ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Bacterial Formation of Tooeleite and Mixed Arsenic(III) or Arsenic(V)−Iron(III) Gels in the Carnoulès Acid Mine Drainage, France. A XANES, XRD, and SEM Study

View Author Information
Laboratoire de Minéralogie Cristallographie de Paris (LMCP), UMR CNRS 7590 - Universités Paris 6 et 7 - IPGP, 4 Place Jussieu, 75252 Paris Cedex 05, France, and Laboratoire Hydrosciences Montpellier, UMR 5569, CNRS - Université Montpellier 2, Place E. Bataillon, 34095 Montpellier Cedex 05, France
Cite this: Environ. Sci. Technol. 2003, 37, 9, 1705–1712
Publication Date (Web):March 21, 2003
https://doi.org/10.1021/es025688p
Copyright © 2003 American Chemical Society

    Article Views

    1843

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    The oxidation of Fe(II) in acid mine drainage (AMD) leads to the precipitation of Fe(III) compounds which may incorporate toxic elements, such as arsenic (As), within their structure or adsorb them at their surface, thus limiting their mobility. The present work provides evidence for spatial and seasonal variations of microbial activity that influence arsenite oxidation and As immobilization in the heavily contaminated AMD from the Carnoulès mine, Gard, France ([As III] = 80 to 280 mg·L-1 in the acidic spring draining the waste-pile). In the first tens of meters of the AMD, the rapid oxidation of Fe(II) leads to the coprecipitation of large amounts of As with Fe(III) in bacterial mats. XRD, XANES, and SEM analyses of sediments and stromatolite samples revealed the unusual formation of As(III)-rich compounds, especially nanocrystalline tooeleite, Fe6(AsO3)4(SO4)(OH)4·4H2O, a rare ferric arsenite sulfate oxy-hydroxide mineral, together with XRD-amorphous mixed As(III)/As(V)-Fe(III) oxy-hydroxide compounds. In the wet season, the suspended sediments of the upstream zone essentially consist of tooeleite associated with am-As(III)-Fe(III) oxy-hydroxides, while am-As(V)-Fe(III) oxy-hydroxides, having As:Fe molar ratios as high as 0.6−0.8, dominate in the dry season. Comparing natural and bioassay samples revealed that the formation of As(III)-rich compounds in the wet season may be related to the metabolic activity of bacterial strains able to oxidize Fe(II) but not As(III). One of these strains, having an Acidithiobacillus ferrooxidans genotype, has been isolated from the Carnoulès AMD. In contrast, the formation of As(V)-rich compounds in the dry season can be related to both biotic and abiotic oxidation of As(III) to As(V). Some Thiomonas strains isolated from the Carnoulès AMD were shown to be able to catalyze the oxidation of As(III) to As(V) in solution. Therefore, they can promote the formation of mixed As(V)-Fe(III) oxy-hydroxides, provided enough Fe(II) oxidizes. These results yield a better understanding of natural processes at this site and may help in designing efficient As-removal processes.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author phone:  33 1 44 27 75 04; fax:  33 1 44 27 37 85; e-mail: [email protected]. Corresponding author address:  LMCP, case 115, 4 Place Jussieu, 75252 Paris Cedex 05, France.

     Universités Paris 6 et 7 - IPGP.

    §

     CNRS - Université Montpellier 2.

     Deceased October 26, 1999.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Water chemistry data on the Carnoulès AMD sampled in February 2001, May 2001, and January 2002 (Table 3). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 171 publications.

    1. Guillaume Morin, Frédéric Averseng, Xavier Carrier, Pierre Le Pape, Yishan Du, Yusheng HongE, Elora Bourbon, Giuseppe Sportelli, Tiago A. Da Silva, Alberto Mezzetti, Camille Baya, Thierry Allard, Jessica Brest, Maryse Rouelle. Phosphate Boosts Nonhydroxyl Radical Species Production upon Air Oxidation of Magnetite and Iron Sulfides at Neutral pH. The Journal of Physical Chemistry C 2023, 127 (20) , 9650-9662. https://doi.org/10.1021/acs.jpcc.3c02236
    2. Girish Choppala, Dane Lamb, Robert Aughterson, Edward D. Burton. Tooeleite Transformation and Coupled As(III) Mobilization Are Induced by Fe(II) under Anoxic, Circumneutral Conditions. Environmental Science & Technology 2022, 56 (13) , 9446-9452. https://doi.org/10.1021/acs.est.2c02130
    3. Liliana Lefticariu, Stephen R. Sutton, Antonio Lanzirotti, Theodore M. Flynn. Enhanced Immobilization of Arsenic from Acid Mine Drainage by Detrital Clay Minerals. ACS Earth and Space Chemistry 2019, 3 (11) , 2525-2538. https://doi.org/10.1021/acsearthspacechem.9b00203
    4. Katrin Ehlert, Christian Mikutta, Yuan Jin, and Ruben Kretzschmar . Mineralogical Controls on the Bioaccessibility of Arsenic in Fe(III)–As(V) Coprecipitates. Environmental Science & Technology 2018, 52 (2) , 616-627. https://doi.org/10.1021/acs.est.7b05176
    5. Petar N. Mandaliev, Christian Mikutta, Kurt Barmettler, Tsvetan Kotsev, and Ruben Kretzschmar . Arsenic Species Formed from Arsenopyrite Weathering along a Contamination Gradient in Circumneutral River Floodplain Soils. Environmental Science & Technology 2014, 48 (1) , 208-217. https://doi.org/10.1021/es403210y
    6. Areej Adra, Guillaume Morin, Georges Ona-Nguema, Nicolas Menguy, Fabien Maillot, Corinne Casiot, Odile Bruneel, Sophie Lebrun, Farid Juillot, and Jessica Brest . Arsenic Scavenging by Aluminum-Substituted Ferrihydrites in a Circumneutral pH River Impacted by Acid Mine Drainage.. Environmental Science & Technology 2013, 47 (22) , 12784-12792. https://doi.org/10.1021/es4020234
    7. Melanie Auffan, Jerome Rose, Olivier Proux, Armand Masion, Wei Liu, Laila Benameur, Fabio Ziarelli, Alain Botta, Corinne Chaneac, and Jean-Yves Bottero . Is There a Trojan-Horse Effect during Magnetic Nanoparticles and Metalloid Cocontamination of Human Dermal Fibroblasts?. Environmental Science & Technology 2012, 46 (19) , 10789-10796. https://doi.org/10.1021/es302493s
    8. Georges Ona-Nguema, Guillaume Morin, Yuheng Wang, Andrea L. Foster, Farid Juillot, Georges Calas and Gordon E. Brown, Jr. . XANES Evidence for Rapid Arsenic(III) Oxidation at Magnetite and Ferrihydrite Surfaces by Dissolved O2 via Fe2+-Mediated Reactions. Environmental Science & Technology 2010, 44 (14) , 5416-5422. https://doi.org/10.1021/es1000616
    9. Chiharu Tokoro, Yohei Yatsugi, Hajime Koga and Shuji Owada. Sorption Mechanisms of Arsenate during Coprecipitation with Ferrihydrite in Aqueous Solution. Environmental Science & Technology 2010, 44 (2) , 638-643. https://doi.org/10.1021/es902284c
    10. Edward D. Burton, Richard T. Bush, Scott G. Johnston, Kym M. Watling, Rosalie K. Hocking, Leigh A. Sullivan and Gretel K. Parker . Sorption of Arsenic(V) and Arsenic(III) to Schwertmannite. Environmental Science & Technology 2009, 43 (24) , 9202-9207. https://doi.org/10.1021/es902461x
    11. Guillaume Morin, Yuheng Wang, Georges Ona-Nguema, Farid Juillot, Guillaume Calas, Nicolas Menguy, Emmanuel Aubry, John R. Bargar and Gordon E. Brown, Jr. . EXAFS and HRTEM Evidence for As(III)-Containing Surface Precipitates on Nanocrystalline Magnetite: Implications for As Sequestration. Langmuir 2009, 25 (16) , 9119-9128. https://doi.org/10.1021/la900655v
    12. Jiman Yeo and Wonyong Choi. Iodide-Mediated Photooxidation of Arsenite under 254 nm Irradiation. Environmental Science & Technology 2009, 43 (10) , 3784-3788. https://doi.org/10.1021/es900602n
    13. Jennyfer Miot, Guillaume Morin, Fériel Skouri-Panet, Céline Férard, Antonine Poitevin, Emmanuel Aubry, Georges Ona-Nguema, Farid Juillot, François Guyot and Gordon E Brown, Jr. . Speciation of Arsenic in Euglena gracilis Cells Exposed to As(V). Environmental Science & Technology 2009, 43 (9) , 3315-3321. https://doi.org/10.1021/es802833s
    14. Satoshi Endo, Yasuko Terada, Yasuhiro Kato and Izumi Nakai . Chemical Speciation of Arsenic-Accumulating Mineral in a Sedimentary Iron Deposit by Synchrotron Radiation Multiple X-ray Analytical Techniques. Environmental Science & Technology 2008, 42 (19) , 7152-7158. https://doi.org/10.1021/es8006518
    15. Jennyfer Miot, Guillaume Morin, Fériel Skouri-Panet, Céline Férard, Emmanuel Aubry, Joël Briand, Yuheng Wang, Georges Ona-Nguema, François Guyot and Gordon E. Brown . XAS Study of Arsenic Coordination in Euglena gracilis Exposed to Arsenite. Environmental Science & Technology 2008, 42 (14) , 5342-5347. https://doi.org/10.1021/es703072d
    16. Alejandro Fernández-Martínez, Gabriel J. Cuello, Mark R. Johnson, Fabrizio Bardelli, Gabriela Román-Ross, Laurent Charlet and Xavier Turrillas. Arsenate Incorporation in Gypsum Probed by Neutron, X-ray Scattering and Density Functional Theory Modeling. The Journal of Physical Chemistry A 2008, 112 (23) , 5159-5166. https://doi.org/10.1021/jp076067r
    17. Guillaume Morin, Georges Ona-Nguema, Yuheng Wang, Nicolas Menguy, Farid Juillot, Olivier Proux, François Guyot, Georges Calas and Gordon E. Brown Jr. . Extended X-ray Absorption Fine Structure Analysis of Arsenite and Arsenate Adsorption on Maghemite. Environmental Science & Technology 2008, 42 (7) , 2361-2366. https://doi.org/10.1021/es072057s
    18. F. Beolchini,, F. Pagnanelli,, I. De Michelis, and, F. Vegliò. Micellar Enhanced Ultrafiltration for Arsenic(V) Removal:  Effect of Main Operating Conditions and Dynamic Modelling. Environmental Science & Technology 2006, 40 (8) , 2746-2752. https://doi.org/10.1021/es052114m
    19. S. Thoral,, J. Rose,, J. M. Garnier,, A. van Geen,, P. Refait,, A. Traverse,, E. Fonda,, D. Nahon, and, J. Y. Bottero. XAS Study of Iron and Arsenic Speciation during Fe(II) Oxidation in the Presence of As(III). Environmental Science & Technology 2005, 39 (24) , 9478-9485. https://doi.org/10.1021/es047970x
    20. Georges Ona-Nguema,, Guillaume Morin,, Farid Juillot,, Georges Calas, and, Gordon E. Brown Jr.. EXAFS Analysis of Arsenite Adsorption onto Two-Line Ferrihydrite, Hematite, Goethite, and Lepidocrocite. Environmental Science & Technology 2005, 39 (23) , 9147-9155. https://doi.org/10.1021/es050889p
    21. B. Cancès,, F. Juillot,, G. Morin,, V. Laperche,, L. Alvarez,, O. Proux,, J-L. Hazemann,, G. E. BrownJr., and, G. Calas. XAS Evidence of As(V) Association with Iron Oxyhydroxides in a Contaminated Soil at a Former Arsenical Pesticide Processing Plant. Environmental Science & Technology 2005, 39 (24) , 9398-9405. https://doi.org/10.1021/es050920n
    22. Suparna Datta, Keisham Radhapyari, Snigdha Dutta, Rinkumoni Barman, Anadi Gayen. Biological Remediation of Heavy Metals from Acid Mine Drainage—Recent Advancements. 2024, 199-245. https://doi.org/10.1002/9781119853589.ch10
    23. Mengpei Jiang, Shuang Gao, Wenshu Shi, Zhangtao Guo, Xiaofeng Wu, Ying Wang, Jichun You, Jianrong Zeng, Hui Zeng, Xiangyan Hou, Yaowen Zhang, Qian Zhu, Keke Huang, Shouhua Feng. Magnetic-field-dominated spin-driven lattice deformation of 2D FeO/Cu2O composites for CO2 photocatalytic C–C coupling. Chem Catalysis 2023, 586 , 100808. https://doi.org/10.1016/j.checat.2023.100808
    24. Camila Diaz-Vanegas, Marina Héry, Angélique Desoeuvre, Odile Bruneel, Catherine Joulian, Jérôme Jacob, Fabienne Battaglia-Brunet, Corinne Casiot. Towards an understanding of the factors controlling bacterial diversity and activity in semi-passive Fe- and As-oxidizing bioreactors treating arsenic-rich acid mine drainage. FEMS Microbiology Ecology 2023, 99 (9) https://doi.org/10.1093/femsec/fiad089
    25. Song Long, Xiang Ning, Shengli Wang, Jun Xu, Yining Wu, Zitong Liu, Zhongren Nan. Remediation of arsenic-contaminated calcareous agricultural soils by iron-oxidizing bacteria combined with organic fertilizer. Environmental Science and Pollution Research 2023, 30 (26) , 68258-68270. https://doi.org/10.1007/s11356-023-27217-5
    26. Chloé Truong, Sylvain Bernard, Pierre Le Pape, Guillaume Morin, Camille Baya, Pauline Merrot, Aurore Gorlas, François Guyot. Production of carbon-containing pyrite spherules induced by hyperthermophilic Thermococcales: a biosignature?. Frontiers in Microbiology 2023, 14 https://doi.org/10.3389/fmicb.2023.1145781
    27. Xiaotong Liu, Xiaolin Cai, Pengfei Wang, Naiyi Yin, Chuanfang Fan, Xuhui Chang, Xuhan Huang, Xin Du, Shuping Wang, Yanshan Cui. Effect of manganese oxides on arsenic speciation and mobilization in different arsenic-adsorbed iron-minerals under microbially-reducing conditions. Journal of Hazardous Materials 2023, 445 , 130602. https://doi.org/10.1016/j.jhazmat.2022.130602
    28. Giovanni De Giudici, Daniela Medas, Carlo Meneghini. Bio-mineral Interactions and the Environment. 2023, 67-116. https://doi.org/10.1007/978-3-031-16135-3_4
    29. Sarita Pandey, Rashmi Rai, Lal Chand Rai. Biochemical and molecular basis of arsenic toxicity and tolerance in microbes and plants. 2023, 709-759. https://doi.org/10.1016/B978-0-323-89847-8.00032-8
    30. Marina Seder-Colomina, Arnaud Mangeret, Pascale Bauda, Jessica Brest, Lucie Stetten, Pauline Merrot, Anthony Julien, Olivier Diez, Evelyne Barker, Elise Billoir, Pascal Poupin, Antoine Thouvenot, Charlotte Cazala, Guillaume Morin. Influence of microorganisms on uranium release from mining-impacted lake sediments under various oxygenation conditions. Environmental Science: Processes & Impacts 2022, 24 (10) , 1830-1843. https://doi.org/10.1039/D2EM00104G
    31. Xu Ma, Fengdai Qi, Mario Alberto Gomez, Rui Su, Zelong Yan, Shuhua Yao, Shaofeng Wang, Yongfeng Jia. Spectroscopic study on the local structure of sulfate (SO42−) incorporated in scorodite (FeAsO4·2H2O) lattice: Implications for understanding the Fe(III)-As(V)-SO42−-bearing minerals formation. American Mineralogist 2022, 107 (10) , 1840-1849. https://doi.org/10.2138/am-2022-8184
    32. C. Diaz-Vanegas, C. Casiot, L. Lin, L. De Windt, M. Héry, A. Desoeuvre, O. Bruneel, F. Battaglia-Brunet, J. Jacob. Performance of Semi-passive Systems for the Biological Treatment of High-As Acid Mine Drainage: Results from a Year of Monitoring at the Carnoulès Mine (Southern France). Mine Water and the Environment 2022, 41 (3) , 679-694. https://doi.org/10.1007/s10230-022-00885-4
    33. Hong-Rui Chen, Duo-Rui Zhang, Qian Li, Zhen-Yuan Nie, Eva Pakostova. Release and fate of As mobilized via bio-oxidation of arsenopyrite in acid mine drainage: Importance of As/Fe/S speciation and As(III) immobilization. Water Research 2022, 223 , 118957. https://doi.org/10.1016/j.watres.2022.118957
    34. Xiaolin Cai, Zhennan Zhang, Naiyi Yin, Wenyi Lu, Huili Du, Mei Yang, Liwei Cui, Shibao Chen, Yanshan Cui. Controlling microbial arsenite oxidation and mobilization in arsenite-adsorbed iron minerals: The Influence of pH conditions and mineralogical composition. Journal of Hazardous Materials 2022, 433 , 128778. https://doi.org/10.1016/j.jhazmat.2022.128778
    35. Danni Zhang, Rui Cao, Yu Song, Yumeng Wang, Peiwen Zhang, Ying Wang, Fan Xiao, Shaofeng Wang, Yongfeng Jia. Molecular structures of dissolved and colloidal AsV–FeIII complexes and their roles in the mobilization of AsV under strongly acidic conditions. Journal of Hazardous Materials 2022, 430 , 128266. https://doi.org/10.1016/j.jhazmat.2022.128266
    36. Qingzhu Li, Qianwen Liu, Xi Wang, Qi Liao, Hui Liu, Qingwei Wang. Yeast Extract Affecting the Transformation of Biogenic Tooeleite and Its Stability. Applied Sciences 2022, 12 (7) , 3290. https://doi.org/10.3390/app12073290
    37. G I Sarapulova. Computer Modeling of Zn and Ni Distribution in Technogenic Soils. IOP Conference Series: Earth and Environmental Science 2022, 988 (2) , 022061. https://doi.org/10.1088/1755-1315/988/2/022061
    38. A. Gorlas, T. Mariotte, L. Morey, C. Truong, S. Bernard, J.‐M. Guigner, J. Oberto, F. Baudin, G. Landrot, C. Baya, P. Le Pape, G. Morin, P. Forterre, F. Guyot. Precipitation of greigite and pyrite induced by Thermococcales: an advantage to live in Fe‐ and S‐rich environments?. Environmental Microbiology 2022, 24 (2) , 626-642. https://doi.org/10.1111/1462-2920.15915
    39. Anne Jantschke. Non-silicate Minerals (Carbonates, Oxides, Phosphates, Sulfur-Containing, Oxalates, and Other Organic Crystals) Induced by Microorganisms. 2022, 161-241. https://doi.org/10.1007/978-3-030-80807-5_6
    40. J. Aguilar-Carrillo, A. Velázquez, Emmanuel J. Gutiérrez, Iván A. Reyes-Domínguez. Partitioning and mobility of arsenic (As) and lead (Pb) in an ancient Pb–Zn mine in central Mexico: Role of amorphous ferric arsenate. Applied Geochemistry 2022, 136 , 105172. https://doi.org/10.1016/j.apgeochem.2021.105172
    41. Xu Ma, Jiaxi Zhang, Mario A. Gomez, Yu Ding, Shuhua Yao, Hongtao Lv, Xin Wang, Shaofeng Wang, Yongfeng Jia. Partitioning and transformation behavior of arsenic during Fe(III)-As(III)-As(V)-SO42− coprecipitation and subsequent aging process in acidic solutions: Implication for arsenic mobility and fixation. Science of The Total Environment 2021, 799 , 149474. https://doi.org/10.1016/j.scitotenv.2021.149474
    42. Xu Ma, Rui Su, Xiaoming Zhao, Sijia Liu, Xing Wu, Shaofeng Wang, Yongfeng Jia. Phase transformation of hydrous ferric arsenate in the presence of Fe(II) under anaerobic conditions: Implications for arsenic mobility and fate in natural and anthropogenic environments. Chemical Geology 2021, 578 , 120321. https://doi.org/10.1016/j.chemgeo.2021.120321
    43. C. Baya, P. Le Pape, B. Baptiste, J. Brest, G. Landrot, E. Elkaim, V. Noël, M. Blanchard, G. Ona-Nguema, F. Juillot, G. Morin. Influence of trace level As or Ni on pyrite formation kinetics at low temperature. Geochimica et Cosmochimica Acta 2021, 300 , 333-353. https://doi.org/10.1016/j.gca.2021.01.042
    44. Yunling Zhang, Kun Gao, Zhi Dang, Weilin Huang, John R. Reinfelder, Yuan Ren. Microbial reduction of As(V)-loaded Schwertmannite by Desulfosporosinus meridiei. Science of The Total Environment 2021, 764 , 144279. https://doi.org/10.1016/j.scitotenv.2020.144279
    45. Maria Garcia-Rios, Laurent De Windt, Linda Luquot, Corinne Casiot. Modeling of microbial kinetics and mass transfer in bioreactors simulating the natural attenuation of arsenic and iron in acid mine drainage. Journal of Hazardous Materials 2021, 405 , 124133. https://doi.org/10.1016/j.jhazmat.2020.124133
    46. Jinhee Park, Hyeonyong Chung, Sang Hyun Kim, Jinsung An, Kyoungphile Nam. Effect of neutralizing agents on the type of As co-precipitates formed by in situ Fe oxides synthesis and its impact on the bioaccessibility of As in soil. Science of The Total Environment 2020, 743 , 140686. https://doi.org/10.1016/j.scitotenv.2020.140686
    47. Jinhee Park, Jinsung An, Hyeonyong Chung, Sang Hyun Kim, Kyoungphile Nam. Reduction of bioaccessibility of As in soil through in situ formation of amorphous Fe oxides and its long-term stability. Science of The Total Environment 2020, 745 , 140989. https://doi.org/10.1016/j.scitotenv.2020.140989
    48. Zongqiang Zhu, Jun Zhang, Yinian Zhu, Jie Liu, Shen Tang, Lihao Zhang, Yaru Wang. Dissolution, Stability and Solubility of Tooeleite [Fe6(AsO3)4(SO4)(OH)4·4H2O] at 25–45 °C and pH 2–12. Minerals 2020, 10 (10) , 921. https://doi.org/10.3390/min10100921
    49. Xi Wang, Qingzhu Li, Qi Liao, Yuchen Yan, Juan Xia, Qiuhong Lin, Qingwei Wang, Yanjie Liang. Arsenic(III) biotransformation to tooeleite associated with the oxidation of Fe(II) via Acidithiobacillus ferrooxidans. Chemosphere 2020, 248 , 126080. https://doi.org/10.1016/j.chemosphere.2020.126080
    50. Qingzhu Li, Mengxue Zhang, Jinqin Yang, Qianwen Liu, Guanshi Zhang, Qi Liao, Hui Liu, Qingwei Wang. Formation and stability of biogenic tooeleite during Fe(II) oxidation by Acidithiobacillus ferrooxidans. Materials Science and Engineering: C 2020, 111 , 110755. https://doi.org/10.1016/j.msec.2020.110755
    51. Juraj Majzlan. Processes of metastable-mineral formation in oxidation zones and mine waste. Mineralogical Magazine 2020, 84 (3) , 367-375. https://doi.org/10.1180/mgm.2020.19
    52. Zidan Yuan, Xu Ma, Xing Wu, Guoqing Zhang, Xin Wang, Shaofeng Wang, Yongfeng Jia. Characterization of Fe5(AsO3)3Cl2(OH)4·5H2O, a new ferric arsenite hydroxychloride precipitated from FeCl3–As2O3–HCl solutions relevant to arsenic immobilization. Journal of Environmental Sciences 2020, 90 , 205-215. https://doi.org/10.1016/j.jes.2019.12.009
    53. Xianjin Qi, Yongkui Li, Longhua Wei, Fengyan Hao, Xing Zhu, Yonggang Wei, Kongzhai Li, Hua Wang. Disposal of high-arsenic waste acid by the stepwise formation of gypsum and scorodite. RSC Advances 2020, 10 (1) , 29-42. https://doi.org/10.1039/C9RA06568G
    54. Zidan Yuan, Guoqing Zhang, Xu Ma, Le Yu, Xin Wang, Shaofeng Wang, Yongfeng Jia. Rapid abiotic As removal from As-rich acid mine drainage: Effect of pH, Fe/As molar ratio, oxygen, temperature, initial As concentration and neutralization reagent. Chemical Engineering Journal 2019, 378 , 122156. https://doi.org/10.1016/j.cej.2019.122156
    55. Géraldine Sarret, Stéphane Guédron, Dario Acha, Sarah Bureau, Florent Arnaud-Godet, Delphine Tisserand, Marisol Goni-Urriza, Claire Gassie, Céline Duwig, Olivier Proux, Anne-Marie Aucour. Extreme Arsenic Bioaccumulation Factor Variability in Lake Titicaca, Bolivia. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-47183-8
    56. O. Bruneel, N. Mghazli, L. Sbabou, M. Héry, C. Casiot, A. Filali-Maltouf. Role of microorganisms in rehabilitation of mining sites, focus on Sub Saharan African countries. Journal of Geochemical Exploration 2019, 205 , 106327. https://doi.org/10.1016/j.gexplo.2019.06.009
    57. Wei Xiu, Xiaonuo Yu, Huaming Guo, Wenjie Yuan, Tiantian Ke, Guangyao Liu, Jing Tao, Weiguo Hou, Hailiang Dong. Facilitated arsenic immobilization by biogenic ferrihydrite-goethite biphasic Fe(III) minerals (Fh-Gt Bio-bi-minerals). Chemosphere 2019, 225 , 755-764. https://doi.org/10.1016/j.chemosphere.2019.02.098
    58. L. Fernandez-Rojo, C. Casiot, E. Laroche, V. Tardy, O. Bruneel, S. Delpoux, A. Desoeuvre, G. Grapin, J. Savignac, J. Boisson, G. Morin, F. Battaglia-Brunet, C. Joulian, M. Héry. A field-pilot for passive bioremediation of As-rich acid mine drainage. Journal of Environmental Management 2019, 232 , 910-918. https://doi.org/10.1016/j.jenvman.2018.11.116
    59. Shuiwang Duan, Paul M. Mayer, Sujay S. Kaushal, Barret M. Wessel, Thomas Johnson. Regenerative stormwater conveyance (RSC) for reducing nutrients in urban stormwater runoff depends upon carbon quantity and quality. Science of The Total Environment 2019, 652 , 134-146. https://doi.org/10.1016/j.scitotenv.2018.10.197
    60. Ashutosh Das, Mukesh Goel. Constructed Wetland: A Green Approach to Handle Wastewater. 2019, 1445-1468. https://doi.org/10.1007/978-3-319-73645-7_42
    61. Jinqin Yang, Yuchen Yan, Keren Hu, Guanshi Zhang, Dongyi Jiang, Qingzhu Li, Bin Ye, Liyuan Chai, Qingwei Wang, Hui Liu, Ruiyang Xiao. Structural substitution for SO4 group in tooeleite crystal by As(V) and As(III) oxoanions and the environmental implications. Chemosphere 2018, 213 , 305-313. https://doi.org/10.1016/j.chemosphere.2018.09.040
    62. Lidia Fernandez-Rojo, Corinne Casiot, Vincent Tardy, Elia Laroche, Pierre Le Pape, Guillaume Morin, Catherine Joulian, Fabienne Battaglia-Brunet, Charlotte Braungardt, Angélique Desoeuvre, Sophie Delpoux, Jolanda Boisson, Marina Héry. Hydraulic retention time affects bacterial community structure in an As-rich acid mine drainage (AMD) biotreatment process. Applied Microbiology and Biotechnology 2018, 102 (22) , 9803-9813. https://doi.org/10.1007/s00253-018-9290-0
    63. Helena Jelenová, Juraj Majzlan, Felix Y. Amoako, Petr Drahota. Geochemical and mineralogical characterization of the arsenic-, iron-, and sulfur-rich mining waste dumps near Kaňk, Czech Republic. Applied Geochemistry 2018, 97 , 247-255. https://doi.org/10.1016/j.apgeochem.2018.08.029
    64. Vincent Tardy, Corinne Casiot, Lidia Fernandez-Rojo, Eléonore Resongles, Angélique Desoeuvre, Catherine Joulian, Fabienne Battaglia-Brunet, Marina Héry. Temperature and nutrients as drivers of microbially mediated arsenic oxidation and removal from acid mine drainage. Applied Microbiology and Biotechnology 2018, 102 (5) , 2413-2424. https://doi.org/10.1007/s00253-017-8716-4
    65. Ashutosh Das, Mukesh Goel. Constructed Wetland – A Green Approach to Handle Wastewater. 2018, 1-25. https://doi.org/10.1007/978-3-319-58538-3_42-1
    66. Amir Mohammad Nazari, Rebecca Radzinski, Ahmad Ghahreman. Review of arsenic metallurgy: Treatment of arsenical minerals and the immobilization of arsenic. Hydrometallurgy 2017, 174 , 258-281. https://doi.org/10.1016/j.hydromet.2016.10.011
    67. A.C. Canali, J.M. Brenan, N.A. Sullivan. Solubility of platinum-arsenide melt and sperrylite in synthetic basalt at 0.1 MPa and 1200 °C with implications for arsenic speciation and platinum sequestration in mafic igneous systems. Geochimica et Cosmochimica Acta 2017, 216 , 153-168. https://doi.org/10.1016/j.gca.2017.05.006
    68. Susanta Paikaray, Christian Schröder, Stefan Peiffer. Schwertmannite stability in anoxic Fe(II)-rich aqueous solution. Geochimica et Cosmochimica Acta 2017, 217 , 292-305. https://doi.org/10.1016/j.gca.2017.08.026
    69. L. Fernandez-Rojo, M. Héry, P. Le Pape, C. Braungardt, A. Desoeuvre, E. Torres, V. Tardy, E. Resongles, E. Laroche, S. Delpoux, C. Joulian, F. Battaglia-Brunet, J. Boisson, G. Grapin, G. Morin, C. Casiot. Biological attenuation of arsenic and iron in a continuous flow bioreactor treating acid mine drainage (AMD). Water Research 2017, 123 , 594-606. https://doi.org/10.1016/j.watres.2017.06.059
    70. Ivan P. Pozdnyakov, Tamara E. Romanova, Xiaojiao Cai, Victoria A. Salomatova, Victor F. Plyusnin, Ping Na, Olga V. Shuvaeva. Near-UV photooxidation of As(III) by iron species in the presence of fulvic acid. Chemosphere 2017, 181 , 337-342. https://doi.org/10.1016/j.chemosphere.2017.04.103
    71. Wei Kheng Teoh, Faezah Mohd Salleh, Shafinaz Shahir. Characterization of Thiomonas delicata arsenite oxidase expressed in Escherichia coli. 3 Biotech 2017, 7 (2) https://doi.org/10.1007/s13205-017-0740-7
    72. N.R. Ayupova, V.V. Maslennikov, S.G. Tessalina, O.P. Shilovsky, S.A. Sadykov, S.P. Hollis, L.V. Danyushevsky, N.P. Safina, E.O. Statsenko. Tube fossils from gossanites of the Urals VHMS deposits, Russia: Authigenic mineral assemblages and trace element distributions. Ore Geology Reviews 2017, 85 , 107-130. https://doi.org/10.1016/j.oregeorev.2016.08.003
    73. Pierre Le Pape, Fabienne Battaglia-Brunet, Marc Parmentier, Catherine Joulian, Cindy Gassaud, Lidia Fernandez-Rojo, Jean-Michel Guigner, Maya Ikogou, Lucie Stetten, Luca Olivi, Corinne Casiot, Guillaume Morin. Complete removal of arsenic and zinc from a heavily contaminated acid mine drainage via an indigenous SRB consortium. Journal of Hazardous Materials 2017, 321 , 764-772. https://doi.org/10.1016/j.jhazmat.2016.09.060
    74. Liyuan Chai, Mengqing Yue, Jinqin Yang, Qingwei Wang, Qingzhu Li, Hui Liu. Formation of tooeleite and the role of direct removal of As(III) from high-arsenic acid wastewater. Journal of Hazardous Materials 2016, 320 , 620-627. https://doi.org/10.1016/j.jhazmat.2016.07.069
    75. A. Volant, M. Héry, A. Desoeuvre, C. Casiot, G. Morin, P. N. Bertin, O. Bruneel. Spatial Distribution of Eukaryotic Communities Using High-Throughput Sequencing Along a Pollution Gradient in the Arsenic-Rich Creek Sediments of Carnoulès Mine, France. Microbial Ecology 2016, 72 (3) , 608-620. https://doi.org/10.1007/s00248-016-0826-5
    76. Juraj Majzlan, Edgar Dachs, Artur Benisek, Christian Bender Koch, Ralph Bolanz, Jörg Göttlicher, Ralph Steininger. Thermodynamic properties of tooeleite, Fe63+(As3+O3)4(SO4)(OH)4·4H2O. Geochemistry 2016, 76 (3) , 419-428. https://doi.org/10.1016/j.chemer.2016.05.001
    77. Michael R. Williams, Barret M. Wessel, Solange Filoso. Sources of iron (Fe) and factors regulating the development of flocculate from Fe-oxidizing bacteria in regenerative streamwater conveyance structures. Ecological Engineering 2016, 95 , 723-737. https://doi.org/10.1016/j.ecoleng.2016.06.120
    78. Arindam Malakar, Bidisa Das, Samirul Islam, Carlo Meneghini, Giovanni De Giudici, Marco Merlini, Yury V. Kolen’ko, Antonella Iadecola, Giuliana Aquilanti, Somobrata Acharya, Sugata Ray. Efficient artificial mineralization route to decontaminate Arsenic(III) polluted water - the Tooeleite Way. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep26031
    79. Jennyfer Miot, Shipeng Lu, Guillaume Morin, Areej Adra, Karim Benzerara, Kirsten Küsel. Iron mineralogy across the oxycline of a lignite mine lake. Chemical Geology 2016, 434 , 28-42. https://doi.org/10.1016/j.chemgeo.2016.04.013
    80. Yingge Wang, Alexandre Gélabert, F. Marc Michel, Yongseong Choi, Johannes Gescher, Georges Ona-Nguema, Peter J. Eng, John R. Bargar, Francois Farges, Alfred M. Spormann, Gordon E. Brown. Effect of biofilm coatings at metal-oxide/water interfaces I: Pb(II) and Zn(II) partitioning and speciation at Shewanella oneidensis/metal-oxide/water interfaces. Geochimica et Cosmochimica Acta 2016, 188 , 368-392. https://doi.org/10.1016/j.gca.2016.04.052
    81. Lukasz Drewniak, Pawel S. Krawczyk, Sebastian Mielnicki, Dorota Adamska, Adam Sobczak, Leszek Lipinski, Weronika Burec-Drewniak, Aleksandra Sklodowska. Physiological and Metagenomic Analyses of Microbial Mats Involved in Self-Purification of Mine Waters Contaminated with Heavy Metals. Frontiers in Microbiology 2016, 7 https://doi.org/10.3389/fmicb.2016.01252
    82. Jing Liu, LiLe He, Shu Chen, Faqin Dong, Ray L. Frost. Characterization of the dissolution of tooeleite under Acidithiobacillus ferrooxidans relevant to mineral trap for arsenic removal. Desalination and Water Treatment 2016, 57 (32) , 15108-15114. https://doi.org/10.1080/19443994.2015.1069225
    83. Jennyfer Miot, Marjorie Etique. Formation and Transformation of Iron‐Bearing Minerals by Iron(II)‐Oxidizing and Iron(III)‐Reducing Bacteria. 2016, 53-98. https://doi.org/10.1002/9783527691395.ch4
    84. Yu. N. Vodyanitskii, S. A. Shoba. Biogeochemical barriers for soil and groundwater bioremediation. Moscow University Soil Science Bulletin 2016, 71 (3) , 89-100. https://doi.org/10.3103/S014768741603008X
    85. Zhennan Zhang, Naiyi Yin, Huili Du, Xiaolin Cai, Yanshan Cui. The fate of arsenic adsorbed on iron oxides in the presence of arsenite-oxidizing bacteria. Chemosphere 2016, 151 , 108-115. https://doi.org/10.1016/j.chemosphere.2016.02.065
    86. Agnès Hovasse, Odile Bruneel, Corinne Casiot, Angélique Desoeuvre, Julien Farasin, Marina Hery, Alain Van Dorsselaer, Christine Carapito, Florence Arsène-Ploetze. Spatio-Temporal Detection of the Thiomonas Population and the Thiomonas Arsenite Oxidase Involved in Natural Arsenite Attenuation Processes in the Carnoulès Acid Mine Drainage. Frontiers in Cell and Developmental Biology 2016, 4 https://doi.org/10.3389/fcell.2016.00003
    87. B.T. Ngwenya. Bacterial Mineralization. 2016https://doi.org/10.1016/B978-0-12-803581-8.02248-7
    88. Resongles E., Le Pape P., Fernandez-Rojo L., Morin G., Delpoux S., Brest J., Guo S., Casiot C.. Routine determination of inorganic arsenic speciation in precipitates from acid mine drainage using orthophosphoric acid extraction followed by HPLC-ICP-MS. Analytical Methods 2016, 8 (40) , 7420-7426. https://doi.org/10.1039/C6AY02084D
    89. Erika Revesz, Danielle Fortin, Dogan Paktunc. Reductive dissolution of scorodite in the presence of Shewanella sp. CN32 and Shewanella sp. ANA-3. Applied Geochemistry 2015, 63 , 347-356. https://doi.org/10.1016/j.apgeochem.2015.09.022
    90. S Casas-Flores, E Y Gómez-Rodríguez, J V García-Meza. Community of thermoacidophilic and arsenic resistant microorganisms isolated from a deep profile of mine heaps. AMB Express 2015, 5 (1) https://doi.org/10.1186/s13568-015-0132-5
    91. Julien Farasin, Jérémy Andres, Corinne Casiot, Valérie Barbe, Jacques Faerber, David Halter, Dimitri Heintz, Sandrine Koechler, Didier Lièvremont, Raphael Lugan, Marie Marchal, Frédéric Plewniak, Fabienne Seby, Philippe N. Bertin, Florence Arsène-Ploetze. Thiomonas sp. CB2 is able to degrade urea and promote toxic metal precipitation in acid mine drainage waters supplemented with urea. Frontiers in Microbiology 2015, 6 https://doi.org/10.3389/fmicb.2015.00993
    92. Susanta Paikaray. Arsenic Geochemistry of Acid Mine Drainage. Mine Water and the Environment 2015, 34 (2) , 181-196. https://doi.org/10.1007/s10230-014-0286-4
    93. Susanta Paikaray, Stefan Peiffer. Lepidocrocite Formation Kinetics from Schwertmannite in Fe(II)-Rich Anoxic Alkaline Medium. Mine Water and the Environment 2015, 34 (2) , 213-222. https://doi.org/10.1007/s10230-014-0309-1
    94. Jan Sevink, Jacobus M. Verstraten, Annemieke M. Kooijman, Raul A. Loayza-Muro, Leo Hoitinga, Edwin J. Palomino, Boris Jansen. Rare Moss-Built Microterraces in a High-Altitude, Acid Mine Drainage-Polluted Stream (Cordillera Negra, Peru). Water, Air, & Soil Pollution 2015, 226 (6) https://doi.org/10.1007/s11270-015-2390-x
    95. Sarita Pandey, Rashmi Rai, Lal Chand Rai. Biochemical and Molecular Basis of Arsenic Toxicity and Tolerance in Microbes and Plants. 2015, 627-674. https://doi.org/10.1016/B978-0-12-418688-0.00027-7
    96. Bryne T. Ngwenya, Marisa Magennis, Francesca Podda, Andrei Gromov. Self-preservation strategies during bacterial biomineralization with reference to hydrozincite and implications for fossilization of bacteria. Journal of The Royal Society Interface 2014, 11 (100) , 20140845. https://doi.org/10.1098/rsif.2014.0845
    97. Aurélie Volant, Odile Bruneel, Angélique Desoeuvre, Marina Héry, Corinne Casiot, Noëlle Bru, Sophie Delpoux, Anne Fahy, Fabien Javerliat, Olivier Bouchez, Robert Duran, Philippe N. Bertin, Françoise Elbaz-Poulichet, Béatrice Lauga. Diversity and spatiotemporal dynamics of bacterial communities: physicochemical and other drivers along an acid mine drainage. FEMS Microbiology Ecology 2014, 90 (1) , 247-263. https://doi.org/10.1111/1574-6941.12394
    98. Yiqun Xu, Ming Yang, Ting Yao, Huixin Xiong. Isolation, identification and arsenic-resistance of Acidithiobacillus ferrooxidans HX3 producing schwertmannite. Journal of Environmental Sciences 2014, 26 (7) , 1463-1470. https://doi.org/10.1016/j.jes.2014.05.012
    99. Tingting Zhu, Xiancai Lu, Huan Liu, Juan Li, Xiangyu Zhu, Jianjun Lu, Rucheng Wang. Quantitative X-ray photoelectron spectroscopy-based depth profiling of bioleached arsenopyrite surface by Acidithiobacillus ferrooxidans. Geochimica et Cosmochimica Acta 2014, 127 , 120-139. https://doi.org/10.1016/j.gca.2013.11.025
    100. D.W. Blowes, C.J. Ptacek, J.L. Jambor, C.G. Weisener, D. Paktunc, W.D. Gould, D.B. Johnson. The Geochemistry of Acid Mine Drainage. 2014, 131-190. https://doi.org/10.1016/B978-0-08-095975-7.00905-0
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect