ACS Publications. Most Trusted. Most Cited. Most Read
“Designer” Biodiesel: Optimizing Fatty Ester Composition to Improve Fuel Properties
My Activity
    Article

    “Designer” Biodiesel: Optimizing Fatty Ester Composition to Improve Fuel Properties
    Click to copy article linkArticle link copied!

    View Author Information
    National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois 61604
    †Disclaimer: Product names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.
    * To whom correspondence should be addressed: USDA/ARS/NCAUR, 1815 N. University St., Peoria, IL 61604. Telephone: (309) 681-6112 . Fax: (309) 681-6340. E-mail: [email protected]
    Other Access Options

    Energy & Fuels

    Cite this: Energy Fuels 2008, 22, 2, 1358–1364
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ef700639e
    Published February 19, 2008
    Copyright © This article not subject to U.S. Copyright. Published 2008 by the American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Biodiesel is a domestic and renewable alternative with the potential to replace some of the petrodiesel market. It is obtained from vegetable oils, animal fats, or other sources with a significant content of triacylglycerols by means of a transesterification reaction. The fatty acid profile of biodiesel thus corresponds to that of the parent oil or fat and is a major factor influencing fuel properties. Besides being renewable and of domestic origin, advantages of biodiesel compared to petrodiesel include biodegradability, higher flash point, reduction of most regulated exhaust emissions, miscibility in all ratios with petrodiesel, compatibility with the existing fuel distribution infrastructure, and inherent lubricity. Technical problems with biodiesel include oxidative stability, cold flow, and increased NOx exhaust emissions. Solutions to one of these problems often entail increasing the problematic behavior of another property and have included the use of additives or modifying the fatty acid composition, either through physical processes, such as winterization, or through genetic modification. Methyl oleate has been proposed as a suitable major component of biodiesel in this connection. In this work, the properties of various potential major components of biodiesel are examined and compared. For example, while methyl oleate has been suggested as such a major component, methyl palmitoleate has advantages compared to methyl oleate, especially with regards to low-temperature properties. Other materials that are examined in this connection are short-chain (C8−C10) saturated esters, with only C10 esters appearing suitable. It is also suggested that to obtain biodiesel fuel with favorable properties, it is advantageous for the fuel to consist of only one major component in as high a concentration as possible; however, mixtures of components with advantageous properties as described here may also be acceptable.

    Copyright © This article not subject to U.S. Copyright. Published 2008 by the American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 1067 publications.

    1. Kiyoshi Sakuragi, Maromu Otaka. Lipid Extraction from Various Species of Wet Microalgae Using Liquefied Ammonia. ACS Omega 2025, Article ASAP.
    2. Haonan Wang, Jumei Xu, Zuoxiang Zeng, Weilan Xue. Liquid–Liquid Phase Equilibrium for the Ternary System (Water–Ethanol–Ethyl Caprate): Experimental and Modeling. Journal of Chemical & Engineering Data 2024, 69 (6) , 2302-2309. https://doi.org/10.1021/acs.jced.4c00149
    3. Shreya Sadukha, Bhavika Mehta, Shruti Chatterjee, Arup Ghosh, Ramalingam Dineshkumar. Sequential Downstream Process for Concurrent Extraction of Lutein, Phytol, and Biochemicals from Marine Microalgal Biomass as a Sustainable Biorefinery. ACS Sustainable Chemistry & Engineering 2023, 11 (2) , 547-558. https://doi.org/10.1021/acssuschemeng.2c04804
    4. Brayan S. Moreno-Caballero, José J. Cano-Gómez, Gerardo A. Flores-Escamilla, Gustavo A. Iglesias-Silva, Mónica M. Alcalá-Rodríguez, Jean-Marc Levêque. Thermophysical Properties of Biodiesel with Ethyl Levulinate, Ethyl Acetoacetate, and Ethyl Pyruvate + MgO Mixtures from 288.15 to 338.15 K. Journal of Chemical & Engineering Data 2023, 68 (1) , 82-99. https://doi.org/10.1021/acs.jced.2c00598
    5. Shraddha Maitra, Mothi Bharath Viswanathan, Kiyoul Park, Baskaran Kannan, Sofia Cano Alfanar, Scott M. McCoy, Edgar B. Cahoon, Fredy Altpeter, Andrew D. B. Leakey, Vijay Singh. Bioprocessing, Recovery, and Mass Balance of Vegetative Lipids from Metabolically Engineered “Oilcane” Demonstrates Its Potential as an Alternative Feedstock for Drop-In Fuel Production. ACS Sustainable Chemistry & Engineering 2022, 10 (50) , 16833-16844. https://doi.org/10.1021/acssuschemeng.2c05327
    6. Syed Ammar Hussain Majher I. Sarker . Sustainable Production of Medium-Chain Fatty Acids (MCFAs). , 119-138. https://doi.org/10.1021/bk-2021-1392.ch007
    7. Ming-Hsun Cheng, Bruce Stuart Dien, Yong-Su Jin, Stephanie Thompson, Jonghyeok Shin, Patricia J. Watson Slininger, Nasib Qureshi, Vijay Singh. Conversion of High-Solids Hydrothermally Pretreated Bioenergy Sorghum to Lipids and Ethanol Using Yeast Cultures. ACS Sustainable Chemistry & Engineering 2021, 9 (25) , 8515-8525. https://doi.org/10.1021/acssuschemeng.1c01629
    8. Joseph S. Carlson, Eric A. Monroe, Rakia Dhaoui, Junqing Zhu, Charles S. McEnally, Somnath Shinde, Lisa D. Pfefferle, Anthe George, Ryan W. Davis. Biodiesel Ethers: Fatty Acid-Derived Alkyl Ether Fuels as Improved Bioblendstocks for Mixing-Controlled Compression Ignition Engines. Energy & Fuels 2020, 34 (10) , 12646-12653. https://doi.org/10.1021/acs.energyfuels.0c01898
    9. Lijian Leng, Wenyan Li, Hailong Li, Shaojian Jiang, Wenguang Zhou. Cold Flow Properties of Biodiesel and the Improvement Methods: A Review. Energy & Fuels 2020, 34 (9) , 10364-10383. https://doi.org/10.1021/acs.energyfuels.0c01912
    10. Umberto Pasqual Laverdura, Leucio Rossi, Francesco Ferella, Claire Courson, Antonio Zarli, Rasha Alhajyoussef, Katia Gallucci. Selective Catalytic Hydrogenation of Vegetable Oils on Lindlar Catalyst. ACS Omega 2020, 5 (36) , 22901-22913. https://doi.org/10.1021/acsomega.0c02280
    11. Toktam Shenavaei Zare, Ali Khoshsima, Bahman ZareNezhad. Production of New Surfactant-free Microemulsion Biofuels: Phase Behavior and Nanostructure Identification. Energy & Fuels 2020, 34 (4) , 4643-4659. https://doi.org/10.1021/acs.energyfuels.9b04430
    12. Guanjia Zhao, Zemin Yuan, Jianguo Yin, Suxia Ma. Experimental Investigation of the Thermophysical Properties of the Bio-Aviation Fuel Surrogates: Binary and Ternary Mixtures of n-Dodecane, Methyl Butyrate, and Methyl Decanoate. Journal of Chemical & Engineering Data 2019, 64 (12) , 5510-5522. https://doi.org/10.1021/acs.jced.9b00643
    13. Satya P. Joshi, Timo T. Pekkanen, Raimo S. Timonen, Arkke J. Eskola. Effect of Methyl Group Substitution on the Kinetics of Vinyl Radical + O2 Reaction. The Journal of Physical Chemistry A 2019, 123 (49) , 10514-10519. https://doi.org/10.1021/acs.jpca.9b08028
    14. Karl Oskar Pires Bjørgen, David Robert Emberson, Terese Løvås. Optical Measurements of In-Flame Soot in Compression-Ignited Methyl Ester Flames. Energy & Fuels 2019, 33 (8) , 7886-7900. https://doi.org/10.1021/acs.energyfuels.9b01467
    15. Ang Li, Liang Yu, Xingcai Lu, Zhen Huang, Lei Zhu. Experimental and Modeling Study on Autoignition of a Biodiesel/n-Heptane Mixture and Related Surrogate in a Heated Rapid Compression Machine. Energy & Fuels 2019, 33 (5) , 4552-4563. https://doi.org/10.1021/acs.energyfuels.8b04417
    16. Nicolas A. Patience, Federico Galli, Marco G. Rigamonti, Dalma Schieppati, Daria C. Boffito. Ultrasonic Intensification To Produce Diester Biolubricants. Industrial & Engineering Chemistry Research 2019, 58 (19) , 7957-7963. https://doi.org/10.1021/acs.iecr.9b00717
    17. Larissa Castello Branco Almeida Bessa, Maria Dolores Robustillo, Erica Corina da Silva, Carmen Cecilia Tadini, Antonio José de Almeida Meirelles, Pedro de Alcântara Pessôa Filho. Influence of Additives (Isoamyl Laurate or Isoamyl Nonanoate) in the Solid–Liquid Equilibrium of Fatty Acid Ethyl Esters. Journal of Chemical & Engineering Data 2019, 64 (5) , 2062-2074. https://doi.org/10.1021/acs.jced.8b01019
    18. Niklas Haarmann, Riko Siewert, Artemiy A. Samarov, Sergey P. Verevkin, Christoph Held, Gabriele Sadowski. Thermodynamic Properties of Systems Comprising Esters: Experimental Data and Modeling with PC-SAFT and SAFT-γ Mie. Industrial & Engineering Chemistry Research 2019, 58 (16) , 6841-6849. https://doi.org/10.1021/acs.iecr.9b00714
    19. Lindsay Soh, Mary Kate M. Lane, Junwei Xiang, Thomas A. Kwan, Julie B. Zimmerman. Carbon Dioxide Mediated Transesterification of Mixed Triacylglyceride Substrates. Energy & Fuels 2018, 32 (9) , 9624-9632. https://doi.org/10.1021/acs.energyfuels.8b02207
    20. Aaron Eveleigh, Paul Hellier, Viktor Kärcher, Midhat Talibi. Demonstrating Clean Burning Future Fuels at a Public Engagement Event. Journal of Chemical Education 2018, 95 (4) , 605-610. https://doi.org/10.1021/acs.jchemed.7b00554
    21. Thomas Wallek, Klaus Knöbelreiter, Jürgen Rarey. Estimation of Pure-Component Properties of Biodiesel-Related Components: Fatty Acid Ethyl Esters. Industrial & Engineering Chemistry Research 2018, 57 (9) , 3382-3396. https://doi.org/10.1021/acs.iecr.7b03794
    22. Zachary R. Wilson and Matthew R. Siebert . Methyl Linoleate and Methyl Oleate Bond Dissociation Energies: Electronic Structure Fishing for Wise Crack Products. Energy & Fuels 2018, 32 (2) , 1779-1787. https://doi.org/10.1021/acs.energyfuels.7b02798
    23. Mohamed A. Aissa, Gorica R. Ivaniš, Ivona R. Radović, and Mirjana Lj. Kijevčanin . Experimental Investigation and Modeling of Thermophysical Properties of Pure Methyl and Ethyl Esters at High Pressures. Energy & Fuels 2017, 31 (7) , 7110-7122. https://doi.org/10.1021/acs.energyfuels.7b00561
    24. Betina Tabah, Anjani P. Nagvenkar, Nina Perkas, and Aharon Gedanken . Solar-Heated Sustainable Biodiesel Production from Waste Cooking Oil Using a Sonochemically Deposited SrO Catalyst on Microporous Activated Carbon. Energy & Fuels 2017, 31 (6) , 6228-6239. https://doi.org/10.1021/acs.energyfuels.7b00932
    25. Matthew J. Grisewood, Néstor J. Hernández-Lozada, James B. Thoden, Nathanael P. Gifford, Daniel Mendez-Perez, Haley A. Schoenberger, Matthew F. Allan, Martha E. Floy, Rung-Yi Lai, Hazel M. Holden, Brian F. Pfleger, and Costas D. Maranas . Computational Redesign of Acyl-ACP Thioesterase with Improved Selectivity toward Medium-Chain-Length Fatty Acids. ACS Catalysis 2017, 7 (6) , 3837-3849. https://doi.org/10.1021/acscatal.7b00408
    26. Jason A. Widegren, Casey E. Beall, Audrey E. Tolbert, Tara M. Lovestead, and Thomas J. Bruno . The Use of Antioxidants to Improve Vapor Pressure Measurements on Compounds with Oxidative Instability: Methyl Oleate with tert-Butylhydroquinone. Journal of Chemical & Engineering Data 2017, 62 (1) , 539-546. https://doi.org/10.1021/acs.jced.6b00821
    27. Ramalingam Dineshkumar, Amrita Paul, Moumita Gangopadhyay, N. D. Pradeep Singh, and Ramkrishna Sen . Smart and Reusable Biopolymer Nanocomposite for Simultaneous Microalgal Biomass Harvesting and Disruption: Integrated Downstream Processing for a Sustainable Biorefinery. ACS Sustainable Chemistry & Engineering 2017, 5 (1) , 852-861. https://doi.org/10.1021/acssuschemeng.6b02189
    28. Shashank Mishra, K. Anand, and Pramod S. Mehta . Predicting the Cetane Number of Biodiesel Fuels from Their Fatty Acid Methyl Ester Composition. Energy & Fuels 2016, 30 (12) , 10425-10434. https://doi.org/10.1021/acs.energyfuels.6b01343
    29. Carlos A. Gomez Casanova, Edwin Othen, John L. Sorensen, David B. Levin, and Madjid Birouk . Measurement of Laminar Flame Speed and Flammability Limits of a Biodiesel Surrogate. Energy & Fuels 2016, 30 (10) , 8737-8745. https://doi.org/10.1021/acs.energyfuels.6b01513
    30. Rachel C. Elias, Michael Senra, and Lindsay Soh . Cold Flow Properties of Fatty Acid Methyl Ester Blends with and without Triacetin. Energy & Fuels 2016, 30 (9) , 7400-7409. https://doi.org/10.1021/acs.energyfuels.6b01334
    31. I. Shancita, H. H. Masjuki, M. A. Kalam, S. S. Reham, and S. A. Shahir . Comparative Analysis on Property Improvement Using Fourier Transform Infrared Spectroscopy (FT-IR) and Nuclear Magnetic Resonance (NMR) (1H and 13C) Spectra of Various Biodiesel Blended Fuels. Energy & Fuels 2016, 30 (6) , 4790-4805. https://doi.org/10.1021/acs.energyfuels.5b02559
    32. Łukasz Jęczmionek and Wojciech Krasodomski . Hydroconversion of Vegetable Oils Isomerized over ZSM-5: Composition and Properties of Hydroraffinates. Energy & Fuels 2015, 29 (6) , 3739-3747. https://doi.org/10.1021/acs.energyfuels.5b00582
    33. Victor B. Oyeyemi, Johannes M. Dieterich, David B. Krisiloff, Ting Tan, and Emily A. Carter . Bond Dissociation Energies of C10 and C18 Methyl Esters from Local Multireference Averaged-Coupled Pair Functional Theory. The Journal of Physical Chemistry A 2015, 119 (14) , 3429-3439. https://doi.org/10.1021/jp512974k
    34. M. Habibullah, I. M. Rizwanul Fattah, H. H. Masjuki, and M. A. Kalam . Effects of Palm–Coconut Biodiesel Blends on the Performance and Emission of a Single-Cylinder Diesel Engine. Energy & Fuels 2015, 29 (2) , 734-743. https://doi.org/10.1021/ef502495n
    35. Sarmento Júnior Mazivila, Lucas Caixeta Gontijo, Felipe Bachion de Santana, Hery Mitsutake, Douglas Queiroz Santos, and Waldomiro Borges Neto . Fast Detection of Adulterants/Contaminants in Biodiesel/Diesel Blend (B5) Employing Mid-Infrared Spectroscopy and PLS-DA. Energy & Fuels 2015, 29 (1) , 227-232. https://doi.org/10.1021/ef502122w
    36. A. S. (Ed) Cheng, Cosmin E. Dumitrescu, and Charles J. Mueller . Investigation of Methyl Decanoate Combustion in an Optical Direct-Injection Diesel Engine. Energy & Fuels 2014, 28 (12) , 7689-7700. https://doi.org/10.1021/ef501934n
    37. Zihang Zhang, Erjiang Hu, Lun Pan, Yizhen Chen, Jing Gong, and Zuohua Huang . Shock-Tube Measurements and Kinetic Modeling Study of Methyl Propanoate Ignition. Energy & Fuels 2014, 28 (11) , 7194-7202. https://doi.org/10.1021/ef501527z
    38. Claudia Cristina Cardoso Bejan, Vinicius Guilherme Celante, Eustáquio Vinicius Ribeiro de Castro, and Vânya Márcia Duarte Pasa . Effect of Different Alcohols and Palm and Palm Kernel (Palmist) Oils on Biofuel Properties for Special Uses. Energy & Fuels 2014, 28 (8) , 5128-5135. https://doi.org/10.1021/ef500776u
    39. Michael Mangus, Farshid Kiani, Jonathan Mattson, Christopher Depcik, Edward Peltier, and Susan Stagg-Williams . Comparison of Neat Biodiesels and ULSD in an Optimized Single-Cylinder Diesel Engine with Electronically-Controlled Fuel Injection. Energy & Fuels 2014, 28 (6) , 3849-3862. https://doi.org/10.1021/ef500417b
    40. Gregory W. O’Neil, Gerhard Knothe, John R. Williams, Noah P. Burlow, Aaron R. Culler, Joshua M. Corliss, Catherine A. Carmichael, and Christopher M. Reddy . Synthesis and Analysis of an Alkenone-Free Biodiesel from Isochrysis sp.. Energy & Fuels 2014, 28 (4) , 2677-2683. https://doi.org/10.1021/ef500246h
    41. Lindsay Soh, Joshua Curry, Eric J. Beckman, and Julie B. Zimmerman . Effect of System Conditions for Biodiesel Production via Transesterification Using Carbon Dioxide–Methanol Mixtures in the Presence of a Heterogeneous Catalyst. ACS Sustainable Chemistry & Engineering 2014, 2 (3) , 387-395. https://doi.org/10.1021/sc400349g
    42. A. M. Ashraful, H. H. Masjuki, M. A. Kalam, S. M. Ashrafur Rahman, M. Habibullah, and M. Syazwan . Study of the Effect of Storage Time on the Oxidation and Thermal Stability of Various Biodiesels and Their Blends. Energy & Fuels 2014, 28 (2) , 1081-1089. https://doi.org/10.1021/ef402411v
    43. Naomi K. Fukagawa, Muyao Li, Matthew E. Poynter, Brian C. Palmer, Erin Parker, John Kasumba, and Britt A. Holmén . Soy Biodiesel and Petrodiesel Emissions Differ in Size, Chemical Composition and Stimulation of Inflammatory Responses in Cells and Animals. Environmental Science & Technology 2013, 47 (21) , 12496-12504. https://doi.org/10.1021/es403146c
    44. Seethamraju Srinivas, Randall P. Field, and Howard J. Herzog . Modeling Tar Handling Options in Biomass Gasification. Energy & Fuels 2013, 27 (6) , 2859-2873. https://doi.org/10.1021/ef400388u
    45. El Hadji I. Ndiaye, Matthieu Habrioux, João A. P. Coutinho, Márcio L. L. Paredes, and Jean Luc Daridon . Speed of Sound, Density, and Derivative Properties of Ethyl Myristate, Methyl Myristate, and Methyl Palmitate under High Pressure. Journal of Chemical & Engineering Data 2013, 58 (5) , 1371-1377. https://doi.org/10.1021/je400122k
    46. Bradley D. Wahlen, Michael R. Morgan, Alex T. McCurdy, Robert M. Willis, Michael D. Morgan, Daniel J. Dye, Bruce Bugbee, Byard D. Wood, and Lance C. Seefeldt . Biodiesel from Microalgae, Yeast, and Bacteria: Engine Performance and Exhaust Emissions. Energy & Fuels 2013, 27 (1) , 220-228. https://doi.org/10.1021/ef3012382
    47. Andrew M. Duncan, Noorbahiyah Pavlicek, Christopher D. Depcik, Aaron M. Scurto, and Susan M. Stagg-Williams . High-Pressure Viscosity of Soybean-Oil-Based Biodiesel Blends with Ultra-Low-Sulfur Diesel Fuel. Energy & Fuels 2012, 26 (11) , 7023-7036. https://doi.org/10.1021/ef3012068
    48. George Anitescu and Thomas J. Bruno . Biodiesel Fuels from Supercritical Fluid Processing: Quality Evaluation with the Advanced Distillation Curve Method and Cetane Numbers. Energy & Fuels 2012, 26 (8) , 5256-5264. https://doi.org/10.1021/ef300615r
    49. Gerhard Knothe . Fuel Properties of Highly Polyunsaturated Fatty Acid Methyl Esters. Prediction of Fuel Properties of Algal Biodiesel. Energy & Fuels 2012, 26 (8) , 5265-5273. https://doi.org/10.1021/ef300700v
    50. Lalit Prasad, L. M. Das, and S. N. Naik . Effect of Castor Oil, Methyl and Ethyl Esters as Lubricity Enhancer for Low Lubricity Diesel Fuel (LLDF). Energy & Fuels 2012, 26 (8) , 5307-5315. https://doi.org/10.1021/ef300845v
    51. Zhenhua Li, Weijing Wang, Zhen Huang, and Matthew A. Oehlschlaeger . Autoignition of Methyl Decanoate, a Biodiesel Surrogate, under High-Pressure Exhaust Gas Recirculation Conditions. Energy & Fuels 2012, 26 (8) , 4887-4895. https://doi.org/10.1021/ef3009019
    52. Stephen J. Reaume and Naoko Ellis . Synergistic Effects of Skeletal Isomerization on Oleic and Palmitic Acid Mixtures for the Reduction in Cloud Point of Their Methyl Esters. Energy & Fuels 2012, 26 (7) , 4514-4520. https://doi.org/10.1021/ef3006564
    53. Teresa M. Mata, Igor R.B.G. Sousa, Sara S. Vieira, and Nídia S. Caetano . Biodiesel Production from Corn Oil via Enzymatic Catalysis with Ethanol. Energy & Fuels 2012, 26 (5) , 3034-3041. https://doi.org/10.1021/ef300319f
    54. Eric Cecrle, Christopher Depcik, Andrew Duncan, Jing Guo, Michael Mangus, Edward Peltier, Susan Stagg-Williams, and Yue Zhong . Investigation of the Effects of Biodiesel Feedstock on the Performance and Emissions of a Single-Cylinder Diesel Engine. Energy & Fuels 2012, 26 (4) , 2331-2341. https://doi.org/10.1021/ef2017557
    55. Gregory W. O’Neil, Catherine A. Carmichael, Tyler J. Goepfert, James M. Fulton, Gerhard Knothe, Connie Pui Ling Lau, Scott R. Lindell, Nagwa G-E. Mohammady, Benjamin A. S. Van Mooy, and Christopher M. Reddy . Beyond Fatty Acid Methyl Esters: Expanding the Renewable Carbon Profile with Alkenones from Isochrysis sp.. Energy & Fuels 2012, 26 (4) , 2434-2441. https://doi.org/10.1021/ef3001828
    56. Vladimir Anikeev, Denis Stepanov, and Anna Yermakova . Thermodynamics of Phase and Chemical Equilibrium in the Processes of Biodiesel Fuel Synthesis in Subcritical and Supercritical Methanol. Industrial & Engineering Chemistry Research 2012, 51 (13) , 4783-4796. https://doi.org/10.1021/ie202379u
    57. Chih-Ping Chin, Chi-Wei Lan, and Ho-Shing Wu . Study on the Performance of Lambda Cyhalothrin Microemulsion with Biodiesel as an Alternative Solvent. Industrial & Engineering Chemistry Research 2012, 51 (12) , 4710-4718. https://doi.org/10.1021/ie201151p
    58. George Anitescu and Thomas J. Bruno . Liquid Biofuels: Fluid Properties to Optimize Feedstock Selection, Processing, Refining/Blending, Storage/Transportation, and Combustion. Energy & Fuels 2012, 26 (1) , 324-348. https://doi.org/10.1021/ef201392s
    59. Dong Leung, Depo Yang, Zhuoxue Li, Zhimin Zhao, Jianping Chen, and Longping Zhu . Biodiesel from Zophobas morio Larva Oil: Process Optimization and FAME Characterization. Industrial & Engineering Chemistry Research 2012, 51 (2) , 1036-1040. https://doi.org/10.1021/ie201403r
    60. Casey M. Allen, Elisa Toulson, David L. S. Hung, Harold Schock, Dennis Miller, and Tonghun Lee . Ignition Characteristics of Diesel and Canola Biodiesel Sprays in the Low-Temperature Combustion Regime. Energy & Fuels 2011, 25 (7) , 2896-2908. https://doi.org/10.1021/ef2005332
    61. Richard A. Perkins and Marcia L. Huber . Measurement and Correlation of the Thermal Conductivities of Biodiesel Constituent Fluids: Methyl Oleate and Methyl Linoleate. Energy & Fuels 2011, 25 (5) , 2383-2388. https://doi.org/10.1021/ef200417x
    62. Maria Jorge Pratas, Samuel Freitas, Mariana B. Oliveira, Sílvia C. Monteiro, Álvaro S. Lima, and João A.P. Coutinho . Densities and Viscosities of Minority Fatty Acid Methyl and Ethyl Esters Present in Biodiesel. Journal of Chemical & Engineering Data 2011, 56 (5) , 2175-2180. https://doi.org/10.1021/je1012235
    63. Bret C. Windom, Tara M. Lovestead, Mark Mascal, Edward B. Nikitin, and Thomas J. Bruno . Advanced Distillation Curve Analysis on Ethyl Levulinate as a Diesel Fuel Oxygenate and a Hybrid Biodiesel Fuel. Energy & Fuels 2011, 25 (4) , 1878-1890. https://doi.org/10.1021/ef200239x
    64. Pedro Benjumea, John R. Agudelo, and Andrés F. Agudelo . Effect of the Degree of Unsaturation of Biodiesel Fuels on Engine Performance, Combustion Characteristics, and Emissions. Energy & Fuels 2011, 25 (1) , 77-85. https://doi.org/10.1021/ef101096x
    65. Brian T. Fisher, Gerhard Knothe, and Charles J. Mueller . Liquid-Phase Penetration under Unsteady In-Cylinder Conditions: Soy- and Cuphea-Derived Biodiesel Fuels Versus Conventional Diesel. Energy & Fuels 2010, 24 (9) , 5163-5180. https://doi.org/10.1021/ef100594p
    66. Maria Jorge Pratas, Samuel Freitas, Mariana B. Oliveira, Sílvia C. Monteiro, Alvaro S. Lima, and João A. P. Coutinho . Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters. Journal of Chemical & Engineering Data 2010, 55 (9) , 3983-3990. https://doi.org/10.1021/je100042c
    67. Peng Ye and André L. Boehman. Investigation of the Impact of Engine Injection Strategy on the Biodiesel NOx Effect with a Common-Rail Turbocharged Direct Injection Diesel Engine. Energy & Fuels 2010, 24 (8) , 4215-4225. https://doi.org/10.1021/ef1005176
    68. Tara M. Lovestead, Bret C. Windom and Thomas J. Bruno. Investigating the Unique Properties of Cuphea-Derived Biodiesel Fuel with the Advanced Distillation Curve Method. Energy & Fuels 2010, 24 (6) , 3665-3675. https://doi.org/10.1021/ef100319h
    69. Amit Sarin, Rajneesh Arora, N.P. Singh, Rakesh Sarin and R.K. Malhotra . Oxidation Stability of Palm Methyl Ester: Effect of Metal Contaminants and Antioxidants. Energy & Fuels 2010, 24 (4) , 2652-2656. https://doi.org/10.1021/ef901172t
    70. João A. P. Coutinho, M. Gonçalves, M. J. Pratas, M. L. S. Batista, V. F. S. Fernandes, J. Pauly and J. L. Daridon . Measurement and Modeling of Biodiesel Cold-Flow Properties. Energy & Fuels 2010, 24 (4) , 2667-2674. https://doi.org/10.1021/ef901427g
    71. Amit Sarin, Rajneesh Arora, N. P. Singh, Rakesh Sarin, R. K. Malhotra and Shruti Sarin . Blends of Biodiesels Synthesized from Non-edible and Edible Oils: Effects on the Cold Filter Plugging Point. Energy & Fuels 2010, 24 (3) , 1996-2001. https://doi.org/10.1021/ef901131m
    72. Haiying Tang, Rhet C. De Guzman, K. Y. Simon Ng and Steven O. Salley. Effect of Antioxidants on the Storage Stability of Soybean-Oil-Based Biodiesel. Energy & Fuels 2010, 24 (3) , 2028-2033. https://doi.org/10.1021/ef9012032
    73. Gerhard Knothe. Biodiesel Derived from a Model Oil Enriched in Palmitoleic Acid, Macadamia Nut Oil. Energy & Fuels 2010, 24 (3) , 2098-2103. https://doi.org/10.1021/ef9013295
    74. Magín Lapuerta, Reyes García-Contreras and John R. Agudelo . Lubricity of Ethanol-Biodiesel-Diesel Fuel Blends. Energy & Fuels 2010, 24 (2) , 1374-1379. https://doi.org/10.1021/ef901082k
    75. Emily E. Peacock, J. Samuel Arey, Jared A. DeMello, Ann P. McNichol, Robert K. Nelson, and Christopher M. Reddy . Molecular and Isotopic Analysis of Motor Oil from a Biodiesel-Driven Vehicle. Energy & Fuels 2010, 24 (2) , 1037-1042. https://doi.org/10.1021/ef9011388
    76. Ai-Fu Chang and Y. A. Liu. Integrated Process Modeling and Product Design of Biodiesel Manufacturing. Industrial & Engineering Chemistry Research 2010, 49 (3) , 1197-1213. https://doi.org/10.1021/ie9010047
    77. Victor F. Marulanda, George Anitescu and Lawrence L. Tavlarides . Biodiesel Fuels through a Continuous Flow Process of Chicken Fat Supercritical Transesterification. Energy & Fuels 2010, 24 (1) , 253-260. https://doi.org/10.1021/ef900782v
    78. Marcia L. Huber, Eric W. Lemmon, Andrei Kazakov, Lisa S. Ott and Thomas J. Bruno. Model for the Thermodynamic Properties of a Biodiesel Fuel. Energy & Fuels 2009, 23 (7) , 3790-3797. https://doi.org/10.1021/ef900159g
    79. S. Pinzi, I. L. Garcia, F. J. Lopez-Gimenez, M. D. Luque de Castro, G. Dorado and M. P. Dorado . The Ideal Vegetable Oil-based Biodiesel Composition: A Review of Social, Economical and Technical Implications. Energy & Fuels 2009, 23 (5) , 2325-2341. https://doi.org/10.1021/ef801098a
    80. Guilherme V. M. Jacintho, Alexandre G. Brolo, Paola Corio, Paulo A. Z. Suarez and Joel C. Rubim . Structural Investigation of MFe2O4 (M = Fe, Co) Magnetic Fluids. The Journal of Physical Chemistry C 2009, 113 (18) , 7684-7691. https://doi.org/10.1021/jp9013477
    81. Christopher J. Chuck, Chris D. Bannister, J. Gary Hawley, Matthew G. Davidson, Ivan La Bruna and Alex Paine. Predictive Model To Assess the Molecular Structure of Biodiesel Fuel. Energy & Fuels 2009, 23 (4) , 2290-2294. https://doi.org/10.1021/ef801085s
    82. Gerhard Knothe, Steven C. Cermak and Roque L. Evangelista. Cuphea Oil as Source of Biodiesel with Improved Fuel Properties Caused by High Content of Methyl Decanoate. Energy & Fuels 2009, 23 (3) , 1743-1747. https://doi.org/10.1021/ef800958t
    83. Themistoklis Sfetsas, Sopio Ghoghoberidze, Petros Samaras, Polycarpos Falaras, Thomas Kotsopoulos. Enhancing Bioenergy Production from Chlorella via Salt-Induced Stress and Heat Pretreatment. Fuels 2025, 6 (2) , 23. https://doi.org/10.3390/fuels6020023
    84. Eleni Krikigianni, Kyriakos Antoniadis, Paul Christakopoulos, Ulrika Rova, Leonidas Matsakas, Alok Patel. Strategic bioprocessing of A. protothecoides and C. sorokiniana using renewable feedstocks for targeted bioproduct and biodiesel generation. Energy Conversion and Management: X 2025, 26 , 100896. https://doi.org/10.1016/j.ecmx.2025.100896
    85. Geetanjali Kumawat, Pallavi Vyas, Sandhya Deora, Sneha Sabu, Amit Kumar Gupta, Mukesh Meena, Ashwani Kumar, Vandana Vinayak, Harish. Dissection of Gene Expression Pattern and Metabolic Profile Under Enhanced Oil Production Conditions in Diatoms. 2025, 267-322. https://doi.org/10.1002/9781394174980.ch11
    86. Lijian Leng, Tanghao Li, Jiaxin Gao, Weijin Zhang, Hao Zhan, Hailong Li. Machine-learning-aided prediction of the biological compositions and building block profiles of biomass using only their elemental compositions. Chemical Engineering Journal 2025, 507 , 160512. https://doi.org/10.1016/j.cej.2025.160512
    87. Rimjhim Sangtani, Palak Saket, Dinesh Parida, Ritu Kothari, Kiran Bala. Role of elevated CO2 and nutrient availability in shaping metabolic response of Scenedesmus sp.. International Journal of Advances in Engineering Sciences and Applied Mathematics 2025, 297 https://doi.org/10.1007/s12572-025-00387-w
    88. Vasiliki Paschou, Elissavet Emmanouilidou, Anastasia Lazaridou, Nikolaos C. Kokkinos, Sophia Mitkidou. A Comparative Study of Biodiesel Production from Waste Cooking Olive Oil and Sunflower Oil. ChemistrySelect 2025, 10 (4) https://doi.org/10.1002/slct.202404497
    89. Federica Zaccheria, Nicoletta Ravasio, Valeria Pappalardo. Green Industrial Products From Natural Fats and Oils. 2025, 230-245. https://doi.org/10.1016/B978-0-443-15742-4.00092-2
    90. Han Wang, Xinyi Wang, Jixin Liu, Yimeng Lin, Jingping Ge, Wenxiang Ping. Isolation and characterization of high ammonium tolerant Fasciculochloris sp. HDMA-06 and its potential for nutrient removal and biodiesel production in simulated swine wastewater. Journal of Water Process Engineering 2025, 69 , 106845. https://doi.org/10.1016/j.jwpe.2024.106845
    91. Xue Li, Xi Chen, Yuhao Chu, Nanqi Ren, Jo-Shu Chang, Shih-Hsin Ho. Re-discussing the synergistic mechanisms in dual metabolism of microalgae and N-cycling bacteria on joint N removal. Chemical Engineering Journal 2025, 506 , 160276. https://doi.org/10.1016/j.cej.2025.160276
    92. Yanala Srinivasa Reddy, Chittepu Obula Reddy, Maringanti Subhadra, Kurapati Rajagopal. Long – term storage effect on molecular interactions of biodiesels and blends. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2024, 46 (1) , 9404-9418. https://doi.org/10.1080/15567036.2020.1776798
    93. Robert O. Dunn. Shelf‐life of biodiesel by isothermal oxidation induction period at variable temperatures. Journal of the American Oil Chemists' Society 2024, 101 (12) , 1431-1453. https://doi.org/10.1002/aocs.12848
    94. Franziska Koller, Michael Cieslak, Andreas Bauer-Panskus. Environmental risk scenarios of specific NGT applications in Brassicaceae oilseed plants. Environmental Sciences Europe 2024, 36 (1) https://doi.org/10.1186/s12302-024-01009-1
    95. Alok Patel, Chloe Rantzos, Eleni Krikigianni, Ulrika Rova, Paul Christakopoulos, Leonidas Matsakas. A bioprocess engineering approach for the production of hydrocarbons and fatty acids from green microalga under high cobalt concentration as the feedstock of high-grade biofuels. Biotechnology for Biofuels and Bioproducts 2024, 17 (1) https://doi.org/10.1186/s13068-024-02512-6
    96. Anton L. Esipovich, Evgeny A. Kanakov, Tatyana A. Charykova, Ksenia V. Otopkova, Mikhail A. Smirnov, Yulia A. Mityukova, Artem S. Belousov. A Comprehensive Study on Physicochemical Properties of Fatty Acid Esters Derived from Different Vegetable Oils and Alcohols and Their Potential Application. Energies 2024, 17 (24) , 6407. https://doi.org/10.3390/en17246407
    97. Milad Kermani, Abdolreza Samimi, Davod Mohebbi-Kalhori, Razieh Beigmoradi, Soheila Shokrollahzadeh, Ao Xia, Chihe Sun, Fubao Sun, Alireza Ashori, Meysam Madadi. Pulsed Electric Field Treatment for Efficient oil Extraction from Nannochloropsis salina Microalgae: A Green and Sustainable Approach. Journal of Polymers and the Environment 2024, 32 (11) , 5888-5901. https://doi.org/10.1007/s10924-024-03347-w
    98. Bin-Di Mao, Ashiwin Vadiveloo, Kai-Yuan Li, Jian Qiu, Feng Gao. Bioconversion of C1 and C2 artificial photosynthesis products into high-value bioproducts by mixotrophic microalgae Chlorella pyrenoidosa. Chemical Engineering Journal 2024, 499 , 155979. https://doi.org/10.1016/j.cej.2024.155979
    99. Zuchra Helwani, Said Zul Amraini, Sunarti Abd Rahman, Ida Zahrina, Noni Julhijah, Suci Mas’ama Ulfaa. Environmental Benefits of Palm Oil Biodiesel Enhancement: Urea Complexation Optimization via RSM. Leuser Journal of Environmental Studies 2024, 2 (2) , 62-74. https://doi.org/10.60084/ljes.v2i2.214
    100. Sakura Nagamine, Rikuto Oishi, Mitsuhiro Ueda, Tatsuji Sakamoto, Masami Nakazawa. Genome editing-based mutagenesis stably modifies composition of wax esters synthesized by Euglena gracilis under anaerobic conditions. Bioresource Technology 2024, 410 , 131255. https://doi.org/10.1016/j.biortech.2024.131255
    Load more citations

    Energy & Fuels

    Cite this: Energy Fuels 2008, 22, 2, 1358–1364
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ef700639e
    Published February 19, 2008
    Copyright © This article not subject to U.S. Copyright. Published 2008 by the American Chemical Society

    Article Views

    5490

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.