ACS Publications. Most Trusted. Most Cited. Most Read
Bioconcentration of Organic Chemicals:  Is a Solid-Phase Microextraction Fiber a Good Surrogate for Biota?
My Activity

Figure 1Loading Img
    Article

    Bioconcentration of Organic Chemicals:  Is a Solid-Phase Microextraction Fiber a Good Surrogate for Biota?
    Click to copy article linkArticle link copied!

    View Author Information
    Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80176, 3508 TD Utrecht, The Netherlands, and Department Aquatic Ecology & Ecotoxicology, University of Amsterdam, P.O. Box 94084, 1090 GB Amsterdam, The Netherlands
    Other Access Options

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2002, 36, 24, 5399–5404
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es0257016
    Published October 29, 2002
    Copyright © 2002 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    When organic chemicals are extracted from a water sample with solid-phase microextraction (SPME) fibers, the resulting concentrations in exposed fibers are proportional to the hydrophobicity of the compounds. This fiber accumulation is analogous to the bioconcentration of chemicals observed in aquatic organisms. The objective of this study was to investigate the prospect of measuring the total concentration in SPME fibers to estimate the total body residue in biota for the purpose of risk assessment. Using larvae of the midge, Chironomus riparius and disposable 15-μm poly(dimethylsiloxane) fibers, we studied the accumulation and accumulation kinetics of a number of narcotic compounds with a range of log Kow between 3 and 6. The fibers, which have a larger surface area-to-volume ratio, had consistently higher uptake and elimination rate constants (k1 and k2, respectively) than midge larvae and accumulated the chemicals 5 times faster. Comparison of the relationships of the partition coefficients KPDMS-water and Kmidge-water (lipid-normalized) to log Kow for all compounds yielded a factor of 28 for translating fiber concentrations to biota concentrations. This factor can be used to estimate internal concentrations in biota for compounds structurally similar to the compounds in this study. The exact chemical domain to which this factor can be applied needs to be defined in future research.

    Copyright © 2002 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     Corresponding author. Tel:  +31-30-2535018. Fax:  +31-30-2535077. E-mail:  [email protected].

     Utrecht University.

     University of Amsterdam.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 82 publications.

    1. Nienke Wieringa, Steven T. J. Droge, Thomas L. Ter Laak, Aishwarya A. K. Nair, Kelsey Walker, Piet F. M. Verdonschot, Michiel H. S. Kraak. Combining Passive Sampling and Dosing to Unravel the Contribution of Hydrophobic Organic Contaminants to Sediment Ecotoxicity. Environmental Science & Technology 2024, 58 (1) , 269-279. https://doi.org/10.1021/acs.est.3c07807
    2. James S. Grundy, Matthew K. Lambert, Robert M. Burgess. Passive Sampling-Based versus Conventional-Based Metrics for Evaluating Remediation Efficacy at Contaminated Sediment Sites: A Review. Environmental Science & Technology 2023, 57 (28) , 10151-10172. https://doi.org/10.1021/acs.est.3c00232
    3. Milo L. de Baat, Nienke Wieringa, Steven T. J. Droge, Bart G. van Hall, Froukje van der Meer, Michiel H. S. Kraak. Smarter Sediment Screening: Effect-Based Quality Assessment, Chemical Profiling, and Risk Identification. Environmental Science & Technology 2019, 53 (24) , 14479-14488. https://doi.org/10.1021/acs.est.9b02732
    4. Garrett D. Morandi, Kun Zhang, Steve B. Wiseman, Alberto dos Santos Pereira, Jonathan W. Martin, and John P. Giesy . Effect of Lipid Partitioning on Predictions of Acute Toxicity of Oil Sands Process Affected Water to Embryos of Fathead Minnow (Pimephales promelas). Environmental Science & Technology 2016, 50 (16) , 8858-8866. https://doi.org/10.1021/acs.est.6b01481
    5. Kun Zhang, Steve Wiseman, John P Giesy, and Jonathan W. Martin . Bioconcentration of Dissolved Organic Compounds from Oil Sands Process-Affected Water by Medaka (Oryzias latipes): Importance of Partitioning to Phospholipids. Environmental Science & Technology 2016, 50 (12) , 6574-6582. https://doi.org/10.1021/acs.est.6b01354
    6. Kees Booij, Craig D. Robinson, Robert M. Burgess, Philipp Mayer, Cindy A. Roberts, Lutz Ahrens, Ian J. Allan, Jan Brant, Lisa Jones, Uta R. Kraus, Martin M. Larsen, Peter Lepom, Jördis Petersen, Daniel Pröfrock, Patrick Roose, Sabine Schäfer, Foppe Smedes, Céline Tixier, Katrin Vorkamp, and Paul Whitehouse . Passive Sampling in Regulatory Chemical Monitoring of Nonpolar Organic Compounds in the Aquatic Environment. Environmental Science & Technology 2016, 50 (1) , 3-17. https://doi.org/10.1021/acs.est.5b04050
    7. Kun Zhang, Alberto S. Pereira, and Jonathan W. Martin . Estimates of Octanol–Water Partitioning for Thousands of Dissolved Organic Species in Oil Sands Process-Affected Water. Environmental Science & Technology 2015, 49 (14) , 8907-8913. https://doi.org/10.1021/acs.est.5b01656
    8. Stine N. Schmidt, Martin Holmstrup, Kilian E. C. Smith, and Philipp Mayer . Passive Dosing of Polycyclic Aromatic Hydrocarbon (PAH) Mixtures to Terrestrial Springtails: Linking Mixture Toxicity to Chemical Activities, Equilibrium Lipid Concentrations, and Toxic Units. Environmental Science & Technology 2013, 47 (13) , 7020-7027. https://doi.org/10.1021/es3047813
    9. Yuqiang Tao, Bin Xue, Shuchun Yao, Jiancai Deng, and Zhifan Gui . Triolein Embedded Cellulose Acetate Membrane as a Tool to Evaluate Sequestration of PAHs in Lake Sediment Core at Large Temporal Scale. Environmental Science & Technology 2012, 46 (7) , 3851-3858. https://doi.org/10.1021/es203102b
    10. Amanda D. Harwood, Peter F. Landrum, and Michael J. Lydy . Can SPME Fiber and Tenax Methods Predict the Bioavailability of Biotransformed Insecticides?. Environmental Science & Technology 2012, 46 (4) , 2413-2419. https://doi.org/10.1021/es2035174
    11. Barry Muijs and Michiel T. O. Jonker . Assessing the Bioavailability of Complex Petroleum Hydrocarbon Mixtures in Sediments. Environmental Science & Technology 2011, 45 (8) , 3554-3561. https://doi.org/10.1021/es103855a
    12. Erica L. DiFilippo and Robert P. Eganhouse. Assessment of PDMS-Water Partition Coefficients: Implications for Passive Environmental Sampling of Hydrophobic Organic Compounds. Environmental Science & Technology 2010, 44 (18) , 6917-6925. https://doi.org/10.1021/es101103x
    13. Thomas L. ter Laak, Martin A. ter Bekke and Joop L. M. Hermens . Dissolved Organic Matter Enhances Transport of PAHs to Aquatic Organisms. Environmental Science & Technology 2009, 43 (19) , 7212-7217. https://doi.org/10.1021/es803684f
    14. Barry Muijs and Michiel T.O. Jonker. Temperature-Dependent Bioaccumulation of Polycyclic Aromatic Hydrocarbons. Environmental Science & Technology 2009, 43 (12) , 4517-4523. https://doi.org/10.1021/es803462y
    15. Stephan A. van der Heijden and Michiel T. O. Jonker. PAH Bioavailability in Field Sediments: Comparing Different Methods for Predicting in Situ Bioaccumulation. Environmental Science & Technology 2009, 43 (10) , 3757-3763. https://doi.org/10.1021/es803329p
    16. Stéphane Bayen, Thomas L. ter Laak, Jacques Buffle and Joop L. M. Hermens . Dynamic Exposure of Organisms and Passive Samplers to Hydrophobic Chemicals. Environmental Science & Technology 2009, 43 (7) , 2206-2215. https://doi.org/10.1021/es8029895
    17. Shan Chen, Runhui Ke, Jinmiao Zha, Zijian Wang and Shahamat U. Khan. Influence of Humic Acid on Bioavailability and Toxicity of Benzo[k]fluoranthene to Japanese Medaka. Environmental Science & Technology 2008, 42 (24) , 9431-9436. https://doi.org/10.1021/es8014502
    18. Thomas Hartnik, John Jensen and Joop L. M. Hermens. Nonexhaustive β-Cyclodextrin Extraction as a Chemical Tool To Estimate Bioavailability of Hydrophobic Pesticides for Earthworms. Environmental Science & Technology 2008, 42 (22) , 8419-8425. https://doi.org/10.1021/es8008908
    19. Miriam León Paumen, Paul Stol, Thomas L. Ter Laak, Michiel H. S. Kraak, Cornelius A. M. van Gestel and Wim Admiraal. Chronic Exposure of the Oligochaete Lumbriculus variegatus to Polycyclic Aromatic Compounds (PACs): Bioavailability and Effects on Reproduction. Environmental Science & Technology 2008, 42 (9) , 3434-3440. https://doi.org/10.1021/es702500t
    20. Michiel T. O. Jonker,, Stephan A. van der Heijden,, Joseph P. Kreitinger, and, Steven B. Hawthorne. Predicting PAH Bioaccumulation and Toxicity in Earthworms Exposed to Manufactured Gas Plant Soils with Solid-Phase Microextraction. Environmental Science & Technology 2007, 41 (21) , 7472-7478. https://doi.org/10.1021/es070404s
    21. Runhui Ke,, Jianping Luo,, Liwei Sun,, Zijian Wang, and, Philip A. Spear. Predicting Bioavailability and Accumulation of Organochlorine Pesticides by Japanese Medaka in the Presence of Humic Acid and Natural Organic Matter Using Passive Sampling Membranes. Environmental Science & Technology 2007, 41 (19) , 6698-6703. https://doi.org/10.1021/es0707355
    22. Jing You,, Peter F. Landrum, and, Michael J. Lydy. Comparison of Chemical Approaches for Assessing Bioavailability of Sediment-Associated Contaminants. Environmental Science & Technology 2006, 40 (20) , 6348-6353. https://doi.org/10.1021/es060830y
    23. Thomas L. ter Laak,, Philipp Mayer,, Frans J. M. Busser,, Hans J. C. Klamer, and, Joop L. M. Hermens. Sediment Dilution Method to Determine Sorption Coefficients of Hydrophobic Organic Chemicals. Environmental Science & Technology 2005, 39 (11) , 4220-4225. https://doi.org/10.1021/es0482637
    24. Leon van der Wal,, Tjalling Jager,, Roel H. L. J. Fleuren,, Arjan Barendregt,, Theo L. Sinnige,, Cornelis A. M. van Gestel, and, Joop L. M. Hermens. Solid-Phase Microextraction To Predict Bioavailability and Accumulation of Organic Micropollutants in Terrestrial Organisms after Exposure to a Field-Contaminated Soil. Environmental Science & Technology 2004, 38 (18) , 4842-4848. https://doi.org/10.1021/es035318g
    25. Amy E. Vinturella,, Robert M. Burgess,, Brent A. Coull,, Kimberly M. Thompson, and, James P. Shine. Use of Passive Samplers To Mimic Uptake of Polycyclic Aromatic Hydrocarbons by Benthic Polychaetes. Environmental Science & Technology 2004, 38 (4) , 1154-1160. https://doi.org/10.1021/es034706f
    26. S. Lee,, J. Gan,, W. P. Liu, and, M. A. Anderson. Evaluation of Kd Underestimation Using Solid Phase Microextraction. Environmental Science & Technology 2003, 37 (24) , 5597-5602. https://doi.org/10.1021/es0344563
    27. Carolyn J. Koester, , Staci L. Simonich, , Bradley K. Esser. Environmental Analysis. Analytical Chemistry 2003, 75 (12) , 2813-2829. https://doi.org/10.1021/ac030131t
    28. Shunhui Wang, Wenjian Lao, Huizhen Li, Liang Guo, Jing You. Assessing bioaccumulation potential of sediment associated fipronil degradates in oligochaete Lumbriculus variegatus based on passive sampler measured bioavailable concentration. Science of The Total Environment 2023, 863 , 160514. https://doi.org/10.1016/j.scitotenv.2022.160514
    29. Kristen M. Prossner, George G. Vadas, Ellen Harvey, Michael A. Unger. A novel antibody-based biosensor method for the rapid measurement of PAH contamination in oysters. Environmental Technology & Innovation 2022, 28 , 102567. https://doi.org/10.1016/j.eti.2022.102567
    30. N. Wieringa, G.H. van der Lee, M.L. de Baat, M.H.S. Kraak, P.F.M. Verdonschot. Contribution of sediment contamination to multi-stress in lowland waters. Science of The Total Environment 2022, 844 , 157045. https://doi.org/10.1016/j.scitotenv.2022.157045
    31. Juan-ying Li, Li Zhang, Qian Wang, Jiayan Xu, Jie Yin, Yiqin Chen, Yiwen Gong, Barry C. Kelly, Ling Jin. Applicability of Equilibrium Sampling in Informing Tissue Residues and Dietary Risks of Legacy and Current-Use Organic Chemicals in Aquaculture. Environmental Toxicology and Chemistry 2020, 40 (1) , 79-87. https://doi.org/10.1002/etc.4912
    32. Zhiwei Li, Xialin Hu, Lanxue Qin, Daqiang Yin. Evaluating the effect of different modified microplastics on the availability of polycyclic aromatic hydrocarbons. Water Research 2020, 170 , 115290. https://doi.org/10.1016/j.watres.2019.115290
    33. Wenchun Zhou, Jia Liang, Hanyue Pan, Jie Liu, Yuanyuan Liu, Ye Zhao. A model of the physiological and biochemical characteristics of earthworms (Eisenia fetida) in petroleum-contaminated soil. Ecotoxicology and Environmental Safety 2019, 174 , 459-466. https://doi.org/10.1016/j.ecoenv.2019.03.002
    34. . Bibliography. 2016, 235-281. https://doi.org/10.1002/9781119006824.biblio
    35. Efstathios Reppas-Chrysovitsinos, Anna Sobek, Matthew MacLeod. Screening-level models to estimate partition ratios of organic chemicals between polymeric materials, air and water. Environmental Science: Processes & Impacts 2016, 18 (6) , 667-676. https://doi.org/10.1039/C5EM00664C
    36. Érica A. Souza-Silva, Ruifen Jiang, Angel Rodríguez-Lafuente, Emanuela Gionfriddo, Janusz Pawliszyn. A critical review of the state of the art of solid-phase microextraction of complex matrices I. Environmental analysis. TrAC Trends in Analytical Chemistry 2015, 71 , 224-235. https://doi.org/10.1016/j.trac.2015.04.016
    37. Michiel Claessens, Frederik De Laender, Els Monteyne, Patrick Roose, Colin R. Janssen. Modelling the fate of micropollutants in the marine environment using passive sampling. Marine Pollution Bulletin 2015, 96 (1-2) , 103-109. https://doi.org/10.1016/j.marpolbul.2015.05.040
    38. Michael H I Comber, Andrew Girling, Klaas H den Haan, Graham Whale. Oil refinery experience with the assessment of refinery effluents and receiving waters using biologically based methods. Integrated Environmental Assessment and Management 2015, 11 (4) , 653-665. https://doi.org/10.1002/ieam.1639
    39. Jing You, Huizhen Li, Michael J. Lydy. Assessment of Sediment Toxicity with SPME-Based Approaches. 2015, 161-194. https://doi.org/10.1016/B978-0-444-63299-9.00005-3
    40. Daniel Letinski, Thomas Parkerton, Aaron Redman, Ryan Manning, Gail Bragin, Eric Febbo, David Palandro, Tim Nedwed. Use of passive samplers for improving oil toxicity and spill effects assessment. Marine Pollution Bulletin 2014, 86 (1-2) , 274-282. https://doi.org/10.1016/j.marpolbul.2014.07.006
    41. Philipp Mayer, Thomas F Parkerton, Rachel G Adams, John G Cargill, Jay Gan, Todd Gouin, Philip M Gschwend, Steven B Hawthorne, Paul Helm, Gesine Witt, Jing You, Beate I Escher. Passive sampling methods for contaminated sediments: Scientific rationale supporting use of freely dissolved concentrations. Integrated Environmental Assessment and Management 2014, 10 (2) , 197-209. https://doi.org/10.1002/ieam.1508
    42. Hwang Lee, Won Joon Shim, Jung-Hwan Kwon. Sorption capacity of plastic debris for hydrophobic organic chemicals. Science of The Total Environment 2014, 470-471 , 1545-1552. https://doi.org/10.1016/j.scitotenv.2013.08.023
    43. Stanley O. Agbo, Jarkko Akkanen, Matti T. Leppänen, Jussi V. K. Kukkonen. Bioconcentration of benzo[ a ]pyrene in Chironomus riparius and Lumbriculus variegatus in relation to dissolved organic matter and biotransformation. Aquatic Ecosystem Health & Management 2013, 16 (1) , 70-77. https://doi.org/10.1080/14634988.2013.753827
    44. Xinyi Cui, Philipp Mayer, Jay Gan. Methods to assess bioavailability of hydrophobic organic contaminants: Principles, operations, and limitations. Environmental Pollution 2013, 172 , 223-234. https://doi.org/10.1016/j.envpol.2012.09.013
    45. Rolf-Alexander Düring, Leonard Böhm, Christian Schlechtriem. Solid-phase microextraction for bioconcentration studies according to OECD TG 305. Environmental Sciences Europe 2012, 24 (1) https://doi.org/10.1186/2190-4715-24-4
    46. Yuping Ding, Peter F. Landrum, Jing You, Amanda D. Harwood, Michael J. Lydy. Use of solid phase microextraction to estimate toxicity: Relating fiber concentrations to toxicity—part I. Environmental Toxicology and Chemistry 2012, 31 (9) , 2159-2167. https://doi.org/10.1002/etc.1935
    47. Rainer Lohmann, Kees Booij, Foppe Smedes, Branislav Vrana. Use of passive sampling devices for monitoring and compliance checking of POP concentrations in water. Environmental Science and Pollution Research 2012, 19 (6) , 1885-1895. https://doi.org/10.1007/s11356-012-0748-9
    48. Daniel Giesen, Michiel T.O. Jonker, Cornelis A. M. van Gestel. Development of QSARs for the toxicity of chlorobenzenes to the soil dwelling springtail Folsomia candida. Environmental Toxicology and Chemistry 2012, 31 (5) , 1136-1142. https://doi.org/10.1002/etc.1805
    49. Amanda D. Harwood, Aubrey R. Bunch, Dallas L. Flickinger, Jing You, Michael J. Lydy. Predicting the Toxicity of Permethrin to Daphnia magna in Water Using SPME Fibers. Archives of Environmental Contamination and Toxicology 2012, 62 (3) , 438-444. https://doi.org/10.1007/s00244-011-9721-8
    50. Amanda D. Harwood, Peter F. Landrum, Michael J. Lydy. A comparison of exposure methods for SPME-based bioavailability estimates. Chemosphere 2012, 86 (5) , 506-511. https://doi.org/10.1016/j.chemosphere.2011.10.015
    51. Graham A. Mills, Gary R. Fones, Kees Booij, Richard Greenwood. Passive Sampling Technologies. 2011, 397-432. https://doi.org/10.1002/9781119990826.ch13
    52. Pamela Caicedo, Andrea Schröder, Nadin Ulrich, Uwe Schröter, Albrecht Paschke, Gerrit Schüürmann, Inés Ahumada, Pablo Richter. Determination of lindane leachability in soil–biosolid systems and its bioavailability in wheat plants. Chemosphere 2011, 84 (4) , 397-402. https://doi.org/10.1016/j.chemosphere.2011.03.070
    53. Annika Jahnke, Philipp Mayer, Margaretha Adolfsson-Erici, Michael S McLachlan. Equilibrium sampling of environmental pollutants in fish: Comparison with lipid-normalized concentrations and homogenization effects on chemical activity. Environmental Toxicology and Chemistry 2011, 30 (7) , 1515-1521. https://doi.org/10.1002/etc.534
    54. Jing You, Amanda D. Harwood, Huizhen Li, Michael J. Lydy. Chemical techniques for assessing bioavailability of sediment-associated contaminants: SPME versus Tenax extraction. Journal of Environmental Monitoring 2011, 13 (4) , 792. https://doi.org/10.1039/c0em00587h
    55. Scott Dyer, Michael St J Warne, Joseph S Meyer, Heather A Leslie, Beate I Escher. Tissue residue approach for chemical mixtures. Integrated Environmental Assessment and Management 2011, 7 (1) , 99-115. https://doi.org/10.1002/ieam.106
    56. Xialin Hu, Jingfu Liu, Qunfang Zhou, Shiyan Lu, Rui Liu, Lin Cui, Daqiang Yin, Philipp Mayer, Guibin Jiang. Bioavailability of organochlorine compounds in aqueous suspensions of fullerene: Evaluated with medaka (Oryzias latipes) and negligible depletion solid-phase microextraction. Chemosphere 2010, 80 (7) , 693-700. https://doi.org/10.1016/j.chemosphere.2010.05.042
    57. Amanda A. Brennan, Amanda D. Harwood, Jing You, Peter F. Landrum, Michael J. Lydy. Degradation of fipronil in anaerobic sediments and the effect on porewater concentrations. Chemosphere 2009, 77 (1) , 22-28. https://doi.org/10.1016/j.chemosphere.2009.06.019
    58. Christopher M. Hurdzan, Roman P. Lanno. Determining exposure dose in soil: The effect of modifying factors on chlorinated benzene toxicity to earthworms. Chemosphere 2009, 76 (7) , 946-951. https://doi.org/10.1016/j.chemosphere.2009.04.036
    59. Lizanne M. Meloche, Adrian M. H. deBruyn, S. Victoria Otton, Michael G. Ikonomou, Frank A. P. C. Gobas. Assessing exposure of sediment biota to organic contaminants by thin-film solid phase extraction. Environmental Toxicology and Chemistry 2009, 28 (2) , 247-253. https://doi.org/10.1897/08-081.1
    60. Gesine Witt, Gladys A. Liehr, Dörthe Borck, Philipp Mayer. Matrix solid-phase microextraction for measuring freely dissolved concentrations and chemical activities of PAHs in sediment cores from the western Baltic Sea. Chemosphere 2009, 74 (4) , 522-529. https://doi.org/10.1016/j.chemosphere.2008.09.073
    61. Stefan Gartiser, Christoph Hafner, Sven Oeking, Albrecht Paschke. Results of a “Whole Effluent Assessment” study from different industrial sectors in Germany according to OSPAR's WEA strategy. J. Environ. Monit. 2009, 11 (2) , 359-369. https://doi.org/10.1039/B805746J
    62. . The usefulness of total concentrations and pore water concentrations of pesticides in soil as metrics for the assessment of ecotoxicological effects ‐ Scientific Opinion of the Panel on Plant Protection Products and their Residues (PPR). EFSA Journal 2009https://doi.org/10.2903/j.efsa.2009.922
    63. Ze-Yu Yang, Keith A. Maruya, Darrin Greenstein, David Tsukada, Eddy Y. Zeng. Experimental verification of a model describing solid phase microextraction (SPME) of freely dissolved organic pollutants in sediment porewater. Chemosphere 2008, 72 (10) , 1435-1440. https://doi.org/10.1016/j.chemosphere.2008.05.028
    64. Thomas Hartnik, Line E Sverdrup, John Jensen. Toxicity of the pesticide alpha-cypermethrin to four soil nontarget invertebrates and implications for risk assessment. Environmental Toxicology and Chemistry 2008, 27 (6) , 1408-1415. https://doi.org/10.1897/07-385.1
    65. Wesley Hunter, Yiping Xu, Frank Spurlock, Jay Gan. Using disposable polydimethylsiloxane fibers to assess the bioavailability of permethrin in sediment. Environmental Toxicology and Chemistry 2008, 27 (3) , 568-575. https://doi.org/10.1897/07-335.1
    66. Laura Sprunger, Amy Proctor, William E. Acree, Michael H. Abraham. Characterization of the sorption of gaseous and organic solutes onto polydimethyl siloxane solid-phase microextraction surfaces using the Abraham model. Journal of Chromatography A 2007, 1175 (2) , 162-173. https://doi.org/10.1016/j.chroma.2007.10.058
    67. Thomas L. ter Laak, Arjan Barendregt, Joop L.M. Hermens. Grinding and sieving soil affects the availability of organic contaminants: A kinetic analysis. Chemosphere 2007, 69 (4) , 613-620. https://doi.org/10.1016/j.chemosphere.2007.02.067
    68. T.P. Traas, C.J. Van Leeuwen. Ecotoxicological Effects. 2007, 281-356. https://doi.org/10.1007/978-1-4020-6102-8_7
    69. Kees Booij, Branislav Vrana, James N. Huckins. Chapter 7 Theory, modelling and calibration of passive samplers used in water monitoring. 2007, 141-169. https://doi.org/10.1016/S0166-526X(06)48007-7
    70. Lance J. Schuler, Peter F. Landrum, Michael J. Lydy. Response spectrum of fluoranthene and pentachlorobenzene for the fathead minnow ( Pimephales promelas ). Environmental Toxicology and Chemistry 2007, 26 (1) , 139-148. https://doi.org/10.1897/06-169R.1
    71. Watze de Wolf, Mike Comber, Peter Douben, Sylvia Gimeno, Martin Holt, Marc Léonard, Adam Lillicrap, Dick Sijm, Roger van Egmond, Anne Weisbrod, Graham Whale. Animal use replacement, reduction, and refinement: Development of an integrated testing strategy for bioconcentration of chemicals in fish. Integrated Environmental Assessment and Management 2007, 3 (1) , 3-17. https://doi.org/10.1002/ieam.5630030102
    72. George A.C. Ehlers, Andreas P. Loibner. Linking organic pollutant (bio)availability with geosorbent properties and biomimetic methodology: A review of geosorbent characterisation and (bio)availability prediction. Environmental Pollution 2006, 141 (3) , 494-512. https://doi.org/10.1016/j.envpol.2005.08.063
    73. Alethea T. Bowen, Jason M. Conder, Thomas W. La Point. Solid phase microextraction of aminodinitrotoluenes in tissue. Chemosphere 2006, 63 (1) , 58-63. https://doi.org/10.1016/j.chemosphere.2005.07.057
    74. R. W. P. M. Laane, P. de Voogt, M. H. Bik. Assessment of Organic Compounds in the Rhine Estuary. 2005, 307-368. https://doi.org/10.1007/698_5_031
    75. Jason M. Conder, Thomas W. La Point. Solid-phase microextraction for predicting the bioavailability of 2,4,6-trinitrotoluene and its primary transformation products in sediment and water. Environmental Toxicology and Chemistry 2005, 24 (5) , 1059-1066. https://doi.org/10.1897/04-484R.1
    76. Roman Lanno, Thomas La Point, Jason Conder, Jason Wells. Application of solid-phase microextraction fibers as biomimetic sampling devices in ecotoxicology. 2005https://doi.org/10.1201/9780203501597.ch28
    77. Amy E. Vinturella, Robert M. Burgess, Brent A. Coull, Kimberly M. Thompson, James P. Shine. Importance of black carbon in distribution and bioaccumulation models of polycyclic aromatic hydrocarbons in contaminated marine sediments. Environmental Toxicology and Chemistry 2004, 23 (11) , 2578-2586. https://doi.org/10.1897/03-358
    78. Heather A. Leslie, Joop L. M. Hermens, Michiel H. S. Kraak. Baseline toxicity of a chlorobenzene mixture and total body residues measured and estimated with solid-phase microextraction. Environmental Toxicology and Chemistry 2004, 23 (8) , 2017-2021. https://doi.org/10.1897/03-386
    79. Heather A. Leslie, Michiel H. S. Kraak, Joop L. M. Hermens. Chronic toxicity and body residues of the nonpolar narcotic 1,2,3,4-tetrachlorobenzene in Chironomus riparius. Environmental Toxicology and Chemistry 2004, 23 (8) , 2022-2028. https://doi.org/10.1897/03-385
    80. J. M. Conder, G. R. Lotufo, A. T. Bowen, P. K. Turner, T. W. La Point, J. A. Steevens. Solid phase microextraction fibers for estimating the toxicity of nitroaromatic compounds. Aquatic Ecosystem Health & Management 2004, 7 (3) , 387-397. https://doi.org/10.1080/14634980490479679
    81. Laurent C. Mézin, Robert C. Hale. Combined effects of humic acids and salinity on solid-phase microextraction of DDT and chlorpyrifos, an estimator of their bioavailability. Environmental Toxicology and Chemistry 2004, 23 (3) , 576-582. https://doi.org/10.1897/02-430
    82. L. van der Wal, C.A.M. van Gestel, J.L.M. Hermens. Solid phase microextraction as a tool to predict internal concentrations of soil contaminants in terrestrial organisms after exposure to a laboratory standard soil. Chemosphere 2004, 54 (4) , 561-568. https://doi.org/10.1016/j.chemosphere.2003.08.016

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2002, 36, 24, 5399–5404
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es0257016
    Published October 29, 2002
    Copyright © 2002 American Chemical Society

    Article Views

    521

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.