ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Figure 1Loading Img

Monitoring Perfluorinated Surfactants in Biota and Surface Water Samples Following an Accidental Release of Fire-Fighting Foam into Etobicoke Creek

View Author Information
Department of Chemistry, 80 St. George Street, University of Toronto, Toronto, Ontario, Canada M5S 3H6, Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1, and National Water Research Institute, Environment Canada, 867 Lakeshore Road, Burlington, Ontario, Canada L7R 4A6
Cite this: Environ. Sci. Technol. 2002, 36, 4, 545–551
Publication Date (Web):December 18, 2001
https://doi.org/10.1021/es011001+
Copyright © 2002 American Chemical Society
Article Views
3277
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (105 KB)

Abstract

Perfluorinated surfactants have emerged as priority environmental contaminants due to recent reports of their detection in environmental and biological matrices as well as concerns regarding their persistence and toxicity. In June 2000, 22000 L of fire retardant foam containing perfluorinated surfactants was accidentally released at L. B. Pearson International Airport, Toronto, ON, and subsequently entered into Etobicoke Creek, a tributary to Lake Ontario. A suite of analytical tools that include liquid chromatography/tandem mass spectrometry (LC/MS/MS) and 19F NMR were employed to characterize fish (common shiner, Notropus cornutus) and surface water samples collected following the discharge of the perfluorinated material. Total perfluoroalkanesulfonate (4, 6, and 8 carbons) concentrations in fish liver samples ranged from 2.00 to 72.9 μg/g, and total perfluorocarboxylate (5−14 carbons) concentrations ranged from 0.07 to 1.02 μg/g. In addition to fish samples, total perfluoroalkanesulfonate (6 and 8 carbons) concentrations were detected in creek water samples by LC/MS/MS over a 153 day sampling period with concentrations ranging from <0.017 to 2260 μg/L; perfluorooctanoate concentrations (<0.009−11.3 μg/L) were lower than those observed for the perfluoroalkanesulfonates. By 19F NMR, the total perfluorinated surfactant concentrations in surface water samples ranged from <10 to 17000 μg/L. A bioaccumulation factor range of 6300−125000 was calculated for perfluorooctanesulfonate, based on concentrations in fish liver and surface water. The residence time of perfluorooctanesulfonate in Etobicoke Creek as well as the high bioaccumulation in fish liver suggests that perfluorinated surfactants will persist and bioaccumulate following release into the aquatic environment.

 University of Toronto.

 University of Guelph.

§

 National Water Research Institute.

*

 Corresponding author phone:  (416) 978-1780; fax:  (416) 978-3596; e-mail:  [email protected]

Cited By

This article is cited by 408 publications.

  1. Gazi Jahirul Islam, Damien W. M. Arrigan. Voltammetric Selectivity in Detection of Ionized Perfluoroalkyl Substances at Micro-Interfaces between Immiscible Electrolyte Solutions. ACS Sensors 2022, 7 (10) , 2960-2967. https://doi.org/10.1021/acssensors.2c01100
  2. Huikang Lin, Zhiquan Liu, Hongmei Yang, Liping Lu, Runtao Chen, Xiaofang Zhang, Yuchi Zhong, Hangjun Zhang. Per- and Polyfluoroalkyl Substances (PFASs) Impair Lipid Metabolism in Rana nigromaculata: A Field Investigation and Laboratory Study. Environmental Science & Technology 2022, 56 (18) , 13222-13232. https://doi.org/10.1021/acs.est.2c03452
  3. Akash P. Bhat, William C. K. Pomerantz, William A. Arnold. Finding Fluorine: Photoproduct Formation during the Photolysis of Fluorinated Pesticides. Environmental Science & Technology 2022, 56 (17) , 12336-12346. https://doi.org/10.1021/acs.est.2c04242
  4. Shira Joudan, Holly Barrett, Amila O. De Silva, Shane R. de Solla, Hui Peng, Jessica C. D’eon. Measuring Perfluoroalkyl Acid Contamination at a Local Hot Spot: An Authentic Field-Based Laboratory Experience in a Senior Analytical Environmental Chemistry Course. Journal of Chemical Education 2022, Article ASAP.
  5. Jeremy R. Gauthier, Scott A. Mabury. Noise-Reduced Quantitative Fluorine NMR Spectroscopy Reveals the Presence of Additional Per- and Polyfluorinated Alkyl Substances in Environmental and Biological Samples When Compared with Routine Mass Spectrometry Methods. Analytical Chemistry 2022, 94 (7) , 3278-3286. https://doi.org/10.1021/acs.analchem.1c05107
  6. Derek Muir, Luc T. Miaz. Spatial and Temporal Trends of Perfluoroalkyl Substances in Global Ocean and Coastal Waters. Environmental Science & Technology 2021, 55 (14) , 9527-9537. https://doi.org/10.1021/acs.est.0c08035
  7. Hang Liu, Hongyang Cui, Yixuan Huang, Shixiong Gao, Shu Tao, Jianying Hu, Yi Wan. Xenobiotics Targeting Cardiolipin Metabolism to Promote Thrombosis in Zebrafish. Environmental Science & Technology 2021, 55 (6) , 3855-3866. https://doi.org/10.1021/acs.est.0c08068
  8. Yu-Syuan Luo, Noor A. Aly, James McCord, Mark J. Strynar, Weihsueh A. Chiu, James N. Dodds, Erin S. Baker, Ivan Rusyn. Rapid Characterization of Emerging Per- and Polyfluoroalkyl Substances in Aqueous Film-Forming Foams Using Ion Mobility Spectrometry–Mass Spectrometry. Environmental Science & Technology 2020, 54 (23) , 15024-15034. https://doi.org/10.1021/acs.est.0c04798
  9. Hao Chen, Gabriel Munoz, Sung Vo Duy, Lu Zhang, Yiming Yao, Zhen Zhao, Lixin Yi, Min Liu, Hongwen Sun, Jinxia Liu, Sébastien Sauvé. Occurrence and Distribution of Per- and Polyfluoroalkyl Substances in Tianjin, China: The Contribution of Emerging and Unknown Analogues. Environmental Science & Technology 2020, 54 (22) , 14254-14264. https://doi.org/10.1021/acs.est.0c00934
  10. Håkon A. Langberg, Gijs D. Breedveld, Gøril Aa. Slinde, Hege M. Grønning, Åse Høisæter, Morten Jartun, Thomas Rundberget, Bjørn M. Jenssen, Sarah E. Hale. Fluorinated Precursor Compounds in Sediments as a Source of Perfluorinated Alkyl Acids (PFAA) to Biota. Environmental Science & Technology 2020, 54 (20) , 13077-13089. https://doi.org/10.1021/acs.est.0c04587
  11. Junkui Cui, Panpan Gao, Yang Deng. Destruction of Per- and Polyfluoroalkyl Substances (PFAS) with Advanced Reduction Processes (ARPs): A Critical Review. Environmental Science & Technology 2020, 54 (7) , 3752-3766. https://doi.org/10.1021/acs.est.9b05565
  12. Gabriel Munoz, Mélanie Desrosiers, Laura Vetter, Sung Vo Duy, Julie Jarjour, Jinxia Liu, Sébastien Sauvé. Bioaccumulation of Zwitterionic Polyfluoroalkyl Substances in Earthworms Exposed to Aqueous Film-Forming Foam Impacted Soils. Environmental Science & Technology 2020, 54 (3) , 1687-1697. https://doi.org/10.1021/acs.est.9b05102
  13. Shujun Yi, Lingyan Zhu, Scott A. Mabury. First Report on In Vivo Pharmacokinetics and Biotransformation of Chlorinated Polyfluoroalkyl Ether Sulfonates in Rainbow Trout. Environmental Science & Technology 2020, 54 (1) , 345-354. https://doi.org/10.1021/acs.est.9b05258
  14. Yiming Su, Unnati Rao, Chia Miang Khor, Madeline G. Jensen, Lynn M. Teesch, Bryan M. Wong, David M. Cwiertny, David Jassby. Potential-Driven Electron Transfer Lowers the Dissociation Energy of the C–F Bond and Facilitates Reductive Defluorination of Perfluorooctane Sulfonate (PFOS). ACS Applied Materials & Interfaces 2019, 11 (37) , 33913-33922. https://doi.org/10.1021/acsami.9b10449
  15. Sarah B. Gewurtz, Lisa E. Bradley, Sean Backus, Alice Dove, Daryl McGoldrick, Hayley Hung, Helena Dryfhout-Clark. Perfluoroalkyl Acids in Great Lakes Precipitation and Surface Water (2006–2018) Indicate Response to Phase-outs, Regulatory Action, and Variability in Fate and Transport Processes. Environmental Science & Technology 2019, 53 (15) , 8543-8552. https://doi.org/10.1021/acs.est.9b01337
  16. Raymmah Aleyda García, Aurea C. Chiaia-Hernández, Pablo A. Lara-Martin, Martin Loos, Juliane Hollender, Karl Oetjen, Christopher P. Higgins, Jennifer A. Field. Suspect Screening of Hydrocarbon Surfactants in AFFFs and AFFF-Contaminated Groundwater by High-Resolution Mass Spectrometry. Environmental Science & Technology 2019, 53 (14) , 8068-8077. https://doi.org/10.1021/acs.est.9b01895
  17. Nicholas A. Lundquist, Martin J. Sweetman, Kymberley R. Scroggie, Max J. H. Worthington, Louisa J. Esdaile, Salah F. K. Alboaiji, Sally E. Plush, John D. Hayball, Justin M. Chalker. Polymer Supported Carbon for Safe and Effective Remediation of PFOA- and PFOS-Contaminated Water. ACS Sustainable Chemistry & Engineering 2019, 7 (13) , 11044-11049. https://doi.org/10.1021/acssuschemeng.9b01793
  18. Yanina Berrueta Martínez, Yanina B. Bava, Reinaldo L. Cavasso Filho, Mauricio F. Erben, Rosana M. Romano, Carlos O. Della Védova. Valence and Inner Electronic Excitation, Ionization, and Fragmentation of Perfluoropropionic Acid. The Journal of Physical Chemistry A 2018, 122 (51) , 9842-9850. https://doi.org/10.1021/acs.jpca.8b09252
  19. Erika Houtz, Miaomiao Wang, June-Soo Park. Identification and Fate of Aqueous Film Forming Foam Derived Per- and Polyfluoroalkyl Substances in a Wastewater Treatment Plant. Environmental Science & Technology 2018, 52 (22) , 13212-13221. https://doi.org/10.1021/acs.est.8b04028
  20. Thomas A. Bruton and David L. Sedlak . Treatment of Aqueous Film-Forming Foam by Heat-Activated Persulfate Under Conditions Representative of In Situ Chemical Oxidation. Environmental Science & Technology 2017, 51 (23) , 13878-13885. https://doi.org/10.1021/acs.est.7b03969
  21. Lisa A. D’Agostino and Scott A. Mabury . Certain Perfluoroalkyl and Polyfluoroalkyl Substances Associated with Aqueous Film Forming Foam Are Widespread in Canadian Surface Waters. Environmental Science & Technology 2017, 51 (23) , 13603-13613. https://doi.org/10.1021/acs.est.7b03994
  22. Gabriel Munoz, Mélanie Desrosiers, Sung Vo Duy, Pierre Labadie, Hélène Budzinski, Jinxia Liu, and Sébastien Sauvé . Environmental Occurrence of Perfluoroalkyl Acids and Novel Fluorotelomer Surfactants in the Freshwater Fish Catostomus commersonii and Sediments Following Firefighting Foam Deployment at the Lac-Mégantic Railway Accident. Environmental Science & Technology 2017, 51 (3) , 1231-1240. https://doi.org/10.1021/acs.est.6b05432
  23. Pradeep Kumar Rao and Shridhar P. Gejji . Kinetics and Mechanistic Investigations of Atmospheric Oxidation of HFO-1345fz by OH Radical: Insights from Theory. The Journal of Physical Chemistry A 2017, 121 (3) , 595-607. https://doi.org/10.1021/acs.jpca.6b11312
  24. Susan Hurley, Erika Houtz, Debbie Goldberg, Miaomiao Wang, June-Soo Park, David O. Nelson, Peggy Reynolds, Leslie Bernstein, Hoda Anton-Culver, Pamela Horn-Ross, and Myrto Petreas . Preliminary Associations between the Detection of Perfluoroalkyl Acids (PFAAs) in Drinking Water and Serum Concentrations in a Sample of California Women. Environmental Science & Technology Letters 2016, 3 (7) , 264-269. https://doi.org/10.1021/acs.estlett.6b00154
  25. Tess S. Weathers, Katie Harding-Marjanovic, Christopher P. Higgins, Lisa Alvarez-Cohen, and Jonathan O. Sharp . Perfluoroalkyl Acids Inhibit Reductive Dechlorination of Trichloroethene by Repressing Dehalococcoides. Environmental Science & Technology 2016, 50 (1) , 240-248. https://doi.org/10.1021/acs.est.5b04854
  26. Katie C. Harding-Marjanovic, Erika F. Houtz, Shan Yi, Jennifer A. Field, David L. Sedlak, and Lisa Alvarez-Cohen . Aerobic Biotransformation of Fluorotelomer Thioether Amido Sulfonate (Lodyne) in AFFF-Amended Microcosms. Environmental Science & Technology 2015, 49 (13) , 7666-7674. https://doi.org/10.1021/acs.est.5b01219
  27. Tess S. Weathers, Christopher P. Higgins, and Jonathan O. Sharp . Enhanced Biofilm Production by a Toluene-Degrading Rhodococcus Observed after Exposure to Perfluoroalkyl Acids. Environmental Science & Technology 2015, 49 (9) , 5458-5466. https://doi.org/10.1021/es5060034
  28. S. Taniyasu N. Yamashita E. Yamazaki P. Rostkowski L. W. Y. Yeung S. K. Kurunthachalam K. Kannan B. G. Loganathan . Contamination Profiles of Perfluorinated Chemicals in the Inland and Coastal Waters of Japan Following the Use of Fire-Fighting Foams. 2015,,, 221-244. https://doi.org/10.1021/bk-2015-1206.ch011
  29. Sebastian Felizeter, Michael S. McLachlan, and Pim De Voogt . Root Uptake and Translocation of Perfluorinated Alkyl Acids by Three Hydroponically Grown Crops. Journal of Agricultural and Food Chemistry 2014, 62 (15) , 3334-3342. https://doi.org/10.1021/jf500674j
  30. Lisa A. D’Agostino and Scott A. Mabury . Identification of Novel Fluorinated Surfactants in Aqueous Film Forming Foams and Commercial Surfactant Concentrates. Environmental Science & Technology 2014, 48 (1) , 121-129. https://doi.org/10.1021/es403729e
  31. Leo W. Y. Yeung and Scott A. Mabury . Bioconcentration of Aqueous Film-Forming Foam (AFFF) in Juvenile Rainbow Trout (Oncorhyncus mykiss). Environmental Science & Technology 2013, 47 (21) , 12505-12513. https://doi.org/10.1021/es403170f
  32. Li D. Chen, Chun-Ze Lai, Laura P. Granda, Melissa A. Fierke, Debaprasad Mandal, Andreas Stein, John A. Gladysz, and Philippe Bühlmann . Fluorous Membrane Ion-Selective Electrodes for Perfluorinated Surfactants: Trace-Level Detection and in Situ Monitoring of Adsorption. Analytical Chemistry 2013, 85 (15) , 7471-7477. https://doi.org/10.1021/ac401424j
  33. Erika F. Houtz, Christopher P. Higgins, Jennifer A. Field, and David L. Sedlak . Persistence of Perfluoroalkyl Acid Precursors in AFFF-Impacted Groundwater and Soil. Environmental Science & Technology 2013, 47 (15) , 8187-8195. https://doi.org/10.1021/es4018877
  34. Jonathan P. Benskin, Michael G. Ikonomou, Frank A. P. C. Gobas, Timothy H. Begley, Million B. Woudneh, and John R. Cosgrove . Biodegradation of N-Ethyl Perfluorooctane Sulfonamido Ethanol (EtFOSE) and EtFOSE-Based Phosphate Diester (SAmPAP Diester) in Marine Sediments. Environmental Science & Technology 2013, 47 (3) , 1381-1389. https://doi.org/10.1021/es304336r
  35. Mareike Lechner and Holger Knapp . Carryover of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) from Soil to Plant and Distribution to the Different Plant Compartments Studied in Cultures of Carrots (Daucus carota ssp. Sativus), Potatoes (Solanum tuberosum), and Cucumbers (Cucumis Sativus). Journal of Agricultural and Food Chemistry 2011, 59 (20) , 11011-11018. https://doi.org/10.1021/jf201355y
  36. Emily Awad, Xianming Zhang, Satyendra P. Bhavsar, Steve Petro, Patrick W. Crozier, Eric J. Reiner, Rachael Fletcher, Sheryl A. Tittlemier, and Eric Braekevelt . Long-Term Environmental Fate of Perfluorinated Compounds after Accidental Release at Toronto Airport. Environmental Science & Technology 2011, 45 (19) , 8081-8089. https://doi.org/10.1021/es2001985
  37. Qiongfang Zhuo, Shubo Deng, Bo Yang, Jun Huang, and Gang Yu . Efficient Electrochemical Oxidation of Perfluorooctanoate Using a Ti/SnO2-Sb-Bi Anode. Environmental Science & Technology 2011, 45 (7) , 2973-2979. https://doi.org/10.1021/es1024542
  38. Steven G. O’Connell, Michael Arendt, Al Segars, Tricia Kimmel, Joanne Braun-McNeill, Larisa Avens, Barbara Schroeder, Lily Ngai, John R. Kucklick and Jennifer M. Keller . Temporal and Spatial Trends of Perfluorinated Compounds in Juvenile Loggerhead Sea Turtles (Caretta caretta) along the East Coast of the United States. Environmental Science & Technology 2010, 44 (13) , 5202-5209. https://doi.org/10.1021/es9036447
  39. C. J. A. F. Kwadijk, P. Korytár and A. A. Koelmans. Distribution of Perfluorinated Compounds in Aquatic Systems in The Netherlands. Environmental Science & Technology 2010, 44 (10) , 3746-3751. https://doi.org/10.1021/es100485e
  40. Amy D. Delinsky, Mark J. Strynar, Patricia J. McCann, Jerry L. Varns, Larry McMillan, Shoji F. Nakayama and Andrew B. Lindstrom . Geographical Distribution of Perfluorinated Compounds in Fish from Minnesota Lakes and Rivers. Environmental Science & Technology 2010, 44 (7) , 2549-2554. https://doi.org/10.1021/es903777s
  41. Chad D. Vecitis, Yajuan Wang, Jie Cheng, Hyunwoong Park, Brian T. Mader and Michael R. Hoffmann. Sonochemical Degradation of Perfluorooctanesulfonate in Aqueous Film-Forming Foams. Environmental Science & Technology 2010, 44 (1) , 432-438. https://doi.org/10.1021/es902444r
  42. Zizhong Liu and John D. Goddard . Predictions of the Fluorine NMR Chemical Shifts of Perfluorinated Carboxylic Acids, CnF2n+1COOH (n = 6−8). The Journal of Physical Chemistry A 2009, 113 (50) , 13921-13931. https://doi.org/10.1021/jp9078037
  43. Sonja K. Ostertag, Hing Man Chan, John Moisey, Robert Dabeka and Sheryl A. Tittlemier . Historic Dietary Exposure to Perfluorooctane Sulfonate, Perfluorinated Carboxylates, and Fluorotelomer Unsaturated Carboxylates from the Consumption of Store-Bought and Restaurant Foods for the Canadian Population. Journal of Agricultural and Food Chemistry 2009, 57 (18) , 8534-8544. https://doi.org/10.1021/jf9014125
  44. Alexander G. Paul, Kevin C. Jones and Andrew J. Sweetman. A First Global Production, Emission, And Environmental Inventory For Perfluorooctane Sulfonate. Environmental Science & Technology 2009, 43 (2) , 386-392. https://doi.org/10.1021/es802216n
  45. Carin A. Huset, Aurea C. Chiaia, Douglas F. Barofsky, Niels Jonkers, Hans-Peter E. Kohler, Christoph Ort, Walter Giger and Jennifer A. Field . Occurrence and Mass Flows of Fluorochemicals in the Glatt Valley Watershed, Switzerland. Environmental Science & Technology 2008, 42 (17) , 6369-6377. https://doi.org/10.1021/es703062f
  46. Katrin E. Holmström and Urs Berger. Tissue Distribution of Perfluorinated Surfactants in Common Guillemot (Uria aalge) from the Baltic Sea. Environmental Science & Technology 2008, 42 (16) , 5879-5884. https://doi.org/10.1021/es800529h
  47. Liana Del Gobbo, Sheryl Tittlemier, Miriam Diamond, Karen Pepper, Brett Tague, Fiona Yeudall and Loren Vanderlinden . Cooking Decreases Observed Perfluorinated Compound Concentrations in Fish. Journal of Agricultural and Food Chemistry 2008, 56 (16) , 7551-7559. https://doi.org/10.1021/jf800827r
  48. Vasile I Furdui, Paul A. Helm, Patrick W. Crozier, Corina Lucaciu, Eric J. Reiner, Chris H. Marvin, D. Michael Whittle, Scott A. Mabury and Gregg T. Tomy . Temporal Trends of Perfluoroalkyl Compounds with Isomer Analysis in Lake Trout from Lake Ontario (1979−2004). Environmental Science & Technology 2008, 42 (13) , 4739-4744. https://doi.org/10.1021/es7032372
  49. Paulo R. Dorneles, José Lailson-Brito, Alexandre F. Azevedo, Johan Meyer, Lara G. Vidal, Ana B. Fragoso, João P. Torres, Olaf Malm, Ronny Blust and Krishna Das . High Accumulation of Perfluorooctane Sulfonate (PFOS) in Marine Tucuxi Dolphins (Sotalia guianensis) from the Brazilian Coast. Environmental Science & Technology 2008, 42 (14) , 5368-5373. https://doi.org/10.1021/es800702k
  50. Xiaodong Ju, Yihe Jin, Kazuaki Sasaki and Norimitsu Saito. Perfluorinated Surfactants in Surface, Subsurface Water and Microlayer from Dalian Coastal Waters in China. Environmental Science & Technology 2008, 42 (10) , 3538-3542. https://doi.org/10.1021/es703006d
  51. Mark Loewen, Frank Wania, Feiyue Wang and Gregg Tomy . Altitudinal Transect of Atmospheric and Aqueous Fluorinated Organic Compounds in Western Canada. Environmental Science & Technology 2008, 42 (7) , 2374-2379. https://doi.org/10.1021/es702276c
  52. Seung-Kyu Kim and Kurunthachalam Kannan . Perfluorinated Acids in Air, Rain, Snow, Surface Runoff, and Lakes: Relative Importance of Pathways to Contamination of Urban Lakes. Environmental Science & Technology 2007, 41 (24) , 8328-8334. https://doi.org/10.1021/es072107t
  53. Michelle M. (MacDonald) Phillips , Mary Joyce A. Dinglasan-Panlilio , Scott A. Mabury , Keith R. Solomon , and Paul K. Sibley . Fluorotelomer Acids are More Toxic than Perfluorinated Acids. Environmental Science & Technology 2007, 41 (20) , 7159-7163. https://doi.org/10.1021/es070734c
  54. T. Nakayama,, K. Takahashi,, Y. Matsumi,, A. Toft,, M. P. Sulbaek Andersen,, O. J. Nielsen,, R. L. Waterland,, R. C. Buck,, M. D. Hurley, and, T. J. Wallington. Atmospheric Chemistry of CF3CHCH2 and C4F9CHCH2:  Products of the Gas-Phase Reactions with Cl Atoms and OH Radicals. The Journal of Physical Chemistry A 2007, 111 (5) , 909-915. https://doi.org/10.1021/jp066736l
  55. M. P. Sulbaek Andersen,, A. Toft,, O. J. Nielsen,, M. D. Hurley,, T. J. Wallington,, H. Chishima,, K. Tonokura,, S. A. Mabury,, J. W. Martin, and, D. A. Ellis. Atmospheric Chemistry of Perfluorinated Aldehyde Hydrates (n-CxF2x+1CH(OH)2, x = 1, 3, 4):  Hydration, Dehydration, and Kinetics and Mechanism of Cl Atom and OH Radical Initiated Oxidation. The Journal of Physical Chemistry A 2006, 110 (32) , 9854-9860. https://doi.org/10.1021/jp060404z
  56. Ashwin Rao,, Yongsin Kim,, Charles M. Kausch,, Vernon M. Russell, and, Richard R. Thomas. Synthesis, Characterization, and Interfacial Properties of an Oligomeric, Cationic Fluorooxetane. Langmuir 2006, 22 (10) , 4811-4817. https://doi.org/10.1021/la0534322
  57. Karen Risha,, John Flaherty,, Roice Wille,, Warren Buck,, Francesco Morandi, and, Tsuguhide Isemura. Method for Trace Level Analysis of C8, C9, C10, C11, and C13 Perfluorocarbon Carboxylic Acids in Water. Analytical Chemistry 2005, 77 (5) , 1503-1508. https://doi.org/10.1021/ac0490548
  58. Gregg T. Tomy,, Wes Budakowski,, Thor Halldorson,, Paul A. Helm,, Gary A. Stern,, Ken Friesen,, Karen Pepper,, Sheryl A. Tittlemier, and, Aaron T. Fisk. Fluorinated Organic Compounds in an Eastern Arctic Marine Food Web. Environmental Science & Technology 2004, 38 (24) , 6475-6481. https://doi.org/10.1021/es049620g
  59. David A. Ellis,, Kerri A. Denkenberger,, Timothy E. Burrow, and, Scott A. Mabury. The Use of 19F NMR to Interpret the Structural Properties of Perfluorocarboxylate Acids:  A Possible Correlation with Their Environmental Disposition. The Journal of Physical Chemistry A 2004, 108 (46) , 10099-10106. https://doi.org/10.1021/jp049372a
  60. M. P. Sulbaek Andersen,, C. Stenby, and, O. J. Nielsen, , M. D. Hurley,, J. C. Ball, and, T. J. Wallington, , J. W. Martin,, D. A. Ellis, and, S. A. Mabury. Atmospheric Chemistry of n-CxF2x+1CHO (x = 1, 3, 4):  Mechanism of the CxF2x+1C(O)O2 + HO2 Reaction. The Journal of Physical Chemistry A 2004, 108 (30) , 6325-6330. https://doi.org/10.1021/jp048849f
  61. M. P. Sulbaek Andersen and, O. J. Nielsen, , M. D. Hurley,, J. C. Ball, and, T. J. Wallington, , J. E. Stevens, , J. W. Martin,, D. A. Ellis, and, S. A. Mabury. Atmospheric Chemistry of n-CxF2x+1CHO (x = 1, 3, 4):  Reaction with Cl Atoms, OH Radicals and IR Spectra of CxF2x+1C(O)O2NO2. The Journal of Physical Chemistry A 2004, 108 (24) , 5189-5196. https://doi.org/10.1021/jp0496598
  62. M. D. Hurley and, T. J. Wallington, , M. P. Sulbaek Andersen, , D. A. Ellis,, J. W. Martin, and, S. A. Mabury. Atmospheric Chemistry of Fluorinated Alcohols:  Reaction with Cl Atoms and OH Radicals and Atmospheric Lifetimes. The Journal of Physical Chemistry A 2004, 108 (11) , 1973-1979. https://doi.org/10.1021/jp0373088
  63. Gregg T. Tomy,, Sheryl A. Tittlemier,, Vince P. Palace,, Wes R. Budakowski,, Eric Braekevelt,, Lyndon Brinkworth, and, Ken Friesen. Biotransformation of N-Ethyl Perfluorooctanesulfonamide by Rainbow Trout (Onchorhynchus mykiss) Liver Microsomes. Environmental Science & Technology 2004, 38 (3) , 758-762. https://doi.org/10.1021/es034550j
  64. M. D. Hurley,, M. P. Sulbaek Andersen, and, T. J. Wallington, , D. A. Ellis,, J. W. Martin, and, S. A. Mabury. Atmospheric Chemistry of Perfluorinated Carboxylic Acids:  Reaction with OH Radicals and Atmospheric Lifetimes. The Journal of Physical Chemistry A 2004, 108 (4) , 615-620. https://doi.org/10.1021/jp036343b
  65. D. A. Ellis,, J. W. Martin, and, S. A. Mabury, , M. D. Hurley,, M. P. Sulbaek Andersen, and, T. J. Wallington. Atmospheric Lifetime of Fluorotelomer Alcohols. Environmental Science & Technology 2003, 37 (17) , 3816-3820. https://doi.org/10.1021/es034136j
  66. Charles M. Kausch,, Yongsin Kim,, Vernon M. Russell,, Robert E. Medsker, and, Richard R. Thomas. Surface Tension and Adsorption Properties of a Series of Bolaamphiphilic Poly(fluorooxetane)s. Langmuir 2003, 19 (18) , 7182-7187. https://doi.org/10.1021/la034233q
  67. Charles M. Kausch,, Yongsin Kim,, Vernon M. Russell,, Robert E. Medsker, and, Richard R. Thomas. Interfacial Rheological Properties of a Series of Bolaamphiphilic Poly(fluorooxetane)s. Langmuir 2003, 19 (18) , 7354-7361. https://doi.org/10.1021/la0342518
  68. J. Anderson, R.S. Prosser. Potential risk to aquatic biota from aerial application of firefighting water additives. Environmental Pollution 2023, 316 , 120651. https://doi.org/10.1016/j.envpol.2022.120651
  69. Wejdan Alghamdi, Jaye Marchiandi, Drew Szabo, Subharthe Samandra, Bradley O. Clarke. Release of per- and polyfluoroalkyl substances (PFAS) from a waste management facility fire to an urban creek. Journal of Hazardous Materials Advances 2022, 8 , 100167. https://doi.org/10.1016/j.hazadv.2022.100167
  70. Di Du, Yonglong Lu, Yunqiao Zhou, Meng Zhang, Chenchen Wang, Mingzhao Yu, Shuai Song, Haotian Cui, Chunci Chen. Perfluoroalkyl acids (PFAAs) in water along the entire coastal line of China: Spatial distribution, mass loadings, and worldwide comparisons. Environment International 2022, 169 , 107506. https://doi.org/10.1016/j.envint.2022.107506
  71. Kate Tunstill, Laura F. Grogan, Clare Morrison, Hamish McCallum, Chantal Lanctôt. Effects of two firefighting chemical formulations, Phos–Chek LC95W and BlazeTamer380, on striped marsh frog (Limodynastes peronii) tadpole survival, growth, development and behaviour. Aquatic Toxicology 2022, 62 , 106326. https://doi.org/10.1016/j.aquatox.2022.106326
  72. Atinuke F. Ojo, Cheng Peng, Prasath Annamalai, Mallavarapu Megharaj, Jack C. Ng. Toxicity assessment of historical aqueous film-forming foams (AFFFs) using cell-based assays. Environmental Pollution 2022, 310 , 119806. https://doi.org/10.1016/j.envpol.2022.119806
  73. Po-Hsiang Chang, Chien-Yen Chen, Raj Mukhopadhyay, Wenhua Chen, Yu-Min Tzou, Binoy Sarkar. Novel MOF-808 metal–organic framework as highly efficient adsorbent of perfluorooctane sulfonate in water. Journal of Colloid and Interface Science 2022, 623 , 627-636. https://doi.org/10.1016/j.jcis.2022.05.050
  74. Xueyan Lyu, Feng Xiao, Chongyang Shen, Jingjing Chen, Chang Min Park, Yuanyuan Sun, Markus Flury, Dengjun Wang. Per‐ and Polyfluoroalkyl Substances (PFAS) in Subsurface Environments: Occurrence, Fate, Transport, and Research Prospect. Reviews of Geophysics 2022, 60 (3) https://doi.org/10.1029/2021RG000765
  75. Sonia Mayakaduwage, Anusha Ekanayake, Sudarshan Kurwadkar, Anushka Upamali Rajapaksha, Meththika Vithanage. Phytoremediation prospects of per- and polyfluoroalkyl substances: A review. Environmental Research 2022, 212 , 113311. https://doi.org/10.1016/j.envres.2022.113311
  76. Roger L. Viticoski, Danyang Wang, Meredith A. Feltman, Vanisree Mulabagal, Stephanie R. Rogers, David M. Blersch, Joel S. Hayworth. Spatial distribution and mass transport of Perfluoroalkyl Substances (PFAS) in surface water: A statewide evaluation of PFAS occurrence and fate in Alabama. Science of The Total Environment 2022, 836 , 155524. https://doi.org/10.1016/j.scitotenv.2022.155524
  77. Emily K. Griffin, Juan Aristizabal-Henao, Alina Timshina, Heather L. Ditz, Camden G. Camacho, Bianca F. da Silva, Eric S. Coker, Katherine Y. Deliz Quiñones, Joe Aufmuth, John A. Bowden. Assessment of per- and polyfluoroalkyl substances (PFAS) in the Indian River Lagoon and Atlantic coast of Brevard County, FL, reveals distinct spatial clusters. Chemosphere 2022, 301 , 134478. https://doi.org/10.1016/j.chemosphere.2022.134478
  78. Qiyu Wang, Jing Huang, Shuai Liu, Caiyun Wang, Yuanxiang Jin, Hong Lai, Wenqing Tu. Aberrant hepatic lipid metabolism associated with gut microbiota dysbiosis triggers hepatotoxicity of novel PFOS alternatives in adult zebrafish. Environment International 2022, 166 , 107351. https://doi.org/10.1016/j.envint.2022.107351
  79. Bhavini Saawarn, Byomkesh Mahanty, Subrata Hait, Sahid Hussain. Sources, occurrence, and treatment techniques of per- and polyfluoroalkyl substances in aqueous matrices: A comprehensive review. Environmental Research 2022, 12 , 114004. https://doi.org/10.1016/j.envres.2022.114004
  80. Jackson D. Harris, Collin M. Coon, Megan E. Doherty, Eamon A. McHugh, Margaret C. Warner, Conley L. Walters, Olivia M. Orahood, Abigail E. Loesch, David C. Hatfield, John C. Sitko, Erin A. Almand, J. Jordan Steel. Engineering and characterization of dehalogenase enzymes from Delftia acidovorans in bioremediation of perfluorinated compounds. Synthetic and Systems Biotechnology 2022, 7 (2) , 671-676. https://doi.org/10.1016/j.synbio.2022.02.005
  81. Hannah Mahoney, Yuwei Xie, Markus Brinkmann, John P. Giesy. Next generation per- and poly-fluoroalkyl substances: Status and trends, aquatic toxicity, and risk assessment. Eco-Environment & Health 2022, 1 (2) , 117-131. https://doi.org/10.1016/j.eehl.2022.05.002
  82. V.N. Bednarz, S. Choyke, L.F.B. Marangoni, E.I. Otto, E. Béraud, M. Metian, I. Tolosa, C. Ferrier-Pagès. Acute exposure to perfluorooctane sulfonate exacerbates heat-induced oxidative stress in a tropical coral species.. Environmental Pollution 2022, 302 , 119054. https://doi.org/10.1016/j.envpol.2022.119054
  83. C.D. Metcalfe, S. Bayen, M. Desrosiers, G. Muñoz, S. Sauvé, V. Yargeau. An introduction to the sources, fate, occurrence and effects of endocrine disrupting chemicals released into the environment. Environmental Research 2022, 207 , 112658. https://doi.org/10.1016/j.envres.2021.112658
  84. Anna Maria Roos, Mary Gamberg, Derek Muir, Anna Kärrman, Pernilla Carlsson, Christine Cuyler, Ylva Lind, Rossana Bossi, Frank Rigét. Perfluoroalkyl substances in circum-ArcticRangifer: caribou and reindeer. Environmental Science and Pollution Research 2022, 29 (16) , 23721-23735. https://doi.org/10.1007/s11356-021-16729-7
  85. Ehsan Banayan Esfahani, Fatemeh Asadi Zeidabadi, Shengyang Zhang, Madjid Mohseni. Photo-chemical/catalytic oxidative/reductive decomposition of per- and poly-fluoroalkyl substances (PFAS), decomposition mechanisms and effects of key factors: a review. Environmental Science: Water Research & Technology 2022, 8 (4) , 698-728. https://doi.org/10.1039/D1EW00774B
  86. Fang Zhang, Jiaman Liang, Yang Liu, Qiuju Zhou, Yushuang Hong, Xianping Chen, Kejun Tan. A highly sensitive dual-readout assay for perfluorinated compounds based CdTe quantum dots. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 269 , 120753. https://doi.org/10.1016/j.saa.2021.120753
  87. Jing Huang, Qiyu Wang, Shuai Liu, Hong Lai, Wenqing Tu. Comparative chronic toxicities of PFOS and its novel alternatives on the immune system associated with intestinal microbiota dysbiosis in adult zebrafish. Journal of Hazardous Materials 2022, 425 , 127950. https://doi.org/10.1016/j.jhazmat.2021.127950
  88. Weilan Zhang, Quan Zhang, Yanna Liang. Ineffectiveness of ultrasound at low frequency for treating per- and polyfluoroalkyl substances in sewage sludge. Chemosphere 2022, 286 , 131748. https://doi.org/10.1016/j.chemosphere.2021.131748
  89. Jeremy P. Koelmel, Paul Stelben, Carrie A. McDonough, David A. Dukes, Juan J. Aristizabal-Henao, Sara L. Nason, Yang Li, Sandi Sternberg, Elizabeth Lin, Manfred Beckmann, Antony J. Williams, John Draper, Jasen P. Finch, Jens K. Munk, Chris Deigl, Emma E Rennie, John A. Bowden, Krystal J. Godri Pollitt. FluoroMatch 2.0—making automated and comprehensive non-targeted PFAS annotation a reality. Analytical and Bioanalytical Chemistry 2022, 414 (3) , 1201-1215. https://doi.org/10.1007/s00216-021-03392-7
  90. Rebecca S. Wilkinson, Heather A. Lanza, Adric D. Olson, Joseph F. Mudge, Christopher J. Salice, Todd A. Anderson. Perfluoroalkyl acids in sediment and water surrounding historical fire training areas at Barksdale Air Force Base. PeerJ 2022, 10 , e13054. https://doi.org/10.7717/peerj.13054
  91. Vanisree Mulabagal, David A. Baah, Nosa O. Egiebor, Baharak Sajjadi, Wei-Yin Chen, Roger L. Viticoski, Joel S. Hayworth. Biochar from Biomass: A Strategy for Carbon Dioxide Sequestration, Soil Amendment, Power Generation, CO2 Utilization, and Removal of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) in the Environment. 2022,,, 1023-1085. https://doi.org/10.1007/978-3-030-72579-2_80
  92. Kritika Pandey, Shweta Rai, Surbhi Kuril, Pratibha Singh, Manish Singh Rajput, Sridhar Pilli, R.D. Tyagi, Ashok Pandey. Environmental effects of per- and poly-fluoroalkyl substances exposure. 2022,,, 15-33. https://doi.org/10.1016/B978-0-323-99906-9.00002-4
  93. Sanket Dey Chowdhury, R.D Tyagi, Sridhar Pilli, Vinay Kumar Tyagi, Ashok Pandey, Puspendu Bhunia. Per- and poly-fluoroalkyl substances (PFASs) in water and wastewater. 2022,,, 299-333. https://doi.org/10.1016/B978-0-323-99906-9.00003-6
  94. Hyojin Lee, Eun Ji Sung, Seungwoo Seo, Eun Ki Min, Ji-Young Lee, Ilseob Shim, Pilje Kim, Tae-Young Kim, Sangkyu Lee, Ki-Tae Kim. Integrated multi-omics analysis reveals the underlying molecular mechanism for developmental neurotoxicity of perfluorooctanesulfonic acid in zebrafish. Environment International 2021, 157 , 106802. https://doi.org/10.1016/j.envint.2021.106802
  95. Heiko L. Schoenfuss. The Effects of Contaminants of Emerging Concern on Water Quality. 2021,,, 23-44. https://doi.org/10.1002/9781119681397.ch2
  96. Aditi Podder, A.H.M. Anwar Sadmani, Debra Reinhart, Ni-Bin Chang, Ramesh Goel. Per and poly-fluoroalkyl substances (PFAS) as a contaminant of emerging concern in surface water: A transboundary review of their occurrences and toxicity effects. Journal of Hazardous Materials 2021, 419 , 126361. https://doi.org/10.1016/j.jhazmat.2021.126361
  97. Maryam Tabatabaei Anaraki, Daniel H. Lysak, Katelyn Downey, Flávio Vinicius Crizóstomo Kock, Xiang You, Rudraksha D. Majumdar, Andersson Barison, Luciano Morais Lião, Antonio Gilberto Ferreira, Venita Decker, Benjamin Goerling, Manfred Spraul, Markus Godejohann, Paul A. Helm, Sonya Kleywegt, Karl Jobst, Ronald Soong, Myrna J. Simpson, Andre J. Simpson. NMR spectroscopy of wastewater: A review, case study, and future potential. Progress in Nuclear Magnetic Resonance Spectroscopy 2021, 126-127 , 121-180. https://doi.org/10.1016/j.pnmrs.2021.08.001
  98. Weilan Zhang, Yanna Liang. Effects of hydrothermal treatments on destruction of per- and polyfluoroalkyl substances in sewage sludge. Environmental Pollution 2021, 285 , 117276. https://doi.org/10.1016/j.envpol.2021.117276
  99. Badri Vishal. Foaming and rheological properties of aqueous solutions: an interfacial study. Reviews in Chemical Engineering 2021, Article ASAP.
  100. Misaki Endoh, Hiroki Konno. Amino-functionalized UiO-66 as a Novel Adsorbent for Removal of Perfluorooctane Sulfonate from Aqueous Solution. Chemistry Letters 2021, 50 (8) , 1592-1596. https://doi.org/10.1246/cl.210233
Load more citations

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE