Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Chasing Quicksilver:  Modeling the Atmospheric Lifetime of Hg0(g) in the Marine Boundary Layer at Various Latitudes

View Author Information
CNR- Institute for Atmospheric Pollution, c/o UNICAL (Polifunzionale), Rende, 87036, Italy
Cite this: Environ. Sci. Technol. 2004, 38, 1, 69–76
Publication Date (Web):November 21, 2003
https://doi.org/10.1021/es034623z
Copyright © 2004 American Chemical Society

    Article Views

    389

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The lifetime of elemental mercury in the marine boundary layer (MBL) has been studied using AMCOTS (Atmospheric Mercury Chemistry Over The Sea), a box model of MBL photochemistry including aerosols and detailed mercury chemistry. Recently measured Hg0(g) oxidation reactions have been included, and the studies were performed as a function of latitude, time of year, boundary layer liquid water content (LWC) and cloud optical depth. The results show that Hg has the shortest lifetime when air temperatures are low and sunlight and deliquescent aerosol particles are plentiful. Thus the modeled lifetime for clear-sky conditions is actually shorter at mid-latitudes and high latitudes than near the equator, and for a given latitude and time of year, cooler temperatures enhance the rate of Hg oxidation. Under typical summer conditions (for a given latitude) of temperature and cloudiness, the lifetime (τ) of Hg0(g) in the MBL is calculated to be around 10 days at all latitudes between the equator and 60° N. This is much shorter than the generally accepted atmospheric residence time for Hg0(g) of a year or more. Given the relatively stable background concentrations of Hg0(g) which have been measured, continual replenishment of Hg0(g) must take place, suggesting a “multihop” mechanism for the distribution of Hg, rather than solely aeolian transport with little or no chemical transformation between source and receptor. Inclusion of an empirical Hg0(g) emission factor related to insolation was used to stabilize the Hg0(g) concentration in the model, and the emission rates necessarily agree well with estimated emission fluxes for the open ocean.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author phone:  39 984-493250; fax:  39 984-493215; e-mail:  [email protected].

    Cited By

    This article is cited by 83 publications.

    1. Daniel Cossa, Joël Knoery, Daniela Bănaru, Mireille Harmelin-Vivien, Jeroen E. Sonke, Ian M. Hedgecock, Andrea G. Bravo, Ginevra Rosati, Donata Canu, Milena Horvat, Francesca Sprovieri, Nicola Pirrone, Lars-Eric Heimbürger-Boavida. Mediterranean Mercury Assessment 2022: An Updated Budget, Health Consequences, and Research Perspectives. Environmental Science & Technology 2022, 56 (7) , 3840-3862. https://doi.org/10.1021/acs.est.1c03044
    2. Jesse L. Ambrose, Seth N. Lyman, Jiaoyan Huang, Mae S. Gustin, and Daniel A. Jaffe . Fast Time Resolution Oxidized Mercury Measurements during the Reno Atmospheric Mercury Intercomparison Experiment (RAMIX). Environmental Science & Technology 2013, 47 (13) , 7285-7294. https://doi.org/10.1021/es303916v
    3. Anne L. Soerensen, Henrik Skov, Daniel J. Jacob, Britt T. Soerensen, and Matthew S. Johnson . Global Concentrations of Gaseous Elemental Mercury and Reactive Gaseous Mercury in the Marine Boundary Layer. Environmental Science & Technology 2010, 44 (19) , 7425-7430. https://doi.org/10.1021/es903839n
    4. Handong Yang, Richard W. Battarbee, Simon D. Turner, Neil L. Rose, Richard G. Derwent, Guangjian Wu and Ruiqiang Yang . Historical Reconstruction of Mercury Pollution Across the Tibetan Plateau Using Lake Sediments. Environmental Science & Technology 2010, 44 (8) , 2918-2924. https://doi.org/10.1021/es9030408
    5. Mae Gustin, Dan Jaffe. Reducing the Uncertainty in Measurement and Understanding of Mercury in the Atmosphere. Environmental Science & Technology 2010, 44 (7) , 2222-2227. https://doi.org/10.1021/es902736k
    6. Andrew P. Rutter and, James J. Schauer. The Impact of Aerosol Composition on the Particle to Gas Partitioning of Reactive Mercury. Environmental Science & Technology 2007, 41 (11) , 3934-3939. https://doi.org/10.1021/es062439i
    7. Deanna L. Donohoue,, Dieter Bauer,, Brandi Cossairt, and, Anthony J. Hynes. Temperature and Pressure Dependent Rate Coefficients for the Reaction of Hg with Br and the Reaction of Br with Br:  A Pulsed Laser Photolysis-Pulsed Laser Induced Fluorescence Study. The Journal of Physical Chemistry A 2006, 110 (21) , 6623-6632. https://doi.org/10.1021/jp054688j
    8. Rolf Sander. Compilation of Henry's law constants (version 5.0.0) for water as solvent. Atmospheric Chemistry and Physics 2023, 23 (19) , 10901-12440. https://doi.org/10.5194/acp-23-10901-2023
    9. Yue Qiu, Pengxue Gai, Fange Yue, Yuanyuan Zhang, Pengzhen He, Hui Kang, Xiawei Yu, Paul K. S. Lam, Jiubin Chen, Zhouqing Xie. Stable Mercury Isotopes Revealing Photochemical Processes in the Marine Boundary Layer. Journal of Geophysical Research: Atmospheres 2021, 126 (16) https://doi.org/10.1029/2021JD034630
    10. Byunggwon Jeon, James V. Cizdziel, J. Stephen Brewer, Winston T. Luke, Mark D. Cohen, Xinrong Ren, Paul Kelley. Gaseous Elemental Mercury Concentrations along the Northern Gulf of Mexico Using Passive Air Sampling, with a Comparison to Active Sampling. Atmosphere 2020, 11 (10) , 1034. https://doi.org/10.3390/atmos11101034
    11. Ben Yu, Lin Yang, Linlin Wang, Hongwei Liu, Cailing Xiao, Yong Liang, Qian Liu, Yongguang Yin, Ligang Hu, Jianbo Shi, Guibin Jiang. New evidence for atmospheric mercury transformations in the marine boundary layer from stable mercury isotopes. Atmospheric Chemistry and Physics 2020, 20 (16) , 9713-9723. https://doi.org/10.5194/acp-20-9713-2020
    12. Kohji Marumoto, Noriyuki Suzuki, Yasuyuki Shibata, Akinori Takeuchi, Akinori Takami, Norio Fukuzaki, Kazuaki Kawamoto, Akira Mizohata, Shungo Kato, Takashi Yamamoto, Jingyang Chen, Tatsuya Hattori, Hiromitsu Nagasaka, Mitsugu Saito. Long-Term Observation of Atmospheric Speciated Mercury during 2007–2018 at Cape Hedo, Okinawa, Japan. Atmosphere 2019, 10 (7) , 362. https://doi.org/10.3390/atmos10070362
    13. Viktor Kalinchuk, Kirill Aksentov, Viktor Karnaukh. Gaseous elemental mercury (Hg(0)) in the surface air over the Sea of Japan, the Sea of Okhotsk and the Kuril-Kamchatka sector of the Pacific Ocean in August–September 2017. Chemosphere 2019, 224 , 668-679. https://doi.org/10.1016/j.chemosphere.2019.02.185
    14. Lin Si, Parisa Ariya. Recent Advances in Atmospheric Chemistry of Mercury. Atmosphere 2018, 9 (2) , 76. https://doi.org/10.3390/atmos9020076
    15. Jože Kotnik, Milena Horvat, Ermira Begu, Yaroslav Shlyapnikov, Francesca Sprovieri, Nicola Pirrone. Dissolved gaseous mercury (DGM) in the Mediterranean Sea: Spatial and temporal trends. Marine Chemistry 2017, 193 , 8-19. https://doi.org/10.1016/j.marchem.2017.03.002
    16. Oleg Travnikov, Hélène Angot, Paulo Artaxo, Mariantonia Bencardino, Johannes Bieser, Francesco D'Amore, Ashu Dastoor, Francesco De Simone, María del Carmen Diéguez, Aurélien Dommergue, Ralf Ebinghaus, Xin Bin Feng, Christian N. Gencarelli, Ian M. Hedgecock, Olivier Magand, Lynwill Martin, Volker Matthias, Nikolay Mashyanov, Nicola Pirrone, Ramesh Ramachandran, Katie Alana Read, Andrei Ryjkov, Noelle E. Selin, Fabrizio Sena, Shaojie Song, Francesca Sprovieri, Dennis Wip, Ingvar Wängberg, Xin Yang. Multi-model study of mercury dispersion in the atmosphere: atmospheric processes and model evaluation. Atmospheric Chemistry and Physics 2017, 17 (8) , 5271-5295. https://doi.org/10.5194/acp-17-5271-2017
    17. Christian N. Gencarelli, Johannes Bieser, Francesco Carbone, Francesco De Simone, Ian M. Hedgecock, Volker Matthias, Oleg Travnikov, Xin Yang, Nicola Pirrone. Sensitivity model study of regional mercury dispersion in the atmosphere. Atmospheric Chemistry and Physics 2017, 17 (1) , 627-643. https://doi.org/10.5194/acp-17-627-2017
    18. Johannes Bieser, Franz Slemr, Jesse Ambrose, Carl Brenninkmeijer, Steve Brooks, Ashu Dastoor, Francesco DeSimone, Ralf Ebinghaus, Christian N. Gencarelli, Beate Geyer, Lynne E. Gratz, Ian M. Hedgecock, Daniel Jaffe, Paul Kelley, Che-Jen Lin, Lyatt Jaegle, Volker Matthias, Andrei Ryjkov, Noelle E. Selin, Shaojie Song, Oleg Travnikov, Andreas Weigelt, Winston Luke, Xinrong Ren, Andreas Zahn, Xin Yang, Yun Zhu, Nicola Pirrone. Multi-model study of mercury dispersion in the atmosphere: vertical and interhemispheric distribution of mercury species. Atmospheric Chemistry and Physics 2017, 17 (11) , 6925-6955. https://doi.org/10.5194/acp-17-6925-2017
    19. Lian Duan, Guangli Xiu, Ling Feng, Na Cheng, Chenggang Wang. The mercury species and their association with carbonaceous compositions, bromine and iodine in PM2.5 in Shanghai. Chemosphere 2016, 146 , 263-271. https://doi.org/10.1016/j.chemosphere.2015.11.058
    20. Francesca Sprovieri, Nicola Pirrone, Mariantonia Bencardino, Francesco D'Amore, Francesco Carbone, Sergio Cinnirella, Valentino Mannarino, Matthew Landis, Ralf Ebinghaus, Andreas Weigelt, Ernst-Günther Brunke, Casper Labuschagne, Lynwill Martin, John Munthe, Ingvar Wängberg, Paulo Artaxo, Fernando Morais, Henrique de Melo Jorge Barbosa, Joel Brito, Warren Cairns, Carlo Barbante, María del Carmen Diéguez, Patricia Elizabeth Garcia, Aurélien Dommergue, Helene Angot, Olivier Magand, Henrik Skov, Milena Horvat, Jože Kotnik, Katie Alana Read, Luis Mendes Neves, Bernd Manfred Gawlik, Fabrizio Sena, Nikolay Mashyanov, Vladimir Obolkin, Dennis Wip, Xin Bin Feng, Hui Zhang, Xuewu Fu, Ramesh Ramachandran, Daniel Cossa, Joël Knoery, Nicolas Marusczak, Michelle Nerentorp, Claus Norstrom. Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network. Atmospheric Chemistry and Physics 2016, 16 (18) , 11915-11935. https://doi.org/10.5194/acp-16-11915-2016
    21. Jozef M. Pacyna, Oleg Travnikov, Francesco De Simone, Ian M. Hedgecock, Kyrre Sundseth, Elisabeth G. Pacyna, Frits Steenhuisen, Nicola Pirrone, John Munthe, Karin Kindbom. Current and future levels of mercury atmospheric pollution on a global scale. Atmospheric Chemistry and Physics 2016, 16 (19) , 12495-12511. https://doi.org/10.5194/acp-16-12495-2016
    22. Xuewu Fu, Wei Zhu, Hui Zhang, Jonas Sommar, Ben Yu, Xu Yang, Xun Wang, Che-Jen Lin, Xinbin Feng. Depletion of atmospheric gaseous elemental mercury by plant uptake at Mt. Changbai, Northeast China. Atmospheric Chemistry and Physics 2016, 16 (20) , 12861-12873. https://doi.org/10.5194/acp-16-12861-2016
    23. Huiting Mao, Irene Cheng, Leiming Zhang. Current understanding of the driving mechanisms for spatiotemporal variations of atmospheric speciated mercury: a review. Atmospheric Chemistry and Physics 2016, 16 (20) , 12897-12924. https://doi.org/10.5194/acp-16-12897-2016
    24. Gang-San Lee, Pyung-Rae Kim, Young-Ji Han, Thomas M. Holsen, Yong-Seok Seo, Seung-Muk Yi. Atmospheric speciated mercury concentrations on an island between China and Korea: sources and transport pathways. Atmospheric Chemistry and Physics 2016, 16 (6) , 4119-4133. https://doi.org/10.5194/acp-16-4119-2016
    25. Hélène Angot, Olivier Magand, Detlev Helmig, Philippe Ricaud, Boris Quennehen, Hubert Gallée, Massimo Del Guasta, Francesca Sprovieri, Nicola Pirrone, Joël Savarino, Aurélien Dommergue. New insights into the atmospheric mercury cycling in central Antarctica and implications on a continental scale. Atmospheric Chemistry and Physics 2016, 16 (13) , 8249-8264. https://doi.org/10.5194/acp-16-8249-2016
    26. Zhuyun Ye, Huiting Mao, Che-Jen Lin, Su Youn Kim. Investigation of processes controlling summertime gaseous elemental mercury oxidation at midlatitudinal marine, coastal, and inland sites. Atmospheric Chemistry and Physics 2016, 16 (13) , 8461-8478. https://doi.org/10.5194/acp-16-8461-2016
    27. Colleen P. Jones, Seth N. Lyman, Daniel A. Jaffe, Tanner Allen, Trevor L. O'Neil. Detection and quantification of gas-phase oxidized mercury compounds by GC/MS. Atmospheric Measurement Techniques 2016, 9 (5) , 2195-2205. https://doi.org/10.5194/amt-9-2195-2016
    28. R. Sander. Compilation of Henry's law constants (version 4.0) for water as solvent. Atmospheric Chemistry and Physics 2015, 15 (8) , 4399-4981. https://doi.org/10.5194/acp-15-4399-2015
    29. M. S. Gustin, H. M. Amos, J. Huang, M. B. Miller, K. Heidecorn. Measuring and modeling mercury in the atmosphere: a critical review. Atmospheric Chemistry and Physics 2015, 15 (10) , 5697-5713. https://doi.org/10.5194/acp-15-5697-2015
    30. X. W. Fu, H. Zhang, B. Yu, X. Wang, C.-J. Lin, X. B. Feng. Observations of atmospheric mercury in China: a critical review. Atmospheric Chemistry and Physics 2015, 15 (16) , 9455-9476. https://doi.org/10.5194/acp-15-9455-2015
    31. Runsheng Yin, Xinbin Feng, Xiangdong Li, Ben Yu, Buyun Du. Trends and advances in mercury stable isotopes as a geochemical tracer. Trends in Environmental Analytical Chemistry 2014, 2 , 1-10. https://doi.org/10.1016/j.teac.2014.03.001
    32. Yi-Hsiu Jen, Wei-Hsiang Chen, Chung-Shin Yuan, Iau-Ren Ie, Chung-Hsuang Hung. Seasonal variation and spatial distribution of atmospheric mercury and its gas-particulate partition in the vicinity of a semiconductor manufacturing complex. Environmental Science and Pollution Research 2014, 21 (8) , 5474-5483. https://doi.org/10.1007/s11356-013-2441-z
    33. Christian Natale Gencarelli, Francesco De Simone, Ian Michael Hedgecock, Francesca Sprovieri, Nicola Pirrone. Development and application of a regional-scale atmospheric mercury model based on WRF/Chem: a Mediterranean area investigation. Environmental Science and Pollution Research 2014, 21 (6) , 4095-4109. https://doi.org/10.1007/s11356-013-2162-3
    34. Jože Kotnik, Francesca Sprovieri, Nives Ogrinc, Milena Horvat, Nicola Pirrone. Mercury in the Mediterranean, part I: spatial and temporal trends. Environmental Science and Pollution Research 2014, 21 (6) , 4063-4080. https://doi.org/10.1007/s11356-013-2378-2
    35. R. von Glasow, P.J. Crutzen. Tropospheric Halogen Chemistry. 2014, 19-69. https://doi.org/10.1016/B978-0-08-095975-7.00402-2
    36. Nicola Pirrone, Wenche Aas, Sergio Cinnirella, Ralf Ebinghaus, Ian M. Hedgecock, Jozef Pacyna, Francesca Sprovieri, Elsie M. Sunderland. Toward the next generation of air quality monitoring: Mercury. Atmospheric Environment 2013, 80 , 599-611. https://doi.org/10.1016/j.atmosenv.2013.06.053
    37. Martin R. Preston. Chemistry and Pollution of the Marine Environment. 2013, 29-59. https://doi.org/10.1039/BK9781849736480-00029
    38. . Metal(loid)s in the Atmosphere and their Inputs to Surface Waters. 2013, 167-218. https://doi.org/10.1002/9781118274576.ch5
    39. Jason D. Demers, Joel D. Blum, Donald R. Zak. Mercury isotopes in a forested ecosystem: Implications for air‐surface exchange dynamics and the global mercury cycle. Global Biogeochemical Cycles 2013, 27 (1) , 222-238. https://doi.org/10.1002/gbc.20021
    40. F. Sprovieri, I.M. Hedgecock, N. Pirrone, . Mercury Studies around the Mediterranean Sea Basin: Ten years of Measurements and Modeling results. E3S Web of Conferences 2013, 1 , 03009. https://doi.org/10.1051/e3sconf/20130103009
    41. H. Timonen, J. L. Ambrose, D. A. Jaffe. Oxidation of elemental Hg in anthropogenic and marine airmasses. Atmospheric Chemistry and Physics 2013, 13 (5) , 2827-2836. https://doi.org/10.5194/acp-13-2827-2013
    42. T. Berg, K. A. Pfaffhuber, A. S. Cole, O. Engelsen, A. Steffen. Ten-year trends in atmospheric mercury concentrations, meteorological effects and climate variables at Zeppelin, Ny-Ålesund. Atmospheric Chemistry and Physics 2013, 13 (13) , 6575-6586. https://doi.org/10.5194/acp-13-6575-2013
    43. Anne L. Soerensen, Daniel J. Jacob, David G. Streets, Melanie L. I. Witt, Ralf Ebinghaus, Robert P. Mason, Maria Andersson, Elsie M. Sunderland. Multi‐decadal decline of mercury in the North Atlantic atmosphere explained by changing subsurface seawater concentrations. Geophysical Research Letters 2012, 39 (21) https://doi.org/10.1029/2012GL053736
    44. Khandakar Md Habib Al Razi, Moritomi Hiroshi. Modeling of atmospheric dispersion of mercury from coal–fired power plants in Japan. Atmospheric Pollution Research 2012, 3 (2) , 226-237. https://doi.org/10.5094/APR.2012.025
    45. Devashis Majumdar, Szczepan Roszak, Jerzy Leszczynski. Application of Quantum-Chemical Techniques to Model Environmental Mercury Depletion Reactions. 2012, 435-470. https://doi.org/10.1007/978-94-007-0923-2_12
    46. E. Tas, D. Obrist, M. Peleg, V. Matveev, X. Faïn, D. Asaf, M. Luria. Measurement-based modelling of bromine-induced oxidation of mercury above the Dead Sea. Atmospheric Chemistry and Physics 2012, 12 (5) , 2429-2440. https://doi.org/10.5194/acp-12-2429-2012
    47. Che‐Jen Lin, Pattaraporn Singhasuk, Simo O. Pehkonen. Atmospheric Chemistry of Mercury. 2011, 111-153. https://doi.org/10.1002/9781118146644.ch4
    48. Yi-Hsiu Jen, Chung-Shin Yuan, Yuan-Chung Lin, Chang-Gai Lee, Chung-Hsuang Hung, Cheng-Mou Tsai, Hsieh-Hung Tsai, Iau-Ren Ie. Partition and Tempospatial Variation of Gaseous and Particulate Mercury at a Unique Mercury-Contaminated Remediation Site. Journal of the Air & Waste Management Association 2011, 61 (11) , 1115-1123. https://doi.org/10.1080/10473289.2011.617617
    49. Khandakar Habib Al Razi, Moritomi Hiroshi, Kambara Shinji. Exposure Assessment of Mercury and Its Compounds by Dispersion Modeling: A Case Study in the Sea of Japan Coastal Area. Air, Soil and Water Research 2011, 4 , ASWR.S6551. https://doi.org/10.4137/ASWR.S6551
    50. S. Brooks, C. Moore, D. Lew, B. Lefer, G. Huey, D. Tanner. Temperature and sunlight controls of mercury oxidation and deposition atop the Greenland ice sheet. Atmospheric Chemistry and Physics 2011, 11 (16) , 8295-8306. https://doi.org/10.5194/acp-11-8295-2011
    51. Guor-Cheng Fang, I-Lin Yang, Chia-Kuan Liu. Measure and modeling the ambient air particles and particle bound mercury Hg(p) at a traffic sampling site. Atmospheric Research 2010, 97 (1-2) , 97-105. https://doi.org/10.1016/j.atmosres.2010.03.010
    52. Jesse O. Bash. Description and initial simulation of a dynamic bidirectional air‐surface exchange model for mercury in Community Multiscale Air Quality (CMAQ) model. Journal of Geophysical Research: Atmospheres 2010, 115 (D6) https://doi.org/10.1029/2009JD012834
    53. F. Sprovieri, I. M. Hedgecock, N. Pirrone. An investigation of the origins of reactive gaseous mercury in the Mediterranean marine boundary layer. Atmospheric Chemistry and Physics 2010, 10 (8) , 3985-3997. https://doi.org/10.5194/acp-10-3985-2010
    54. F. Sprovieri, N. Pirrone, R. Ebinghaus, H. Kock, A. Dommergue. A review of worldwide atmospheric mercury measurements. Atmospheric Chemistry and Physics 2010, 10 (17) , 8245-8265. https://doi.org/10.5194/acp-10-8245-2010
    55. Seth N. Lyman, Mae Sexauer Gustin. Determinants of atmospheric mercury concentrations in Reno, Nevada, U.S.A.. Science of The Total Environment 2009, 408 (2) , 431-438. https://doi.org/10.1016/j.scitotenv.2009.09.045
    56. Reshmi Das, Vincent J. M. Salters, A. Leroy Odom. A case for in vivo mass‐independent fractionation of mercury isotopes in fish. Geochemistry, Geophysics, Geosystems 2009, 10 (11) https://doi.org/10.1029/2009GC002617
    57. C.J. Watras, K.A. Morrison, J.L. Rubsam, B. Rodger. Atmospheric mercury cycles in northern Wisconsin. Atmospheric Environment 2009, 43 (26) , 4070-4077. https://doi.org/10.1016/j.atmosenv.2009.04.051
    58. Nicola Pirrone, Sergio Cinnirella, Xinbin Feng, Robert B. Finkelman, Hans R. Friedli, Joy Leaner, Rob Mason, Arun B. Mukherjee, Glenn Stracher, David G. Streets, Kevin Telmer. Global Mercury Emissions to the Atmosphere from Natural and Anthropogenic Sources. 2009, 1-47. https://doi.org/10.1007/978-0-387-93958-2_1
    59. Francesca Sprovieri, Nicola Pirrone, Robert P. Mason, Maria Andersson. Spatial coverage and temporal trends of over-water, air-surface exchange, surface and deep sea water mercury measurements. 2009, 323-380. https://doi.org/10.1007/978-0-387-93958-2_11
    60. Anthony J. Hynes, Deanna L. Donohoue, Michael E. Goodsite, Ian M. Hedgecock. Our current understanding of major chemical and physical processes affecting mercury dynamics in the atmosphere and at the air-water/terrestrial interfaces. 2009, 427-457. https://doi.org/10.1007/978-0-387-93958-2_14
    61. Oleg Travnikov, Ilia Ilyin. The EMEP/MSC-E mercury modeling system. 2009, 571-587. https://doi.org/10.1007/978-0-387-93958-2_20
    62. Ralf Ebinghaus, Catharine Banic, Steve Beauchamp, Dan Jaffe, Hans Herbert Kock, Nicola Pirrone, Laurier Poissant, Francesca Sprovieri, Peter S. Weiss-Penzias. Spatial coverage and temporal trends of land-based atmospheric mercury measurements in the Northern and Southern Hemispheres. 2009, 223-291. https://doi.org/10.1007/978-0-387-93958-2_9
    63. J. M. Sigler, H. Mao, B. C. Sive, R. Talbot. Oceanic influence on atmospheric mercury at coastal and inland sites: a springtime noreaster in New England. Atmospheric Chemistry and Physics 2009, 9 (12) , 4023-4030. https://doi.org/10.5194/acp-9-4023-2009
    64. G. Jung, I. M. Hedgecock, N. Pirrone. ECHMERIT V1.0 – a new global fully coupled mercury-chemistry and transport model. Geoscientific Model Development 2009, 2 (2) , 175-195. https://doi.org/10.5194/gmd-2-175-2009
    65. Francesca Sprovieri, Nicola Pirrone. Spatial and temporal distribution of atmospheric mercury species over the Adriatic Sea. Environmental Fluid Mechanics 2008, 8 (2) , 117-128. https://doi.org/10.1007/s10652-007-9045-4
    66. Sergio Cinnirella, Nicola Pirrone, Alessia Allegrini, Daniela Guglietta. Modeling mercury emissions from forest fires in the Mediterranean region. Environmental Fluid Mechanics 2008, 8 (2) , 129-145. https://doi.org/10.1007/s10652-007-9048-1
    67. Mae Sexauer Gustin, Steven E. Lindberg, Peter J. Weisberg. An update on the natural sources and sinks of atmospheric mercury. Applied Geochemistry 2008, 23 (3) , 482-493. https://doi.org/10.1016/j.apgeochem.2007.12.010
    68. Ian M. Hedgecock, Nicola Pirrone, Francesca Sprovieri. Chasing quicksilver northward: mercury chemistry in the Arctic troposphere. Environmental Chemistry 2008, 5 (2) , 131. https://doi.org/10.1071/EN08001
    69. Z.-Q. Xie, R. Sander, U. Pöschl, F. Slemr. Simulation of atmospheric mercury depletion events (AMDEs) during polar springtime using the MECCA box model. Atmospheric Chemistry and Physics 2008, 8 (23) , 7165-7180. https://doi.org/10.5194/acp-8-7165-2008
    70. Elsie M. Sunderland, Robert P. Mason. Human impacts on open ocean mercury concentrations. Global Biogeochemical Cycles 2007, 21 (4) https://doi.org/10.1029/2006GB002876
    71. L. F. Radke, H. R. Friedli, B. G. Heikes. Atmospheric mercury over the NE Pacific during spring 2002: Gradients, residence time, upper troposphere lower stratosphere loss, and long‐range transport. Journal of Geophysical Research: Atmospheres 2007, 112 (D19) https://doi.org/10.1029/2005JD005828
    72. Masahiro Sakata, Kazuo Asakura. Estimating contribution of precipitation scavenging of atmospheric particulate mercury to mercury wet deposition in Japan. Atmospheric Environment 2007, 41 (8) , 1669-1680. https://doi.org/10.1016/j.atmosenv.2006.10.031
    73. Sarah A. Strode, Lyatt Jaeglé, Noelle E. Selin, Daniel J. Jacob, Rokjin J. Park, Robert M. Yantosca, Robert P. Mason, Franz Slemr. Air‐sea exchange in the global mercury cycle. Global Biogeochemical Cycles 2007, 21 (1) https://doi.org/10.1029/2006GB002766
    74. Steve Lindberg, Russell Bullock, Ralf Ebinghaus, Daniel Engstrom, Xinbin Feng, William Fitzgerald, Nicola Pirrone, Eric Prestbo, Christian Seigneur. A Synthesis of Progress and Uncertainties in Attributing the Sources of Mercury in Deposition. AMBIO: A Journal of the Human Environment 2007, 36 (1) , 19-33. https://doi.org/10.1579/0044-7447(2007)36[19:ASOPAU]2.0.CO;2
    75. Noelle E. Selin, Daniel J. Jacob, Rokjin J. Park, Robert M. Yantosca, Sarah Strode, Lyatt Jaeglé, Daniel Jaffe. Chemical cycling and deposition of atmospheric mercury: Global constraints from observations. Journal of Geophysical Research: Atmospheres 2007, 112 (D2) https://doi.org/10.1029/2006JD007450
    76. Henrik Skov, Britt T. Sørensen, Matthew S. Landis, Matthew S. Johnson, Paolo Sacco, Michael E. Goodsite, Christian Lohse, Kenneth S. Christiansen. Performance of a new diffusive sampler for Hg0 determination in the troposphere. Environmental Chemistry 2007, 4 (2) , 75. https://doi.org/10.1071/EN06082
    77. Ian M. Hedgecock, Nicola Pirrone, Giuseppe A. Trunfio, Francesca Sprovieri. Integrated mercury cycling, transport, and air‐water exchange (MECAWEx) model. Journal of Geophysical Research: Atmospheres 2006, 111 (D20) https://doi.org/10.1029/2006JD007117
    78. Nicola Pirrone, Kathryn R. Mahaffey. Where We Stand on Mercury Pollution and its Health Effects on Regional and Global Scales. 2005, 1-21. https://doi.org/10.1007/0-387-24494-8_1
    79. Ian M. Hedgecock, Nicola Pirrone. Modelling Chemical and Physical Processes of Hg Compounds in the Marine Boundary Layer. 2005, 295-317. https://doi.org/10.1007/0-387-24494-8_13
    80. Nicola Pirrone, Francesca Sprovieri, Ian M. Hedgecock, Giuseppe A. Trunfio, Sergio Cinnirella. Dynamic Processes of Atmospheric Hg in the Mediterranean Region. 2005, 541-579. https://doi.org/10.1007/0-387-24494-8_23
    81. . Metals. 2004, 350-371. https://doi.org/10.1017/CBO9780511840647.016
    82. R. von Glasow, P.J. Crutzen. Tropospheric Halogen Chemistry. 2003, 1-67. https://doi.org/10.1016/B0-08-043751-6/04141-4
    83. Gary N. Bigham, Betsy Henry, Brad Bessinger. Mercury. 1964, 1-17. https://doi.org/10.1016/B978-012507751-4/50023-9