390/en81010605
    94. Pallavi Mungse, Govindachetty Saravanan, Sadhana Rayalu, Nitin Labhsetwar. Mixed Oxides of Iron and Manganese as Potential Low‐Cost Oxygen Carriers for Chemical Looping Combustion. Energy Technology 2015, 3 (8) , 856-865. https://doi.org/10.1002/ente.201500035
    95. Siwei Luo, Liang Zeng, Liang-Shih Fan. Chemical Looping Technology: Oxygen Carrier Characteristics. Annual Review of Chemical and Biomolecular Engineering 2015, 6 (1) , 53-75. https://doi.org/10.1146/annurev-chembioeng-060713-040334
    96. Alfonso J. Carrillo, David P. Serrano, Patricia Pizarro, Juan M. Coronado. Improving the Thermochemical Energy Storage Performance of the Mn 2 O 3 /Mn 3 O 4 Redox Couple by the Incorporation of Iron. ChemSusChem 2015, 8 (11) , 1947-1954. https://doi.org/10.1002/cssc.201500148
    97. Stefan Penthor, Florian Zerobin, Karl Mayer, Tobias Pröll, Hermann Hofbauer. Investigation of the performance of a copper based oxygen carrier for chemical looping combustion in a 120 kW pilot plant for gaseous fuels. Applied Energy 2015, 145 , 52-59. https://doi.org/10.1016/j.apenergy.2015.01.079
    98. Mehdi Arjmand, Volkmar Frick, Magnus Rydén, Henrik Leion, Tobias Mattisson, Anders Lyngfelt. Screening of Combined Mn-Fe-Si Oxygen Carriers for Chemical Looping with Oxygen Uncoupling (CLOU). Energy & Fuels 2015, 29 (3) , 1868-1880. https://doi.org/10.1021/ef502194s
    99. Golnar Azimi, Tobias Mattisson, Henrik Leion, Magnus Rydén, Anders Lyngfelt. Comprehensive study of Mn–Fe–Al oxygen-carriers for chemical-looping with oxygen uncoupling (CLOU). International Journal of Greenhouse Gas Control 2015, 34 , 12-24. https://doi.org/10.1016/j.ijggc.2014.12.022
    100. Arya Shafiefarhood, Amy Stewart, Fanxing Li. Iron-containing mixed-oxide composites as oxygen carriers for Chemical Looping with Oxygen Uncoupling (CLOU). Fuel 2015, 139 , 1-10. https://doi.org/10.1016/j.fuel.2014.08.014
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect