ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Fluorotelomer Alcohol Biodegradation Yields Poly- and Perfluorinated Acids

View Author Information
Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6, and Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5
Cite this: Environ. Sci. Technol. 2004, 38, 10, 2857–2864
Publication Date (Web):April 16, 2004
https://doi.org/10.1021/es0350177
Copyright © 2004 American Chemical Society

    Article Views

    4594

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The widespread detection of environmentally persistent perfluorinated acids (PFCAs) such as perfluorooctanoic acid (PFOA) and its longer chained homologues (C9>C15) in biota has instigated a need to identify potential sources. It has recently been suggested that fluorinated telomer alcohols (FTOHs) are probable precursor compounds that may undergo transformation reactions in the environment leading to the formation of these potentially toxic and bioaccumulative PFCAs. This study examined the aerobic biodegradation of the 8:2 telomer alcohol (8:2 FTOH, CF3(CF2)7CH2CH2OH) using a mixed microbial system. The initial measured half-life of the 8:2 FTOH was ∼0.2 days mg-1 of initial biomass protein. The degradation of the telomer alcohol was monitored using a gas chromatograph equipped with an electron capture detector (GC/ECD). Volatile metabolites were identified using gas chromatography/mass spectrometry (GC/MS), and nonvolatile metabolites were identified and quantified using liquid chromatography/tandem mass spectrometry (LC/MS/MS). Telomer acids (CF3(CF2)7CH2COOH; CF3(CF2)6CFCHCOOH) and PFOA were identified as metabolites during the degradation, the unsaturated telomer acid being the predominant metabolite measured. The overall mechanism involves the oxidation of the 8:2 FTOH to the telomer acid via the transient telomer aldehyde. The telomer acid via a β-oxidation mechanism was further transformed, leading to the unsaturated acid and ultimately producing the highly stable PFOA. Telomer alcohols were demonstrated to be potential sources of PFCAs as a consequence of biotic degradation. Biological transformation may be a major degradation pathway for fluorinated telomer alcohols in aquatic systems.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Department of Chemistry.

     Department of Chemical Engineering and Applied Chemistry.

    *

     Corresponding author e-mail:  [email protected]; phone:  (416)978-1780.

    Cited By

    This article is cited by 442 publications.

    1. Daniel Zahn, Hans Peter H. Arp, Kathrin Fenner, Anett Georgi, Jasmin Hafner, Sarah E. Hale, Juliane Hollender, Thomas Letzel, Emma L. Schymanski, Gabriel Sigmund, Thorsten Reemtsma. Should Transformation Products Change the Way We Manage Chemicals?. Environmental Science & Technology 2024, 58 (18) , 7710-7718. https://doi.org/10.1021/acs.est.4c00125
    2. Jovan Popovic, Clark J. Bee, Kolin H. Beam, Konstantinos Dovantzis, J. Mark Stapleton, Michael A. Barba, M. R. Peaches Callier, Woongsang Yoon. Network Meta-Analysis and Systematic Review of Conditions Facilitating Microbial Biotransformation of 6:2 and 8:2 Fluorotelomer Alcohols to Perfluoroalkyl Carboxylates. Environmental Science & Technology Letters 2024, 11 (4) , 292-300. https://doi.org/10.1021/acs.estlett.4c00119
    3. Robert G. Mothersole, Foster T. Wynne, Gaia Rota, Mina K. Mothersole, Jinxia Liu, Jonathan D. Van Hamme. Formation of CoA Adducts of Short-Chain Fluorinated Carboxylates Catalyzed by Acyl-CoA Synthetase from Gordonia sp. Strain NB4-1Y. ACS Omega 2023, 8 (42) , 39437-39446. https://doi.org/10.1021/acsomega.3c05147
    4. Clara M. A. Eichler, Naomi Y. Chang, Elaine A. Cohen Hubal, Daniel E. Amparo, Jiaqi Zhou, Jason D. Surratt, Glenn C. Morrison, Barbara J. Turpin. Cloth–Air Partitioning of Neutral Per- and Polyfluoroalkyl Substances (PFAS) in North Carolina Homes during the Indoor PFAS Assessment (IPA) Campaign. Environmental Science & Technology 2023, 57 (40) , 15173-15183. https://doi.org/10.1021/acs.est.3c04770
    5. Jason P. Hnatko, Chen Liu, Jack L. Elsey, Sheng Dong, John D. Fortner, Kurt D. Pennell, Linda M. Abriola, Natalie L. Cápiro. Microbial Reductive Dechlorination by a Commercially Available Dechlorinating Consortium Is Not Inhibited by Perfluoroalkyl Acids (PFAAs) at Field-Relevant Concentrations. Environmental Science & Technology 2023, 57 (22) , 8301-8312. https://doi.org/10.1021/acs.est.2c04815
    6. Min Liu, Gabriel Munoz, Juliana Hermiston, Ju Zhang, Sung Vo Duy, Dan Wang, Anindya Sundar Dey, Eric M. Bottos, Jonathan D. Van Hamme, Linda S. Lee, Sébastien Sauvé, Jinxia Liu. High Persistence of Novel Polyfluoroalkyl Betaines in Aerobic Soils. Environmental Science & Technology 2023, 57 (19) , 7442-7453. https://doi.org/10.1021/acs.est.2c07395
    7. Ivan A. Titaley, Florentino B. De la Cruz, Morton A. Barlaz, Jennifer A. Field. Neutral Per- and Polyfluoroalkyl Substances in In Situ Landfill Gas by Thermal Desorption–Gas Chromatography–Mass Spectrometry. Environmental Science & Technology Letters 2023, 10 (3) , 214-221. https://doi.org/10.1021/acs.estlett.3c00037
    8. Jake T. Thompson, Nicole M. Robey, Thabet M. Tolaymat, John A. Bowden, Helena M. Solo-Gabriele, Timothy G. Townsend. Underestimation of Per- and Polyfluoroalkyl Substances in Biosolids: Precursor Transformation During Conventional Treatment. Environmental Science & Technology 2023, 57 (9) , 3825-3832. https://doi.org/10.1021/acs.est.2c06189
    9. Xu Cheng, Yue Wei, Zefang Zhang, Fei Wang, Jia He, Ruixin Wang, Yali Xu, Mulatibieke Keerman, Shiyang Zhang, Ying Zhang, Jiao Bi, Jinqiu Yao, Meian He. Plasma PFOA and PFOS Levels, DNA Methylation, and Blood Lipid Levels: A Pilot Study. Environmental Science & Technology 2022, 56 (23) , 17039-17051. https://doi.org/10.1021/acs.est.2c04107
    10. Raul Tenorio, Andrew C. Maizel, Charles E. Schaefer, Christopher P. Higgins, Timothy J. Strathmann. Application of High-Resolution Mass Spectrometry to Evaluate UV-Sulfite-Induced Transformations of Per- and Polyfluoroalkyl Substances (PFASs) in Aqueous Film-Forming Foam (AFFF). Environmental Science & Technology 2022, 56 (20) , 14774-14787. https://doi.org/10.1021/acs.est.2c03228
    11. Ivan A. Titaley, Jared Khattak, Jialin Dong, Christopher I. Olivares, Bill DiGuiseppi, Christopher C. Lutes, Jennifer A. Field. Neutral Per- and Polyfluoroalkyl Substances, Butyl Carbitol, and Organic Corrosion Inhibitors in Aqueous Film-Forming Foams: Implications for Vapor Intrusion and the Environment. Environmental Science & Technology 2022, 56 (15) , 10785-10797. https://doi.org/10.1021/acs.est.2c02349
    12. Shujun Yi, Diwen Yang, Lingyan Zhu, Scott A. Mabury. Significant Reductive Transformation of 6:2 Chlorinated Polyfluorooctane Ether Sulfonate to Form Hydrogen-Substituted Polyfluorooctane Ether Sulfonate and Their Toxicokinetics in Male Sprague–Dawley Rats. Environmental Science & Technology 2022, 56 (10) , 6123-6132. https://doi.org/10.1021/acs.est.1c00616
    13. Liquan Liu, Shanshan Deng, Yixiang Bao, Jun Huang, Gang Yu. Degradation of OBS (Sodium p-Perfluorous Nonenoxybenzenesulfonate) as a Novel Per- and Polyfluoroalkyl Substance by UV/Persulfate and UV/Sulfite: Fluorinated Intermediates and Treatability in Fluoroprotein Foam. Environmental Science & Technology 2022, 56 (10) , 6201-6211. https://doi.org/10.1021/acs.est.1c03210
    14. Ike van der Veen, Steffen Schellenberger, Anne-Charlotte Hanning, Ann Stare, Jacob de Boer, Jana M. Weiss, Pim E. G. Leonards. Fate of Per- and Polyfluoroalkyl Substances from Durable Water-Repellent Clothing during Use. Environmental Science & Technology 2022, 56 (9) , 5886-5897. https://doi.org/10.1021/acs.est.1c07876
    15. Derek J. Muensterman, Liliana Cahuas, Ivan A. Titaley, Christopher Schmokel, Florentino B. De la Cruz, Morton A. Barlaz, Courtney C. Carignan, Graham F. Peaslee, Jennifer A. Field. Per- and Polyfluoroalkyl Substances (PFAS) in Facemasks: Potential Source of Human Exposure to PFAS with Implications for Disposal to Landfills. Environmental Science & Technology Letters 2022, 9 (4) , 320-326. https://doi.org/10.1021/acs.estlett.2c00019
    16. Nicholas J. Herkert, Christopher D. Kassotis, Sharon Zhang, Yuling Han, Vivek Francis Pulikkal, Mei Sun, P. Lee Ferguson, Heather M. Stapleton. Characterization of Per- and Polyfluorinated Alkyl Substances Present in Commercial Anti-fog Products and Their In Vitro Adipogenic Activity. Environmental Science & Technology 2022, 56 (2) , 1162-1173. https://doi.org/10.1021/acs.est.1c06990
    17. Shun Che, Bosen Jin, Zekun Liu, Yaochun Yu, Jinyong Liu, Yujie Men. Structure-Specific Aerobic Defluorination of Short-Chain Fluorinated Carboxylic Acids by Activated Sludge Communities. Environmental Science & Technology Letters 2021, 8 (8) , 668-674. https://doi.org/10.1021/acs.estlett.1c00511
    18. Steffen Heuckeroth, Tengetile N. Nxumalo, Andrea Raab, Joerg Feldmann. Fluorine-Specific Detection Using ICP-MS Helps to Identify PFAS Degradation Products in Nontargeted Analysis. Analytical Chemistry 2021, 93 (16) , 6335-6341. https://doi.org/10.1021/acs.analchem.1c00031
    19. Jennifer L. Harfmann, Kate Tito, Robert J. Kieber, G. Brooks Avery, Ralph N. Mead, Megumi S. Shimizu, Stephen A. Skrabal. Sorption of Hexafluoropropylene Oxide Dimer Acid to Sediments: Biogeochemical Implications and Analytical Considerations. ACS Earth and Space Chemistry 2021, 5 (3) , 580-587. https://doi.org/10.1021/acsearthspacechem.0c00323
    20. Carol F. Kwiatkowski, David Q. Andrews, Linda S. Birnbaum, Thomas A. Bruton, Jamie C. DeWitt, Detlef R.U. Knappe, Maricel V. Maffini, Mark F. Miller, Katherine E. Pelch, Anna Reade, Anna Soehl, Xenia Trier, Marta Venier, Charlotte C. Wagner, Zhanyun Wang, Arlene Blum. Response to “Comment on Scientific Basis for Managing PFAS as a Chemical Class”. Environmental Science & Technology Letters 2021, 8 (2) , 195-197. https://doi.org/10.1021/acs.estlett.1c00049
    21. Qi Wang, Yuefei Ruan, Linjie Jin, Xiaohua Zhang, Jing Li, Yuhe He, Si Wei, James C.W. Lam, Paul K.S. Lam. Target, Nontarget, and Suspect Screening and Temporal Trends of Per- and Polyfluoroalkyl Substances in Marine Mammals from the South China Sea. Environmental Science & Technology 2021, 55 (2) , 1045-1056. https://doi.org/10.1021/acs.est.0c06685
    22. Raul Tenorio, Jinyong Liu, Xin Xiao, Andrew Maizel, Christopher P. Higgins, Charles E. Schaefer, Timothy J. Strathmann. Destruction of Per- and Polyfluoroalkyl Substances (PFASs) in Aqueous Film-Forming Foam (AFFF) with UV-Sulfite Photoreductive Treatment. Environmental Science & Technology 2020, 54 (11) , 6957-6967. https://doi.org/10.1021/acs.est.0c00961
    23. Theran P. Riedel, Johnsie R. Lang, Mark J. Strynar, Andrew B. Lindstrom, John H. Offenberg. Gas-Phase Detection of Fluorotelomer Alcohols and Other Oxygenated Per- and Polyfluoroalkyl Substances by Chemical Ionization Mass Spectrometry. Environmental Science & Technology Letters 2019, 6 (5) , 289-293. https://doi.org/10.1021/acs.estlett.9b00196
    24. Sarah B. Gewurtz, Pamela A. Martin, Robert J. Letcher, Neil M. Burgess, Louise Champoux, John E. Elliott, Abde Idrissi. Perfluoroalkyl Acids in European Starling Eggs Indicate Landfill and Urban Influences in Canadian Terrestrial Environments. Environmental Science & Technology 2018, 52 (10) , 5571-5580. https://doi.org/10.1021/acs.est.7b06623
    25. Hongrui Chen, Hui Peng, Min Yang, Jianying Hu, and Yu Zhang . Detection, Occurrence, and Fate of Fluorotelomer Alcohols in Municipal Wastewater Treatment Plants. Environmental Science & Technology 2017, 51 (16) , 8953-8961. https://doi.org/10.1021/acs.est.7b00315
    26. Colleen M. Makey, Thomas F. Webster, Jonathan W. Martin, Mahiba Shoeib, Tom Harner, Linda Dix-Cooper, and Glenys M. Webster . Airborne Precursors Predict Maternal Serum Perfluoroalkyl Acid Concentrations. Environmental Science & Technology 2017, 51 (13) , 7667-7675. https://doi.org/10.1021/acs.est.7b00615
    27. Hongna Zhang, Bei Wen, Xiaoyu Hu, Yali Wu, Ying Pan, Honglin Huang, Liu Liu, and Shuzhen Zhang . Uptake, Translocation, and Metabolism of 8:2 Fluorotelomer Alcohol in Soybean (Glycine max L. Merrill). Environmental Science & Technology 2016, 50 (24) , 13309-13317. https://doi.org/10.1021/acs.est.6b03734
    28. Franziska Heydebreck, Jianhui Tang, Zhiyong Xie, and Ralf Ebinghaus . Emissions of Per- and Polyfluoroalkyl Substances in a Textile Manufacturing Plant in China and Their Relevance for Workers’ Exposure. Environmental Science & Technology 2016, 50 (19) , 10386-10396. https://doi.org/10.1021/acs.est.6b03213
    29. Sandra Mejia-Avendaño, Sung Vo Duy, Sébastien Sauvé, and Jinxia Liu . Generation of Perfluoroalkyl Acids from Aerobic Biotransformation of Quaternary Ammonium Polyfluoroalkyl Surfactants. Environmental Science & Technology 2016, 50 (18) , 9923-9932. https://doi.org/10.1021/acs.est.6b00140
    30. Hussain Masoom, Denis Courtier-Murias, Ronald Soong, Werner E. Maas, Michael Fey, Rajeev Kumar, Martine Monette, Henry J. Stronks, Myrna J. Simpson, and André J. Simpson . From Spill to Sequestration: The Molecular Journey of Contamination via Comprehensive Multiphase NMR. Environmental Science & Technology 2015, 49 (24) , 13983-13991. https://doi.org/10.1021/acs.est.5b03251
    31. John W. Washington, Thomas M. Jenkins, and Eric J. Weber . Identification of Unsaturated and 2H Polyfluorocarboxylate Homologous Series and Their Detection in Environmental Samples and as Polymer Degradation Products. Environmental Science & Technology 2015, 49 (22) , 13256-13263. https://doi.org/10.1021/acs.est.5b03379
    32. Katie C. Harding-Marjanovic, Erika F. Houtz, Shan Yi, Jennifer A. Field, David L. Sedlak, and Lisa Alvarez-Cohen . Aerobic Biotransformation of Fluorotelomer Thioether Amido Sulfonate (Lodyne) in AFFF-Amended Microcosms. Environmental Science & Technology 2015, 49 (13) , 7666-7674. https://doi.org/10.1021/acs.est.5b01219
    33. Keegan Rankin and Scott A. Mabury . Matrix Normalized MALDI-TOF Quantification of a Fluorotelomer-Based Acrylate Polymer. Environmental Science & Technology 2015, 49 (10) , 6093-6101. https://doi.org/10.1021/es505931v
    34. Hangbiao Jin, Yifeng Zhang, Lingyan Zhu, and Jonathan W. Martin . Isomer Profiles of Perfluoroalkyl Substances in Water and Soil Surrounding a Chinese Fluorochemical Manufacturing Park. Environmental Science & Technology 2015, 49 (8) , 4946-4954. https://doi.org/10.1021/acs.est.5b00212
    35. Zhong Zhang, Hui Peng, Yi Wan, and Jianying Hu . Isomer-Specific Trophic Transfer of Perfluorocarboxylic Acids in the Marine Food Web of Liaodong Bay, North China. Environmental Science & Technology 2015, 49 (3) , 1453-1461. https://doi.org/10.1021/es504445x
    36. Keegan Rankin, Holly Lee, Pablo J. Tseng, and Scott A. Mabury . Investigating the Biodegradability of a Fluorotelomer-Based Acrylate Polymer in a Soil–Plant Microcosm by Indirect and Direct Analysis. Environmental Science & Technology 2014, 48 (21) , 12783-12790. https://doi.org/10.1021/es502986w
    37. Amy A. Rand and Scott A. Mabury . Protein Binding Associated with Exposure to Fluorotelomer Alcohols (FTOHs) and Polyfluoroalkyl Phosphate Esters (PAPs) in Rats. Environmental Science & Technology 2014, 48 (4) , 2421-2429. https://doi.org/10.1021/es404390x
    38. Holly Lee, Alex G. Tevlin, Scotia A. Mabury, and Scott A. Mabury . Fate of Polyfluoroalkyl Phosphate Diesters and Their Metabolites in Biosolids-Applied Soil: Biodegradation and Plant Uptake in Greenhouse and Field Experiments. Environmental Science & Technology 2014, 48 (1) , 340-349. https://doi.org/10.1021/es403949z
    39. Mona Still, Martin Schlummer, Ludwig Gruber, Dominik Fiedler, and Gerd Wolz . Impact of Industrial Production and Packaging Processes on the Concentration of Per- and Polyfluorinated Compounds in Milk and Dairy Products. Journal of Agricultural and Food Chemistry 2013, 61 (38) , 9052-9062. https://doi.org/10.1021/jf4020137
    40. Erika F. Houtz, Christopher P. Higgins, Jennifer A. Field, and David L. Sedlak . Persistence of Perfluoroalkyl Acid Precursors in AFFF-Impacted Groundwater and Soil. Environmental Science & Technology 2013, 47 (15) , 8187-8195. https://doi.org/10.1021/es4018877
    41. Sarah A. Styler, Anne L. Myers, and D. J. Donaldson . Heterogeneous Photooxidation of Fluorotelomer Alcohols: A New Source of Aerosol-Phase Perfluorinated Carboxylic Acids. Environmental Science & Technology 2013, 47 (12) , 6358-6367. https://doi.org/10.1021/es4011509
    42. Shu Zhang, Bogdan Szostek, Patricia K. McCausland, Barry W. Wolstenholme, Xiaoxia Lu, Ning Wang, and Robert C. Buck . 6:2 and 8:2 Fluorotelomer Alcohol Anaerobic Biotransformation in Digester Sludge from a WWTP under Methanogenic Conditions. Environmental Science & Technology 2013, 47 (9) , 4227-4235. https://doi.org/10.1021/es4000824
    43. Amy A. Rand and Scott A. Mabury . Covalent Binding of Fluorotelomer Unsaturated Aldehydes (FTUALs) and Carboxylic Acids (FTUCAs) to Proteins. Environmental Science & Technology 2013, 47 (3) , 1655-1663. https://doi.org/10.1021/es303760u
    44. Alana K. Greaves, Robert J. Letcher, Christian Sonne, Rune Dietz, and Erik W. Born . Tissue-Specific Concentrations and Patterns of Perfluoroalkyl Carboxylates and Sulfonates in East Greenland Polar Bears. Environmental Science & Technology 2012, 46 (21) , 11575-11583. https://doi.org/10.1021/es303400f
    45. Erika F. Houtz and David L. Sedlak . Oxidative Conversion as a Means of Detecting Precursors to Perfluoroalkyl Acids in Urban Runoff. Environmental Science & Technology 2012, 46 (17) , 9342-9349. https://doi.org/10.1021/es302274g
    46. Amy A. Rand and Scott A. Mabury . In Vitro Interactions of Biological Nucleophiles with Fluorotelomer Unsaturated Acids and Aldehydes: Fate and Consequences. Environmental Science & Technology 2012, 46 (13) , 7398-7406. https://doi.org/10.1021/es3008485
    47. Alicia J. Fraser, Thomas F. Webster, Deborah J. Watkins, Jessica W. Nelson, Heather M. Stapleton, Antonia M. Calafat, Kayoko Kato, Mahiba Shoeib, Verónica M. Vieira, and Michael D. McClean . Polyfluorinated Compounds in Serum Linked to Indoor Air in Office Environments. Environmental Science & Technology 2012, 46 (2) , 1209-1215. https://doi.org/10.1021/es2038257
    48. Jessica C. D’eon and Scott A. Mabury . Is Indirect Exposure a Significant Contributor to the Burden of Perfluorinated Acids Observed in Humans?. Environmental Science & Technology 2011, 45 (19) , 7974-7984. https://doi.org/10.1021/es200171y
    49. Miaomiao Wang, June-Soo Park, and Myrto Petreas . Temporal Changes in the Levels of Perfluorinated Compounds in California Women's Serum over the Past 50 Years. Environmental Science & Technology 2011, 45 (17) , 7510-7516. https://doi.org/10.1021/es2012275
    50. Hoon Yoo, John W. Washington, J. Jackson Ellington, Thomas M. Jenkins, and Michael P. Neill . Concentrations, Distribution, and Persistence of Fluorotelomer Alcohols in Sludge-Applied Soils near Decatur, Alabama, USA. Environmental Science & Technology 2010, 44 (22) , 8397-8402. https://doi.org/10.1021/es100390r
    51. Helena Nilsson, Anna Kärrman, Anna Rotander, Bert van Bavel, Gunilla Lindström, and Håkan Westberg . Inhalation Exposure to Fluorotelomer Alcohols Yield Perfluorocarboxylates in Human Blood?. Environmental Science & Technology 2010, 44 (19) , 7717-7722. https://doi.org/10.1021/es101951t
    52. Ting Ruan, Yawei Wang, Thanh Wang, Qinghua Zhang, Lei Ding, Jiyan Liu, Chang Wang, Guangbo Qu and Guibin Jiang. Presence and Partitioning Behavior of Polyfluorinated Iodine Alkanes in Environmental Matrices around a Fluorochemical Manufacturing Plant: Another Possible Source for Perfluorinated Carboxylic Acids?. Environmental Science & Technology 2010, 44 (15) , 5755-5761. https://doi.org/10.1021/es101507s
    53. Craig M. Butt, Derek C.G. Muir and Scott A. Mabury . Elucidating the Pathways of Poly- and Perfluorinated Acid Formation in Rainbow Trout. Environmental Science & Technology 2010, 44 (13) , 4973-4980. https://doi.org/10.1021/es100702a
    54. Holly Lee, Jessica D’eon and Scott A. Mabury. Biodegradation of Polyfluoroalkyl Phosphates as a Source of Perfluorinated Acids to the Environment. Environmental Science & Technology 2010, 44 (9) , 3305-3310. https://doi.org/10.1021/es9028183
    55. Philip H. Howard and Derek C. G. Muir. Identifying New Persistent and Bioaccumulative Organics Among Chemicals in Commerce. Environmental Science & Technology 2010, 44 (7) , 2277-2285. https://doi.org/10.1021/es903383a
    56. Jerzy A. Mielczarski, Ela Mielczarski, Giancarlo Galli, Andrea Morelli, Elisa Martinelli and Emo Chiellini . The Surface-Segregated Nanostructure of Fluorinated Copolymer−Poly(dimethylsiloxane) Blend Films. Langmuir 2010, 26 (4) , 2871-2876. https://doi.org/10.1021/la902912h
    57. John W. Washington* and J. Jackson Ellington, Thomas M. Jenkins, Hoon Yoo. Response to Comments on “Degradability of an Acrylate-Linked, Fluorotelomer Polymer in Soil”. Environmental Science & Technology 2010, 44 (2) , 849-850. https://doi.org/10.1021/es902672q
    58. Xiaolin Li and Bruce J. Brownawell. Analysis of Quaternary Ammonium Compounds in Estuarine Sediments by LC−ToF-MS: Very High Positive Mass Defects of Alkylamine Ions as Powerful Diagnostic Tools for Identification and Structural Elucidation. Analytical Chemistry 2009, 81 (19) , 7926-7935. https://doi.org/10.1021/ac900900y
    59. Sarah B. Gewurtz, Satyendra P. Bhavsar, Patrick W. Crozier, Miriam L. Diamond, Paul A. Helm, Chris H. Marvin and Eric J. Reiner. Perfluoroalkyl Contaminants in Window Film: Indoor/Outdoor, Urban/Rural, and Winter/Summer Contamination and Assessment of Carpet as a Possible Source. Environmental Science & Technology 2009, 43 (19) , 7317-7323. https://doi.org/10.1021/es9002718
    60. John W. Washington, J. Jackson Ellington, Thomas M. Jenkins, John J. Evans, Hoon Yoo and Sarah C. Hafner . Degradability of an Acrylate-Linked, Fluorotelomer Polymer in Soil. Environmental Science & Technology 2009, 43 (17) , 6617-6623. https://doi.org/10.1021/es9002668
    61. James M. Armitage, Matthew MacLeod and Ian T. Cousins . Comparative Assessment of the Global Fate and Transport Pathways of Long-Chain Perfluorocarboxylic Acids (PFCAs) and Perfluorocarboxylates (PFCs) Emitted from Direct Sources. Environmental Science & Technology 2009, 43 (15) , 5830-5836. https://doi.org/10.1021/es900753y
    62. Jessica C. D’eon, Patrick W. Crozier, Vasile I. Furdui, Eric J. Reiner, E. Laurence Libelo and Scott A. Mabury . Observation of a Commercial Fluorinated Material, the Polyfluoroalkyl Phosphoric Acid Diesters, in Human Sera, Wastewater Treatment Plant Sludge, and Paper Fibers. Environmental Science & Technology 2009, 43 (12) , 4589-4594. https://doi.org/10.1021/es900100d
    63. Megan H. Plumlee, Kristopher McNeill and Martin Reinhard . Indirect Photolysis of Perfluorochemicals: Hydroxyl Radical-Initiated Oxidation of N-Ethyl Perfluorooctane Sulfonamido Acetate (N-EtFOSAA) and Other Perfluoroalkanesulfonamides. Environmental Science & Technology 2009, 43 (10) , 3662-3668. https://doi.org/10.1021/es803411w
    64. Chunyang Liao, Thanh Wang, Lin Cui, Qunfang Zhou, Shumin Duan and Guibin Jiang . Changes in Synaptic Transmission, Calcium Current, and Neurite Growth by Perfluorinated Compounds Are Dependent on the Chain Length and Functional Group. Environmental Science & Technology 2009, 43 (6) , 2099-2104. https://doi.org/10.1021/es802985e
    65. Thorhallur I. Halldorsson, Chunyuan Fei, Jørn Olsen, Loren Lipworth, Joseph K. Mclaughlin and Sjurdur F. Olsen . Dietary Predictors of Perfluorinated Chemicals: A Study from the Danish National Birth Cohort. Environmental Science & Technology 2008, 42 (23) , 8971-8977. https://doi.org/10.1021/es801907r
    66. Nadia Carmosini and Linda S. Lee. Partitioning of Fluorotelomer Alcohols to Octanol and Different Sources of Dissolved Organic Carbon. Environmental Science & Technology 2008, 42 (17) , 6559-6565. https://doi.org/10.1021/es800263t
    67. Katrin E. Holmström and Urs Berger. Tissue Distribution of Perfluorinated Surfactants in Common Guillemot (Uria aalge) from the Baltic Sea. Environmental Science & Technology 2008, 42 (16) , 5879-5884. https://doi.org/10.1021/es800529h
    68. Hiroshi Ishibashi, Hisato Iwata, Eun-Young Kim, Lin Tao, Kurunthachalam Kannan, Shinsuke Tanabe, Valeriy B. Batoev and Evgeny A. Petrov . Contamination and Effects of Perfluorochemicals in Baikal Seal (Pusa sibirica). 2. Molecular Characterization, Expression Level, and Transcriptional Activation of Peroxisome Proliferator-Activated Receptor α. Environmental Science & Technology 2008, 42 (7) , 2302-2308. https://doi.org/10.1021/es0720558
    69. Jinxia Liu, Linda S. Lee, Loring F. Nies, Cindy H. Nakatsu and Ronald F. Turco . Biotransformation of 8:2 Fluorotelomer Alcohol in Soil and by Soil Bacteria Isolates. Environmental Science & Technology 2007, 41 (23) , 8024-8030. https://doi.org/10.1021/es0708722
    70. Jonathan Verreault,, Urs Berger, and, Geir W. Gabrielsen. Trends of Perfluorinated Alkyl Substances in Herring Gull Eggs from Two Coastal Colonies in Northern Norway:  1983−2003. Environmental Science & Technology 2007, 41 (19) , 6671-6677. https://doi.org/10.1021/es070723j
    71. Michelle M. (MacDonald) Phillips , Mary Joyce A. Dinglasan-Panlilio , Scott A. Mabury , Keith R. Solomon , and Paul K. Sibley . Fluorotelomer Acids are More Toxic than Perfluorinated Acids. Environmental Science & Technology 2007, 41 (20) , 7159-7163. https://doi.org/10.1021/es070734c
    72. Jinxia Liu and, Linda S. Lee. Effect of Fluorotelomer Alcohol Chain Length on Aqueous Solubility and Sorption by Soils. Environmental Science & Technology 2007, 41 (15) , 5357-5362. https://doi.org/10.1021/es070228n
    73. Nabilah Rontu and, Veronica Vaida. Surface Partitioning and Stability of Pure and Mixed Films of 8−2 Fluorotelomer Alcohol at the Air−Water Interface. The Journal of Physical Chemistry C 2007, 111 (31) , 11612-11618. https://doi.org/10.1021/jp070484m
    74. Frank Wania. A Global Mass Balance Analysis of the Source of Perfluorocarboxylic Acids in the Arctic Ocean. Environmental Science & Technology 2007, 41 (13) , 4529-4535. https://doi.org/10.1021/es070124c
    75. Annika Jahnke,, Urs Berger,, Ralf Ebinghaus, and, Christian Temme. Latitudinal Gradient of Airborne Polyfluorinated Alkyl Substances in the Marine Atmosphere between Germany and South Africa (53° N−33° S). Environmental Science & Technology 2007, 41 (9) , 3055-3061. https://doi.org/10.1021/es062389h
    76. Naomi L. Stock,, Vasile I. Furdui,, Derek C. G. Muir, and, Scott A. Mabury. Perfluoroalkyl Contaminants in the Canadian Arctic:  Evidence of Atmospheric Transport and Local Contamination. Environmental Science & Technology 2007, 41 (10) , 3529-3536. https://doi.org/10.1021/es062709x
    77. Craig M. Butt,, Scott A. Mabury,, Derek C.G. Muir, and, Birgit M. Braune. Prevalence of Long-Chained Perfluorinated Carboxylates in Seabirds from the Canadian Arctic between 1975 and 2004. Environmental Science & Technology 2007, 41 (10) , 3521-3528. https://doi.org/10.1021/es062710w
    78. Vasile I. Furdui,, Naomi L. Stock,, David A. Ellis,, Craig M. Butt,, D. Michael Whittle,, Patrick W. Crozier,, Eric J. Reiner,, Derek C. G. Muir, and, Scott A. Mabury. Spatial Distribution of Perfluoroalkyl Contaminants in Lake Trout from the Great Lakes. Environmental Science & Technology 2007, 41 (5) , 1554-1559. https://doi.org/10.1021/es0620484
    79. Annika Jahnke,, Lutz Ahrens,, Ralf Ebinghaus, and, Christian Temme. Urban versus Remote Air Concentrations of Fluorotelomer Alcohols and Other Polyfluorinated Alkyl Substances in Germany. Environmental Science & Technology 2007, 41 (3) , 745-752. https://doi.org/10.1021/es0619861
    80. Hans Peter H. Arp,, Christian Niederer, and, Kai-Uwe Goss. Predicting the Partitioning Behavior of Various Highly Fluorinated Compounds. Environmental Science & Technology 2006, 40 (23) , 7298-7304. https://doi.org/10.1021/es060744y
    81. Brian F. Scott,, Christine Spencer,, Scott A. Mabury, and, Derek C. G. Muir. Poly and Perfluorinated Carboxylates in North American Precipitation. Environmental Science & Technology 2006, 40 (23) , 7167-7174. https://doi.org/10.1021/es061403n
    82. M. Shoeib,, T. Harner, and, P. Vlahos. Perfluorinated Chemicals in the Arctic Atmosphere. Environmental Science & Technology 2006, 40 (24) , 7577-7583. https://doi.org/10.1021/es0618999
    83. Shuzo Kutsuna,, Yumiko Nagaoka,, Koji Takeuchi, and, Hisao Hori. TiO2-Induced Heterogeneous Photodegradation of a Fluorotelomer Alcohol in Air. Environmental Science & Technology 2006, 40 (21) , 6824-6829. https://doi.org/10.1021/es060852k
    84. James Armitage,, Ian T. Cousins,, Robert C. Buck,, Konstantinos Prevedouros,, Mark H. Russell,, Matthew MacLeod, and, Stephen H. Korzeniowski. Modeling Global-Scale Fate and Transport of Perfluorooctanoate Emitted from Direct Sources. Environmental Science & Technology 2006, 40 (22) , 6969-6975. https://doi.org/10.1021/es0614870
    85. Susan D. Richardson. Environmental Mass Spectrometry:  Emerging Contaminants and Current Issues. Analytical Chemistry 2006, 78 (12) , 4021-4046. https://doi.org/10.1021/ac060682u
    86. Magali Houde,, Jonathan W. Martin,, Robert J. Letcher,, Keith R. Solomon, and, Derek C. G. Muir. Biological Monitoring of Polyfluoroalkyl Substances:  A Review. Environmental Science & Technology 2006, 40 (11) , 3463-3473. https://doi.org/10.1021/es052580b
    87. Amila O. De Silva and, Scott A. Mabury. Isomer Distribution of Perfluorocarboxylates in Human Blood:  Potential Correlation to Source. Environmental Science & Technology 2006, 40 (9) , 2903-2909. https://doi.org/10.1021/es0600330
    88. Ashwin Rao,, Yongsin Kim,, Charles M. Kausch,, Vernon M. Russell, and, Richard R. Thomas. Synthesis, Characterization, and Interfacial Properties of an Oligomeric, Cationic Fluorooxetane. Langmuir 2006, 22 (10) , 4811-4817. https://doi.org/10.1021/la0534322
    89. Mary Joyce A. Dinglasan-Panlilio and, Scott A. Mabury. Significant Residual Fluorinated Alcohols Present in Various Fluorinated Materials. Environmental Science & Technology 2006, 40 (5) , 1447-1453. https://doi.org/10.1021/es051619+
    90. Ewan Sinclair and, Kurunthachalam Kannan. Mass Loading and Fate of Perfluoroalkyl Surfactants in Wastewater Treatment Plants. Environmental Science & Technology 2006, 40 (5) , 1408-1414. https://doi.org/10.1021/es051798v
    91. Marla Smithwick,, Ross J. Norstrom,, Scott A. Mabury,, Keith Solomon,, Thomas J. Evans,, Ian Stirling,, Mitch K. Taylor, and, Derek C. G. Muir. Temporal Trends of Perfluoroalkyl Contaminants in Polar Bears (Ursus maritimus) from Two Locations in the North American Arctic, 1972−2002. Environmental Science & Technology 2006, 40 (4) , 1139-1143. https://doi.org/10.1021/es051750h
    92. Konstantinos Prevedouros,, Ian T. Cousins,, Robert C. Buck, and, Stephen H. Korzeniowski. Sources, Fate and Transport of Perfluorocarboxylates. Environmental Science & Technology 2006, 40 (1) , 32-44. https://doi.org/10.1021/es0512475
    93. Melissa M. Schultz,, Douglas F. Barofsky, and, Jennifer A. Field. Quantitative Determination of Fluorinated Alkyl Substances by Large-Volume-Injection Liquid Chromatography Tandem Mass SpectrometryCharacterization of Municipal Wastewaters. Environmental Science & Technology 2006, 40 (1) , 289-295. https://doi.org/10.1021/es051381p
    94. Matt F. Simcik and, Kelly J. Dorweiler. Ratio of Perfluorochemical Concentrations as a Tracer of Atmospheric Deposition to Surface Waters. Environmental Science & Technology 2005, 39 (22) , 8678-8683. https://doi.org/10.1021/es0511218
    95. Charles R. Powley,, Stephen W. George,, Timothy W. Ryan, and, Robert C. Buck. Matrix Effect-Free Analytical Methods for Determination of Perfluorinated Carboxylic Acids in Environmental Matrixes. Analytical Chemistry 2005, 77 (19) , 6353-6358. https://doi.org/10.1021/ac0508090
    96. Ning Wang,, Bogdan Szostek,, Robert C. Buck,, Patrick W. Folsom,, Lisa M. Sulecki,, Vladimir Capka,, William R. Berti, and, John T. Gannon. Fluorotelomer Alcohol BiodegradationDirect Evidence that Perfluorinated Carbon Chains Breakdown. Environmental Science & Technology 2005, 39 (19) , 7516-7528. https://doi.org/10.1021/es0506760
    97. Rossana Bossi,, Frank F. Riget, and, Rune Dietz. Temporal and Spatial Trends of Perfluorinated Compounds in Ringed Seal (Phoca hispida) from Greenland. Environmental Science & Technology 2005, 39 (19) , 7416-7422. https://doi.org/10.1021/es0508469
    98. Jonathan Verreault,, Magali Houde,, Geir W. Gabrielsen,, Urs Berger,, Marianne Haukås,, Robert J. Letcher, and, Derek C. G. Muir. Perfluorinated Alkyl Substances in Plasma, Liver, Brain, and Eggs of Glaucous Gulls (Larus hyperboreus) from the Norwegian Arctic. Environmental Science & Technology 2005, 39 (19) , 7439-7445. https://doi.org/10.1021/es051097y
    99. Jinxia Liu and, Linda S. Lee. Solubility and Sorption by Soils of 8:2 Fluorotelomer Alcohol in Water and Cosolvent Systems. Environmental Science & Technology 2005, 39 (19) , 7535-7540. https://doi.org/10.1021/es051125c
    100. Magali Houde,, Randall S. Wells,, Patricia A. Fair,, Greg D. Bossart,, Aleta A. Hohn,, Teri K. Rowles,, Jay C. Sweeney,, Keith R. Solomon, and, Derek C. G. Muir. Polyfluoroalkyl Compounds in Free-Ranging Bottlenose Dolphins (Tursiops truncatus) from the Gulf of Mexico and the Atlantic Ocean. Environmental Science & Technology 2005, 39 (17) , 6591-6598. https://doi.org/10.1021/es0506556
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect