ACS Publications. Most Trusted. Most Cited. Most Read
Deposition and Fate of Arsenic in Iron- and Arsenic-Enriched Reservoir Sediments
My Activity

Figure 1Loading Img
    Article

    Deposition and Fate of Arsenic in Iron- and Arsenic-Enriched Reservoir Sediments
    Click to copy article linkArticle link copied!

    View Author Information
    Environmental Engineering Science (138-78), California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, Department of Geological Sciences, Arizona State University, Box 871404, Tempe, Arizona 85287, and Centre for Water Research, University of Western Australia, Nedlands 6907, Perth, Western Australia
    Other Access Options

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2002, 36, 3, 381–386
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es010922h
    Published January 4, 2002
    Copyright © 2002 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Deposition of arsenic to the sediments of Haiwee Reservoir (Olancha, CA) has dramatically increased since March 1996 as a result of an interim strategy for arsenic management in the Los Angeles Aqueduct (LAA) water supply. Ferric chloride and cationic polymer are introduced into the Aqueduct at the Cottonwood treatment plant, 27 km north of the Haiwee Reservoir. This treatment decreases the average arsenic concentration from 25 μg/L above Cottonwood to 8.3 μg/L below Haiwee. Iron- and arsenic-rich flocculated solids are removed by deposition to the reservoir sediments. Analysis of sediments shows a pronounced signature of this deposition with elevated sediment concentrations of iron, arsenic, and manganese relative to a control site. Sediment concentrations of these elements remain elevated throughout the core length sampled (ca. 4% iron and 600 and 200 μg/g of manganese and arsenic, respectively, on a dry weight basis). A pore water profile revealed a strong redox gradient in the sediment. Manganese in the pore waters increased below 5 cm; iron and arsenic increased below 10 cm and were strongly correlated, consistent with reductive dissolution of iron oxyhydroxides and concurrent release of associated arsenic to solution. X-ray absorption near-edge spectroscopy revealed inorganic As(V) present only in the uppermost sediment (0−2.5 cm) in addition to inorganic As(III). In the deeper sediments (to 44 cm), only oxygen-coordinated As(III) was detected. Analysis of the extended X-ray absorption fine structure spectrum indicates that the As(III) at depth remains associated with iron oxyhydroxide. We hypothesize that this phase persists in the recently deposited sediment despite reducing conditions due to slow dissolution kinetics.

    Copyright © 2002 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     California Institute of Technology.

     Present address:  ENVIRON International Corporation, 6001 Shellmound St., Ste. 700, Emeryville, CA 94608.

    §

     Arizona State University.

     University of Western Australia.

    *

     Corresponding author telephone:  (626)395-3644; fax:  (626)395-2940; e-mail:  [email protected].

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 104 publications.

    1. Jing Sun, Steven N. Chillrud, Brian J. Mailloux, and Benjamin C. Bostick . In Situ Magnetite Formation and Long-Term Arsenic Immobilization under Advective Flow Conditions. Environmental Science & Technology 2016, 50 (18) , 10162-10171. https://doi.org/10.1021/acs.est.6b02362
    2. Robert A. Root, Sahar Fathordoobadi, Fernando Alday, Wendell Ela, and Jon Chorover . Microscale Speciation of Arsenic and Iron in Ferric-Based Sorbents Subjected to Simulated Landfill Conditions. Environmental Science & Technology 2013, 47 (22) , 12992-13000. https://doi.org/10.1021/es402083h
    3. J. Dobias and R. Bernier-Latmani . Silver Release from Silver Nanoparticles in Natural Waters. Environmental Science & Technology 2013, 47 (9) , 4140-4146. https://doi.org/10.1021/es304023p
    4. William W. Bennett, Peter R. Teasdale, Jared G. Panther, David T. Welsh, Huijun Zhao, and Dianne F. Jolley . Investigating Arsenic Speciation and Mobilization in Sediments with DGT and DET: A Mesocosm Evaluation of Oxic-Anoxic Transitions. Environmental Science & Technology 2012, 46 (7) , 3981-3989. https://doi.org/10.1021/es204484k
    5. Kate M. Campbell, Harish Veeramani, Kai-Uwe Ulrich, Lisa Y. Blue, Daniel E. Giammar, Rizlan Bernier-Latmani, Joanne E. Stubbs, Elena Suvorova, Steve Yabusaki, Juan S. Lezama-Pacheco, Apurva Mehta, Philip E. Long, and John R. Bargar . Oxidative Dissolution of Biogenic Uraninite in Groundwater at Old Rifle, CO. Environmental Science & Technology 2011, 45 (20) , 8748-8754. https://doi.org/10.1021/es200482f
    6. Claire E. Farnsworth and Janet G. Hering . Hydrous Manganese Oxide Doped Gel Probe Sampler for Measuring In Situ Reductive Dissolution Rates. 1. Laboratory Development. Environmental Science & Technology 2010, 44 (1) , 34-40. https://doi.org/10.1021/es901577q
    7. Raoul-Marie Couture, Charles Gobeil and André Tessier. Chronology of Atmospheric Deposition of Arsenic Inferred from Reconstructed Sedimentary Records. Environmental Science & Technology 2008, 42 (17) , 6508-6513. https://doi.org/10.1021/es800818j
    8. Kate M. Campbell, Robert Root, Peggy A. O’Day and Janet G. Hering . A Gel Probe Equilibrium Sampler for Measuring Arsenic Porewater Profiles and Sorption Gradients in Sediments: I. Laboratory Development. Environmental Science & Technology 2008, 42 (2) , 497-503. https://doi.org/10.1021/es071119b
    9. Kate M. Campbell, Robert Root, Peggy A. O’Day and Janet G. Hering . A Gel Probe Equilibrium Sampler for Measuring Arsenic Porewater Profiles and Sorption Gradients in Sediments: II. Field Application to Haiwee Reservoir Sediment. Environmental Science & Technology 2008, 42 (2) , 504-510. https://doi.org/10.1021/es071120a
    10. David B. Senn,, James E. Gawel,, Jennifer A. Jay,, Harold F. Hemond, and, John L. Durant. Long-Term Fate of a Pulse Arsenic Input to a Eutrophic Lake. Environmental Science & Technology 2007, 41 (9) , 3062-3068. https://doi.org/10.1021/es062444m
    11. Zayre I. González A.,, Michael Krachler,, Andriy K. Cheburkin, and, William Shotyk. Spatial Distribution of Natural Enrichments of Arsenic, Selenium, and Uranium in a Minerotrophic Peatland, Gola di Lago, Canton Ticino, Switzerland. Environmental Science & Technology 2006, 40 (21) , 6568-6574. https://doi.org/10.1021/es061080v
    12. Kate M. Campbell,, Davin Malasarn,, Chad W. Saltikov,, Dianne K. Newman, and, Janet G. Hering. Simultaneous Microbial Reduction of Iron(III) and Arsenic(V) in Suspensions of Hydrous Ferric Oxide. Environmental Science & Technology 2006, 40 (19) , 5950-5955. https://doi.org/10.1021/es0600476
    13. Douglas G. Beak,, Nicholas T. Basta,, Kirk G. Scheckel, and, Samuel J. Traina. Bioaccessibility of Arsenic(V) Bound to Ferrihydrite Using a Simulated Gastrointestinal System. Environmental Science & Technology 2006, 40 (4) , 1364-1370. https://doi.org/10.1021/es0516413
    14. J. A. Jay,, N. K. Blute,, K. Lin,, D. Senn,, H. F. Hemond, and, J. L. Durant. Controls on Arsenic Speciation and Solid-Phase Partitioning in the Sediments of a Two-Basin Lake. Environmental Science & Technology 2005, 39 (23) , 9174-9181. https://doi.org/10.1021/es051216+
    15. Rebecca E. Hamon,, Enzo Lombi,, Paolo Fortunati,, Annette L. Nolan, and, Mike J. McLaughlin. Coupling Speciation and Isotope Dilution Techniques To Study Arsenic Mobilization in the Environment. Environmental Science & Technology 2004, 38 (6) , 1794-1798. https://doi.org/10.1021/es034931x
    16. Suvasis Dixit and, Janet G. Hering. Comparison of Arsenic(V) and Arsenic(III) Sorption onto Iron Oxide Minerals:  Implications for Arsenic Mobility. Environmental Science & Technology 2003, 37 (18) , 4182-4189. https://doi.org/10.1021/es030309t
    17. Birendra Sapkota, Tom Al. Diagenetic iron-oxyhydroxides formed in suboxic to anoxic mine-impacted lake sediments near Sudbury, Ontario. Chemical Geology 2024, 658 , 122131. https://doi.org/10.1016/j.chemgeo.2024.122131
    18. Rhitwik Chatterjee, Kalyan Adhikari, Rupal Sinha, Shraddha Bharti, Ujjal Mal. Arsenic contamination in groundwater of moribund delta of Bengal basin: Quantitative assessment through adsorption kinetics and contaminant transport modelling. Journal of Earth System Science 2024, 133 (2) https://doi.org/10.1007/s12040-024-02275-6
    19. Ahasanul Karim, Zarifeh Raji, Antoine Karam, Seddik Khalloufi. Valorization of Fibrous Plant-Based Food Waste as Biosorbents for Remediation of Heavy Metals from Wastewater—A Review. Molecules 2023, 28 (10) , 4205. https://doi.org/10.3390/molecules28104205
    20. Aimen Ali, Muhammad Mahroz Hussain, Nabeel Khan Niazi, Fazila Younas, Zia Ur Rahman Farooqi, Nukshab Zeeshan, Muhammad Tariq Javed, Muhammad Shahid, Irshad Bibi. A Comparison of Technologies for Remediation of Arsenic-Bearing Water: The Significance of Constructed Wetlands. 2023, 223-245. https://doi.org/10.1007/978-3-031-16360-9_11
    21. Harrison Bull, Ali Ekhlasi Nia, Mohsen Asadi, Kerry McPhedran. Assessment of a wastewater stabilization pond system for removal of arsenic, iron, and ammonia from reverse osmosis water treatment plant residual wastewater. Canadian Journal of Civil Engineering 2022, 49 (6) , 1026-1039. https://doi.org/10.1139/cjce-2021-0306
    22. Alyssa Barron, Jing Sun, Stefania Passaretti, Chiara Sbarbati, Maurizio Barbieri, Nicolò Colombani, James Jamieson, Benjamin C. Bostick, Yan Zheng, Micòl Mastrocicco, Marco Petitta, Henning Prommer. In situ arsenic immobilisation for coastal aquifers using stimulated iron cycling: Lab-based viability assessment. Applied Geochemistry 2022, 136 , 105155. https://doi.org/10.1016/j.apgeochem.2021.105155
    23. Agathe Martignier, Montserrat Filella, Jean-Michel Jaquet, Mathieu Coster, Daniel Ariztegui. First Observation of Unicellular Organisms Concentrating Arsenic in ACC Intracellular Inclusions in Lake Waters. Geosciences 2022, 12 (1) , 32. https://doi.org/10.3390/geosciences12010032
    24. Émilie Leclerc, Jason J. Venkiteswaran, Izabela Jasiak, James V. Telford, Mackenzie D.J. Schultz, Brent B. Wolfe, Roland I. Hall, Raoul-Marie Couture. Quantifying arsenic post-depositional mobility in lake sediments impacted by gold ore roasting in sub-arctic Canada using inverse diagenetic modelling. Environmental Pollution 2021, 288 , 117723. https://doi.org/10.1016/j.envpol.2021.117723
    25. Krista J. Jacob-Tatapu, Simon Albert, Alistair Grinham. Sediment arsenic hotspots in an abandoned tailings storage facility, Gold Ridge Mine, Solomon Islands. Chemosphere 2021, 269 , 128756. https://doi.org/10.1016/j.chemosphere.2020.128756
    26. Katherine Lizama-Allende, José Ayala, Ignacio Jaque, Pablo Echeverría. The removal of arsenic and metals from highly acidic water in horizontal subsurface flow constructed wetlands with alternative supporting media. Journal of Hazardous Materials 2021, 408 , 124832. https://doi.org/10.1016/j.jhazmat.2020.124832
    27. Michael J. Palmer, John Chételat, Heather E. Jamieson, Murray Richardson, Marc Amyot. Hydrologic control on winter dissolved oxygen mediates arsenic cycling in a small subarctic lake. Limnology and Oceanography 2021, 66 (S1) https://doi.org/10.1002/lno.11556
    28. Qingwei Wang, Qiuhong Lin, Qingzhu Li, Kaizhong Li, Lanyan Wu, Shuimei Li, Hui Liu. As(III) removal from wastewater and direct stabilization by in-situ formation of Zn-Fe layered double hydroxides. Journal of Hazardous Materials 2021, 403 , 123920. https://doi.org/10.1016/j.jhazmat.2020.123920
    29. Zhenjie Zhao, Shehong Li, Lili Xue, Jie Liao, Jingjing Zhao, Mei Wu, Mingguo Wang, Jing Sun, Yan Zheng, Qiang Yang. Effects of dam construction on arsenic mobility and transport in two large rivers in Tibet, China. Science of The Total Environment 2020, 741 , 140406. https://doi.org/10.1016/j.scitotenv.2020.140406
    30. Sheila F. Murphy, R. Blaine McCleskey, Deborah A. Martin, JoAnn M. Holloway, Jeffrey H. Writer. Wildfire-driven changes in hydrology mobilize arsenic and metals from legacy mine waste. Science of The Total Environment 2020, 743 , 140635. https://doi.org/10.1016/j.scitotenv.2020.140635
    31. Larissa Costa, Nicolai Mirlean, Guilherme Quintana, Segun Adebayo, Karen Johannesson. Distribution and Geochemistry of Arsenic in Sediments of the World’s Largest Choked Estuary: the Patos Lagoon, Brazil. Estuaries and Coasts 2019, 42 (7) , 1896-1911. https://doi.org/10.1007/s12237-019-00596-0
    32. Manoj Kumar, AL. Ramanathan, Abhijit Mukherjee, Swati Verma, Mohammad Mahmudur Rahman, Ravi Naidu. Hydrogeo-morphological influences for arsenic release and fate in the central Gangetic Basin, India. Environmental Technology & Innovation 2018, 12 , 243-260. https://doi.org/10.1016/j.eti.2018.09.004
    33. Madhubhashini B. Galkaduwa, Ganga M. Hettiarachchi, Gerard J. Kluitenberg, Stacy L. Hutchinson. Iron Oxides Minimize Arsenic Mobility in Soil Material Saturated with Saline Wastewater. Journal of Environmental Quality 2018, 47 (4) , 873-883. https://doi.org/10.2134/jeq2018.01.0022
    34. Shinji Nakaya, Hai Chi, Kengo Muroda, Harue Masuda. Forms of trace arsenic, cesium, cadmium, and lead transported into river water for the irrigation of Japanese paddy rice fields. Journal of Hydrology 2018, 561 , 335-347. https://doi.org/10.1016/j.jhydrol.2018.04.018
    35. Ken Nakamura, Hidetaka Katou, Katsuhiro Suzuki, Toshimitsu Honma. Air‐Filled Porosity as a Key to Reducing Dissolved Arsenic and Cadmium Concentrations in Paddy Soils. Journal of Environmental Quality 2018, 47 (3) , 496-503. https://doi.org/10.2134/jeq2017.09.0385
    36. Shane Whitacre, Nicholas Basta, Brooke Stevens, Valerie Hanley, Richard Anderson, Kirk Scheckel. Modification of an existing in vitro method to predict relative bioavailable arsenic in soils. Chemosphere 2017, 180 , 545-552. https://doi.org/10.1016/j.chemosphere.2017.03.134
    37. Janet G. Hering, Ioannis A. Katsoyiannis, Gerardo Ahumada Theoduloz, Michael Berg, Stephan J. Hug. Arsenic Removal from Drinking Water: Experiences with Technologies and Constraints in Practice. Journal of Environmental Engineering 2017, 143 (5) https://doi.org/10.1061/(ASCE)EE.1943-7870.0001225
    38. Xian-Chun Zeng, Guoji E, Jianing Wang, Nian Wang, Xiaoming Chen, Yao Mu, Hao Li, Ye Yang, Yichen Liu, Yanxin Wang, . Functions and Unique Diversity of Genes and Microorganisms Involved in Arsenite Oxidation from the Tailings of a Realgar Mine. Applied and Environmental Microbiology 2016, 82 (24) , 7019-7029. https://doi.org/10.1128/AEM.02190-16
    39. Manoj Kumar, AL. Ramanathan, Mohammad Mahmudur Rahman, Ravi Naidu. Concentrations of inorganic arsenic in groundwater, agricultural soils and subsurface sediments from the middle Gangetic plain of Bihar, India. Science of The Total Environment 2016, 573 , 1103-1114. https://doi.org/10.1016/j.scitotenv.2016.08.109
    40. Zheng Chen, Yuanpeng Wang, Dong Xia, Xiuli Jiang, Dun Fu, Liang Shen, Haitao Wang, Qing Biao Li. Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition. Journal of Hazardous Materials 2016, 311 , 20-29. https://doi.org/10.1016/j.jhazmat.2016.02.069
    41. . Bibliography. 2016, 235-281. https://doi.org/10.1002/9781119006824.biblio
    42. Kunfu Pi, Yanxin Wang, Xianjun Xie, Yaqing Liu, Teng Ma, Chunli Su. Multilevel hydrogeochemical monitoring of spatial distribution of arsenic: A case study at Datong Basin, northern China. Journal of Geochemical Exploration 2016, 161 , 16-26. https://doi.org/10.1016/j.gexplo.2015.09.002
    43. Jing Sun, Steven N. Chillrud, Brian J. Mailloux, Martin Stute, Rajesh Singh, Hailiang Dong, Christopher J. Lepre, Benjamin C. Bostick. Enhanced and stabilized arsenic retention in microcosms through the microbial oxidation of ferrous iron by nitrate. Chemosphere 2016, 144 , 1106-1115. https://doi.org/10.1016/j.chemosphere.2015.09.045
    44. Skya E. Fawcett, Heather E. Jamieson, D. Kirk Nordstrom, R. Blaine McCleskey. Arsenic and antimony geochemistry of mine wastes, associated waters and sediments at the Giant Mine, Yellowknife, Northwest Territories, Canada. Applied Geochemistry 2015, 62 , 3-17. https://doi.org/10.1016/j.apgeochem.2014.12.012
    45. María Teresa Contreras, Daniel Müllendorff, Pablo Pastén, Gonzalo E. Pizarro, Chris Paola, Cristián Escauriaza. Potential accumulation of contaminated sediments in a reservoir of a high‐Andean watershed: Morphodynamic connections with geochemical processes. Water Resources Research 2015, 51 (5) , 3181-3192. https://doi.org/10.1002/2014WR016130
    46. Maya Al-Sid-Cheikh, Mathieu Pédrot, Aline Dia, Hélène Guenet, Delphine Vantelon, Mélanie Davranche, Gérard Gruau, Thomas Delhaye. Interactions between natural organic matter, sulfur, arsenic and iron oxides in re-oxidation compounds within riparian wetlands: NanoSIMS and X-ray adsorption spectroscopy evidences. Science of The Total Environment 2015, 515-516 , 118-128. https://doi.org/10.1016/j.scitotenv.2015.02.047
    47. Eun Jung Kim, Kitae Baek. Enhanced reductive extraction of arsenic from contaminated soils by a combination of dithionite and oxalate. Journal of Hazardous Materials 2015, 284 , 19-26. https://doi.org/10.1016/j.jhazmat.2014.11.004
    48. Eun Jung Kim, Jae-Cheol Lee, Kitae Baek. Abiotic reductive extraction of arsenic from contaminated soils enhanced by complexation: Arsenic extraction by reducing agents and combination of reducing and chelating agents. Journal of Hazardous Materials 2015, 283 , 454-461. https://doi.org/10.1016/j.jhazmat.2014.09.055
    49. Qin Sun, Liping Zhang, Shiming Ding, Chao Li, Jinyan Yang, Jing Chen, Peifang Wang. Evaluation of the diffusive gradients in thin films technique using a mixed binding gel for measuring iron, phosphorus and arsenic in the environment. Environmental Science: Processes & Impacts 2015, 17 (3) , 570-577. https://doi.org/10.1039/C4EM00629A
    50. Khaja Zillur Rahman, Arndt Wiessner, Peter Kuschk, Manfred van Afferden, Jürgen Mattusch, Roland Arno Müller. Removal and fate of arsenic in the rhizosphere of Juncus effusus treating artificial wastewater in laboratory-scale constructed wetlands. Ecological Engineering 2014, 69 , 93-105. https://doi.org/10.1016/j.ecoleng.2014.03.050
    51. Min Wu, Qingyun Li, Xianqiang Tang, Zhuo Huang, Li Lin, Miklas Scholz. Arsenic(V) removal in wetland filters treating drinking water with different substrates and plants. International Journal of Environmental Analytical Chemistry 2014, 94 (6) , 618-638. https://doi.org/10.1080/03067319.2013.864647
    52. Erik R. Venteris, Nicholas T. Basta, Jerry M. Bigham, Ron Rea. Modeling Spatial Patterns in Soil Arsenic to Estimate Natural Baseline Concentrations. Journal of Environmental Quality 2014, 43 (3) , 936-946. https://doi.org/10.2134/jeq2013.11.0459
    53. Woo Chun Lee, Soon-Oh Kim, James Ranville, Seong-Taek Yun, Sun Hee Choi. Sequestration of arsenate from aqueous solution using 2-line ferrihydrite: equilibria, kinetics, and X-ray absorption spectroscopic analysis. Environmental Earth Sciences 2014, 71 (8) , 3307-3318. https://doi.org/10.1007/s12665-013-2717-0
    54. P. Mayorga, A. Moyano, Hossain M. Anawar, A. García-Sánchez. Temporal variation of arsenic and nitrate content in groundwater of the Duero River Basin (Spain). Physics and Chemistry of the Earth, Parts A/B/C 2013, 58-60 , 22-27. https://doi.org/10.1016/j.pce.2013.04.001
    55. Dong Suk Han, Bill Batchelor, Ahmed Abdel-Wahab. Sorption of selenium(IV) and selenium(VI) onto synthetic pyrite (FeS2): Spectroscopic and microscopic analyses. Journal of Colloid and Interface Science 2012, 368 (1) , 496-504. https://doi.org/10.1016/j.jcis.2011.10.065
    56. K. Lizama Allende, T.D. Fletcher, G. Sun. The effect of substrate media on the removal of arsenic, boron and iron from an acidic wastewater in planted column reactors. Chemical Engineering Journal 2012, 179 , 119-130. https://doi.org/10.1016/j.cej.2011.10.069
    57. Chelsea W. Neil, Y. Jeffrey Yang, Young-Shin Jun. Arsenic mobilization and attenuation by mineral–water interactions: implications for managed aquifer recharge. Journal of Environmental Monitoring 2012, 14 (7) , 1772. https://doi.org/10.1039/c2em30323j
    58. William W. Bennett, Peter R. Teasdale, David T. Welsh, Jared G. Panther, Ryan R. Stewart, Helen L. Price, Dianne F. Jolley. Inorganic arsenic and iron(II) distributions in sediment porewaters investigated by a combined DGT–colourimetric DET technique. Environmental Chemistry 2012, 9 (1) , 31. https://doi.org/10.1071/EN11074
    59. David Amouroux, Fabienne Seby, Mathilde Monperrus, Florence Pannier, Carolina Mendiguchia, Christelle Benoit‐Bonnemason, Olivier F. X. Donard. Chemical Species. 2011, 101-160. https://doi.org/10.1002/9781119990826.ch5
    60. Anastasia G. Ilgen, Sergey N. Rychagov, Thomas P. Trainor. Arsenic speciation and transport associated with the release of spent geothermal fluids in Mutnovsky field (Kamchatka, Russia). Chemical Geology 2011, 288 (3-4) , 115-132. https://doi.org/10.1016/j.chemgeo.2011.07.010
    61. Katherine Lizama A., Tim D. Fletcher, Guangzhi Sun. Removal processes for arsenic in constructed wetlands. Chemosphere 2011, 84 (8) , 1032-1043. https://doi.org/10.1016/j.chemosphere.2011.04.022
    62. Skya E. Fawcett, Heather E. Jamieson. The distinction between ore processing and post-depositional transformation on the speciation of arsenic and antimony in mine waste and sediment. Chemical Geology 2011, 283 (3-4) , 109-118. https://doi.org/10.1016/j.chemgeo.2010.02.019
    63. Julia L. Barringer, Zoltan Szabo, Timothy P. Wilson, Jennifer L. Bonin, Todd Kratzer, Kimberly Cenno, Terri Romagna, Marzooq Alebus, Barbara Hirst. Distribution and seasonal dynamics of arsenic in a shallow lake in northwestern New Jersey, USA. Environmental Geochemistry and Health 2011, 33 (1) , 1-22. https://doi.org/10.1007/s10653-010-9289-7
    64. Fernando L. Pantuzzo, Virginia S.T. Ciminelli. Arsenic association and stability in long-term disposed arsenic residues. Water Research 2010, 44 (19) , 5631-5640. https://doi.org/10.1016/j.watres.2010.07.011
    65. C. T. Markley, B. E. Herbert. Arsenic Risk Assessment: The Importance of Speciation in Different Hydrologic Systems. Water, Air, and Soil Pollution 2009, 204 (1-4) , 385-398. https://doi.org/10.1007/s11270-009-0052-6
    66. K. Z. Rahman, A. Wiessner, P. Kuschk, J. Mattusch, A. Offelder, M. Kästner, R. A. Müller. Redox Dynamics of Arsenic Species in the Root‐Near Environment of Juncus effusus Investigated in a Macro‐Gradient‐Free Rooted Gravel Bed Reactor. Engineering in Life Sciences 2008, 8 (6) , 612-621. https://doi.org/10.1002/elsc.200800093
    67. Kate M. Campbell, Janet G. Hering. Biogeochemical Mechanisms of Arsenic Mobilization and Sequestration. 2008, 95-121. https://doi.org/10.1002/9780470371046.ch5
    68. Chunming Su, Robert W. Puls. Arsenate and Arsenite Sorption on Magnetite: Relations to Groundwater Arsenic Treatment Using Zerovalent Iron and Natural Attenuation. Water, Air, and Soil Pollution 2008, 193 (1-4) , 65-78. https://doi.org/10.1007/s11270-008-9668-1
    69. Christian Blodau, Beate Fulda, Markus Bauer, Klaus-Holger Knorr. Arsenic speciation and turnover in intact organic soil mesocosms during experimental drought and rewetting. Geochimica et Cosmochimica Acta 2008, 72 (16) , 3991-4007. https://doi.org/10.1016/j.gca.2008.04.040
    70. Shama Haque, Junfeng Ji, Karen H. Johannesson. Evaluating mobilization and transport of arsenic in sediments and groundwaters of Aquia aquifer, Maryland, USA. Journal of Contaminant Hydrology 2008, 99 (1-4) , 68-84. https://doi.org/10.1016/j.jconhyd.2008.03.003
    71. Thomas Pichler, Robert Brinkmann, Giulio I. Scarzella. Arsenic abundance and variation in golf course lakes. Science of The Total Environment 2008, 394 (2-3) , 313-320. https://doi.org/10.1016/j.scitotenv.2008.01.046
    72. Davin Malasarn, Jennifer R. Keeffe, Dianne K. Newman. Characterization of the Arsenate Respiratory Reductase from Shewanella sp. Strain ANA-3. Journal of Bacteriology 2008, 190 (1) , 135-142. https://doi.org/10.1128/JB.01110-07
    73. Robert A. Root, Suvasis Dixit, Kate M. Campbell, Adam D. Jew, Janet G. Hering, Peggy A. O’Day. Arsenic sequestration by sorption processes in high-iron sediments. Geochimica et Cosmochimica Acta 2007, 71 (23) , 5782-5803. https://doi.org/10.1016/j.gca.2007.04.038
    74. Yvette W. Lowney, Ronald C. Wester, Rosalind A. Schoof, Colleen A. Cushing, Melanie Edwards, Michael V. Ruby. Dermal Absorption of Arsenic from Soils as Measured in the Rhesus Monkey. Toxicological Sciences 2007, 100 (2) , 381-392. https://doi.org/10.1093/toxsci/kfm175
    75. Aaron J. Slowey, Stephen B. Johnson, Matthew Newville, Gordon E. Brown. Speciation and colloid transport of arsenic from mine tailings. Applied Geochemistry 2007, 22 (9) , 1884-1898. https://doi.org/10.1016/j.apgeochem.2007.03.053
    76. Chad W. Saltikov, Davin Malasarn. Arsenate-Respiring Bacteria. 2007, 1214-1222. https://doi.org/10.1128/9781555815882.ch99
    77. C. Casiot, M. Ujevic, M. Munoz, J.L. Seidel, F. Elbaz-Poulichet. Antimony and arsenic mobility in a creek draining an antimony mine abandoned 85 years ago (upper Orb basin, France). Applied Geochemistry 2007, 22 (4) , 788-798. https://doi.org/10.1016/j.apgeochem.2006.11.007
    78. Julie N. Murphy, Chad W. Saltikov. The cymA Gene, Encoding a Tetraheme c -Type Cytochrome, Is Required for Arsenate Respiration in Shewanella Species. Journal of Bacteriology 2007, 189 (6) , 2283-2290. https://doi.org/10.1128/JB.01698-06
    79. Alain Manceau, Martine Lanson, Nicolas Geoffroy. Natural speciation of Ni, Zn, Ba, and As in ferromanganese coatings on quartz using X-ray fluorescence, absorption, and diffraction. Geochimica et Cosmochimica Acta 2007, 71 (1) , 95-128. https://doi.org/10.1016/j.gca.2006.08.036
    80. Andreas Fritzsche, Holger Dienemann, Ernst Gert Dudel. Arsenic fixation on iron-hydroxide-rich and plant litter-containing sediments in natural environments. Environmental Geology 2006, 51 (1) , 133-142. https://doi.org/10.1007/s00254-006-0315-0
    81. T. R. Kulp, S. E. Hoeft, L. G. Miller, C. Saltikov, J. N. Murphy, S. Han, B. Lanoil, R. S. Oremland. Dissimilatory Arsenate and Sulfate Reduction in Sediments of Two Hypersaline, Arsenic-Rich Soda Lakes: Mono and Searles Lakes, California. Applied and Environmental Microbiology 2006, 72 (10) , 6514-6526. https://doi.org/10.1128/AEM.01066-06
    82. Yu. N. Vodyanitskii. Arsenic, lead, and zinc compounds in contaminated soils according to EXAFS spectroscopic data: A review. Eurasian Soil Science 2006, 39 (6) , 611-621. https://doi.org/10.1134/S1064229306060056
    83. Tatiana A. Kirpichtchikova, Alain Manceau, Lorenzo Spadini, Frédéric Panfili, Matthew A. Marcus, Thierry Jacquet. Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling. Geochimica et Cosmochimica Acta 2006, 70 (9) , 2163-2190. https://doi.org/10.1016/j.gca.2006.02.006
    84. Suvasis Dixit, Janet G. Hering. Sorption of Fe(II) and As(III) on goethite in single- and dual-sorbate systems. Chemical Geology 2006, 228 (1-3) , 6-15. https://doi.org/10.1016/j.chemgeo.2005.11.015
    85. Aria Amirbahman, Douglas B. Kent, Gary P. Curtis, James A. Davis. Kinetics of sorption and abiotic oxidation of arsenic(III) by aquifer materials. Geochimica et Cosmochimica Acta 2006, 70 (3) , 533-547. https://doi.org/10.1016/j.gca.2005.10.036
    86. Chad W. Saltikov, Richard A. Wildman, Dianne K. Newman. Expression Dynamics of Arsenic Respiration and Detoxification in Shewanella sp. Strain ANA-3. Journal of Bacteriology 2005, 187 (21) , 7390-7396. https://doi.org/10.1128/JB.187.21.7390-7396.2005
    87. Chuanyong Jing, Xiaoguang Meng, Suqin Liu, Salem Baidas, Ravi Patraju, Christos Christodoulatos, George P. Korfiatis. Surface complexation of organic arsenic on nanocrystalline titanium oxide. Journal of Colloid and Interface Science 2005, 290 (1) , 14-21. https://doi.org/10.1016/j.jcis.2005.04.019
    88. Chuanyong Jing, Suqin Liu, Xiaoguang Meng. Arsenic leachability and speciation in cement immobilized water treatment sludge. Chemosphere 2005, 59 (9) , 1241-1247. https://doi.org/10.1016/j.chemosphere.2004.11.039
    89. Scot Martin. Precipitation and Dissolution of Iron and Manganese Oxides. 2005, 61-82. https://doi.org/10.1201/9781420027679.ch3
    90. A. Garc�a-S�nchez, A. Moyano, P. Mayorga. High arsenic contents in groundwater of central Spain. Environmental Geology 2005, 47 (6) , 847-854. https://doi.org/10.1007/s00254-004-1216-8
    91. Marie-Pierre Isaure, Alain Manceau, Nicolas Geoffroy, Agnès Laboudigue, Nobumichi Tamura, Matthew A. Marcus. Zinc mobility and speciation in soil covered by contaminated dredged sediment using micrometer-scale and bulk-averaging X-ray fluorescence, absorption and diffraction techniques. Geochimica et Cosmochimica Acta 2005, 69 (5) , 1173-1198. https://doi.org/10.1016/j.gca.2004.08.024
    92. Martin Mkandawire, E.Gert Dudel. Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Science of The Total Environment 2005, 336 (1-3) , 81-89. https://doi.org/10.1016/j.scitotenv.2004.06.002
    93. K.A. Hudson-Edwards, S.L. Houghton, A. Osborn. Extraction and analysis of arsenic in soils and sediments. TrAC Trends in Analytical Chemistry 2004, 23 (10-11) , 745-752. https://doi.org/10.1016/j.trac.2004.07.010
    94. D. Malasarn, C. W. Saltikov, K. M. Campbell, J. M. Santini, J. G. Hering, D. K. Newman. arrA Is a Reliable Marker for As(V) Respiration. Science 2004, 306 (5695) , 455-455. https://doi.org/10.1126/science.1102374
    95. J Brandenberger, P Louchouarn, B Herbert, P Tissot. Geochemical and hydrodynamic controls on arsenic and trace metal cycling in a seasonally stratified US sub-tropical reservoir. Applied Geochemistry 2004, 19 (10) , 1601-1623. https://doi.org/10.1016/j.apgeochem.2004.02.006
    96. Peggy A. O'Day, Dimitri Vlassopoulos, Robert Root, Nelson Rivera. The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proceedings of the National Academy of Sciences 2004, 101 (38) , 13703-13708. https://doi.org/10.1073/pnas.0402775101
    97. Anke Wolthoorn, Erwin J.M Temminghoff, Willem H van Riemsdijk. Colloid formation in groundwater by subsurface aeration: characterisation of the geo-colloids and their counterparts. Applied Geochemistry 2004, 19 (9) , 1391-1402. https://doi.org/10.1016/j.apgeochem.2004.01.023
    98. Anke Wolthoorn, Erwin J.M. Temminghoff, Willem H. van Riemsdijk. Effect of synthetic iron colloids on the microbiological NH4+ removal process during groundwater purification. Water Research 2004, 38 (7) , 1884-1892. https://doi.org/10.1016/j.watres.2003.12.026
    99. Annette Hofmann, Manuel Pelletier, Laurent Michot, Anna Stradner, Peter Schurtenberger, Ruben Kretzschmar. Characterization of the pores in hydrous ferric oxide aggregates formed by freezing and thawing. Journal of Colloid and Interface Science 2004, 271 (1) , 163-173. https://doi.org/10.1016/j.jcis.2003.11.053
    100. Douglas B Kent, Patricia M Fox. The influence of groundwater chemistry on arsenic concentrations and speciation in a quartz sand and gravel aquifera). Geochemical Transactions 2004, 5 (1) https://doi.org/10.1186/1467-4866-5-1
    Load all citations

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2002, 36, 3, 381–386
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es010922h
    Published January 4, 2002
    Copyright © 2002 American Chemical Society

    Article Views

    1247

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.