Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Application of Land Use Regression to Estimate Long-Term Concentrations of Traffic-Related Nitrogen Oxides and Fine Particulate Matter
My Activity

Figure 1Loading Img
    Article

    Application of Land Use Regression to Estimate Long-Term Concentrations of Traffic-Related Nitrogen Oxides and Fine Particulate Matter
    Click to copy article linkArticle link copied!

    View Author Information
    School of Occupational and Environmental Hygiene, The University of British Columbia, Vancouver, British Columbia, Canada, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario, Canada, and Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
    Other Access OptionsSupporting Information (1)

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2007, 41, 7, 2422–2428
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es0606780
    Published March 9, 2007
    Copyright © 2007 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Land use regression (LUR) is a promising technique for predicting ambient air pollutant concentrations at high spatial resolution. We expand on previous work by modeling oxides of nitrogen and fine particulate matter in Vancouver, Canada, using two measures of traffic. Systematic review of historical data identified optimal sampling periods for NO and NO2. Integrated 14-day mean concentrations were measured with passive samplers at 116 sites in the spring and fall of 2003. Study estimates for annual mean NO and NO2 ranged from 5.4−98.7 and 4.8−28.0 ppb, respectively. Regulatory measurements ranged from 4.8−29.7 and 9.0−24.1 ppb and exhibited less spatial variability. Measurements of particle mass concentration (PM2.5) and light absorbance (ABS) were made at a subset of 25 sites during another campaign. Fifty-five variables describing each sampling site were generated in a Geographic Information System (GIS) and linear regression models for NO, NO2, PM2.5, and ABS were built with the most predictive covariates. Adjusted R2 values ranged from 0.39 to 0.62 and were similar across traffic metrics. Resulting maps show the distribution of NO to be more heterogeneous than that of NO2, supporting the usefulness of this approach for assessing spatial patterns of traffic-related pollution.

    Copyright © 2007 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     The University of British Columbia.

     Currently located at University of California.

    §

     McMaster University.

     University of Southern California.

    *

     Corresponding author phone:  604-822-9585; fax:  604-822-9588; e-mail:  [email protected].

    Supporting Information Available

    Click to copy section linkSection link copied!

    Map of sampling sites; maps of concentrations of NOx and fine particulate matter; table of comparison of land use regression in different locations. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 410 publications.

    1. María Elisa Quinteros, Carola Blazquez, Salvador Ayala, Dylan Kilby, Juan Pablo Cárdenas-R, Ximena Ossa, Felipe Rosas-Diaz, Elizabeth A. Stone, Estela Blanco, Juana-María Delgado-Saborit, Roy M Harrison, Pablo Ruiz-Rudolph. Development of Spatio-Temporal Land Use Regression Models for Fine Particulate Matter and Wood-Burning Tracers in Temuco, Chile. Environmental Science & Technology 2023, 57 (48) , 19473-19486. https://doi.org/10.1021/acs.est.3c00720
    2. Yue Li, Tageui Hong, Yefu Gu, Zhiyuan Li, Tao Huang, Harry Fung Lee, Yeonsook Heo, Steve H. L. Yim. Assessing the Spatiotemporal Characteristics, Factor Importance, and Health Impacts of Air Pollution in Seoul by Integrating Machine Learning into Land-Use Regression Modeling at High Spatiotemporal Resolutions. Environmental Science & Technology 2023, 57 (3) , 1225-1236. https://doi.org/10.1021/acs.est.2c03027
    3. Magali N. Blanco, Jianzhao Bi, Elena Austin, Timothy V. Larson, Julian D. Marshall, Lianne Sheppard. Impact of Mobile Monitoring Network Design on Air Pollution Exposure Assessment Models. Environmental Science & Technology 2023, 57 (1) , 440-450. https://doi.org/10.1021/acs.est.2c05338
    4. Magali N. Blanco, Amanda Gassett, Timothy Gould, Annie Doubleday, David L. Slager, Elena Austin, Edmund Seto, Timothy V. Larson, Julian D. Marshall, Lianne Sheppard. Characterization of Annual Average Traffic-Related Air Pollution Concentrations in the Greater Seattle Area from a Year-Long Mobile Monitoring Campaign. Environmental Science & Technology 2022, 56 (16) , 11460-11472. https://doi.org/10.1021/acs.est.2c01077
    5. Sakshi Jain, Albert A. Presto, Naomi Zimmerman. Spatial Modeling of Daily PM2.5, NO2, and CO Concentrations Measured by a Low-Cost Sensor Network: Comparison of Linear, Machine Learning, and Hybrid Land Use Models. Environmental Science & Technology 2021, 55 (13) , 8631-8641. https://doi.org/10.1021/acs.est.1c02653
    6. Jie Chen, Kees de Hoogh, John Gulliver, Barbara Hoffmann, Ole Hertel, Matthias Ketzel, Gudrun Weinmayr, Mariska Bauwelinck, Aaron van Donkelaar, Ulla A. Hvidtfeldt, Richard Atkinson, Nicole A. H. Janssen, Randall V. Martin, Evangelia Samoli, Zorana J. Andersen, Bente M. Oftedal, Massimo Stafoggia, Tom Bellander, Maciej Strak, Kathrin Wolf, Danielle Vienneau, Bert Brunekreef, Gerard Hoek. Development of Europe-Wide Models for Particle Elemental Composition Using Supervised Linear Regression and Random Forest. Environmental Science & Technology 2020, 54 (24) , 15698-15709. https://doi.org/10.1021/acs.est.0c06595
    7. Sam De Craemer, Jordy Vercauteren, Frans Fierens, Wouter Lefebvre, Filip J. R. Meysman. Using Large-Scale NO2 Data from Citizen Science for Air-Quality Compliance and Policy Support. Environmental Science & Technology 2020, 54 (18) , 11070-11078. https://doi.org/10.1021/acs.est.0c02436
    8. Arman Ganji, Laura Minet, Scott Weichenthal, Marianne Hatzopoulou. Predicting Traffic-Related Air Pollution Using Feature Extraction from Built Environment Images. Environmental Science & Technology 2020, 54 (17) , 10688-10699. https://doi.org/10.1021/acs.est.0c00412
    9. Kyle P. Messier, Sarah E. Chambliss, Shahzad Gani, Ramon Alvarez, Michael Brauer, Jonathan J. Choi, Steven P. Hamburg, Jules Kerckhoffs, Brian LaFranchi, Melissa M. Lunden, Julian D. Marshall, Christopher J. Portier, Ananya Roy, Adam A. Szpiro, Roel C. H. Vermeulen, Joshua S. Apte. Mapping Air Pollution with Google Street View Cars: Efficient Approaches with Mobile Monitoring and Land Use Regression. Environmental Science & Technology 2018, 52 (21) , 12563-12572. https://doi.org/10.1021/acs.est.8b03395
    10. Jonathan M. Wang, Cheol-Heon Jeong, Nathan Hilker, Kerolyn K. Shairsingh, Robert M. Healy, Uwayemi Sofowote, Jerzy Debosz, Yushan Su, Michiyo McGaughey, Geoff Doerksen, Tony Munoz, Luc White, Dennis Herod, Greg J. Evans. Near-Road Air Pollutant Measurements: Accounting for Inter-Site Variability Using Emission Factors. Environmental Science & Technology 2018, 52 (16) , 9495-9504. https://doi.org/10.1021/acs.est.8b01914
    11. Marianne Hatzopoulou, Marie France Valois, Ilan Levy, Cristian Mihele, Gang Lu, Scott Bagg, Laura Minet, and Jeffrey Brook . Robustness of Land-Use Regression Models Developed from Mobile Air Pollutant Measurements. Environmental Science & Technology 2017, 51 (7) , 3938-3947. https://doi.org/10.1021/acs.est.7b00366
    12. Luke D. Knibbs, Craig P. Coorey, Matthew J. Bechle, Christine T. Cowie, Mila Dirgawati, Jane S. Heyworth, Guy B. Marks, Julian D. Marshall, Lidia Morawska, Gavin Pereira, and Michael G. Hewson . Independent Validation of National Satellite-Based Land-Use Regression Models for Nitrogen Dioxide Using Passive Samplers. Environmental Science & Technology 2016, 50 (22) , 12331-12338. https://doi.org/10.1021/acs.est.6b03428
    13. James David Smith, Christina Mitsakou, Nutthida Kitwiroon, Ben M. Barratt, Heather A. Walton, Jonathon G. Taylor, Hugh Ross Anderson, Frank J. Kelly, and Sean D. Beevers . London Hybrid Exposure Model: Improving Human Exposure Estimates to NO2 and PM2.5 in an Urban Setting. Environmental Science & Technology 2016, 50 (21) , 11760-11768. https://doi.org/10.1021/acs.est.6b01817
    14. Jason G. Su, Ying-Ying Meng, Melissa Pickett, Edmund Seto, Beate Ritz, and Michael Jerrett . Identification of Effects of Regulatory Actions on Air Quality in Goods Movement Corridors in California. Environmental Science & Technology 2016, 50 (16) , 8687-8696. https://doi.org/10.1021/acs.est.6b00926
    15. Georgia Miskell, Jennifer Salmond, Maryam Alavi-Shoshtari, Mark Bart, Bruce Ainslie, Stuart Grange, Ian G. McKendry, Geoff S. Henshaw, and David E. Williams . Data Verification Tools for Minimizing Management Costs of Dense Air-Quality Monitoring Networks. Environmental Science & Technology 2016, 50 (2) , 835-846. https://doi.org/10.1021/acs.est.5b04421
    16. Laure Deville Cavellin, Scott Weichenthal, Ryan Tack, Martina S. Ragettli, Audrey Smargiassi, and Marianne Hatzopoulou . Investigating the Use Of Portable Air Pollution Sensors to Capture the Spatial Variability Of Traffic-Related Air Pollution. Environmental Science & Technology 2016, 50 (1) , 313-320. https://doi.org/10.1021/acs.est.5b04235
    17. Jill K. Schulte, Julie R. Fox, Assaf P. Oron, Timothy V. Larson, Christopher D. Simpson, Michael Paulsen, Nancy Beaudet, Joel D. Kaufman, and Sheryl Magzamen . Neighborhood-Scale Spatial Models of Diesel Exhaust Concentration Profile Using 1-Nitropyrene and Other Nitroarenes. Environmental Science & Technology 2015, 49 (22) , 13422-13430. https://doi.org/10.1021/acs.est.5b03639
    18. Georgia Miskell, Jennifer Salmond, Ian Longley, and Kim N. Dirks . A Novel Approach in Quantifying the Effect of Urban Design Features on Local-Scale Air Pollution in Central Urban Areas. Environmental Science & Technology 2015, 49 (15) , 9004-9011. https://doi.org/10.1021/acs.est.5b00476
    19. Allison P. Patton, Wig Zamore, Elena N. Naumova, Jonathan I. Levy, Doug Brugge, and John L. Durant . Transferability and Generalizability of Regression Models of Ultrafine Particles in Urban Neighborhoods in the Boston Area. Environmental Science & Technology 2015, 49 (10) , 6051-6060. https://doi.org/10.1021/es5061676
    20. Colleen E. Reid, Michael Jerrett, Maya L. Petersen, Gabriele G. Pfister, Philip E. Morefield, Ira B. Tager, Sean M. Raffuse, and John R. Balmes . Spatiotemporal Prediction of Fine Particulate Matter During the 2008 Northern California Wildfires Using Machine Learning. Environmental Science & Technology 2015, 49 (6) , 3887-3896. https://doi.org/10.1021/es505846r
    21. Yi Tan, Eric M. Lipsky, Rawad Saleh, Allen L. Robinson, and Albert A. Presto . Characterizing the Spatial Variation of Air Pollutants and the Contributions of High Emitting Vehicles in Pittsburgh, PA. Environmental Science & Technology 2014, 48 (24) , 14186-14194. https://doi.org/10.1021/es5034074
    22. Allison P. Patton, Caitlin Collins, Elena N. Naumova, Wig Zamore, Doug Brugge, and John L. Durant . An Hourly Regression Model for Ultrafine Particles in a Near-Highway Urban Area. Environmental Science & Technology 2014, 48 (6) , 3272-3280. https://doi.org/10.1021/es404838k
    23. Arvind Saraswat , Joshua S. Apte , Milind Kandlikar , Michael Brauer , Sarah B. Henderson , Julian D. Marshall . Spatiotemporal Land Use Regression Models of Fine, Ultrafine, and Black Carbon Particulate Matter in New Delhi, India. Environmental Science & Technology 2013, 47 (22) , 12903-12911. https://doi.org/10.1021/es401489h
    24. Bernardo S. Beckerman, Michael Jerrett, Marc Serre, Randall V. Martin, Seung-Jae Lee, Aaron van Donkelaar, Zev Ross, Jason Su, and Richard T. Burnett . A Hybrid Approach to Estimating National Scale Spatiotemporal Variability of PM2.5 in the Contiguous United States. Environmental Science & Technology 2013, 47 (13) , 7233-7241. https://doi.org/10.1021/es400039u
    25. Rebecca C. Abernethy, Ryan W. Allen, Ian G. McKendry, and Michael Brauer . A Land Use Regression Model for Ultrafine Particles in Vancouver, Canada. Environmental Science & Technology 2013, 47 (10) , 5217-5225. https://doi.org/10.1021/es304495s
    26. Marloes Eeftens, Rob Beelen, Kees de Hoogh, Tom Bellander, Giulia Cesaroni, Marta Cirach, Christophe Declercq, Audrius Dėdelė, Evi Dons, Audrey de Nazelle, Konstantina Dimakopoulou, Kirsten Eriksen, Grégoire Falq, Paul Fischer, Claudia Galassi, Regina Gražulevičienė, Joachim Heinrich, Barbara Hoffmann, Michael Jerrett, Dirk Keidel, Michal Korek, Timo Lanki, Sarah Lindley, Christian Madsen, Anna Mölter, Gizella Nádor, Mark Nieuwenhuijsen, Michael Nonnemacher, Xanthi Pedeli, Ole Raaschou-Nielsen, Evridiki Patelarou, Ulrich Quass, Andrea Ranzi, Christian Schindler, Morgane Stempfelet, Euripides Stephanou, Dorothea Sugiri, Ming-Yi Tsai, Tarja Yli-Tuomi, Mihály J Varró, Danielle Vienneau, Stephanie von Klot, Kathrin Wolf, Bert Brunekreef, and Gerard Hoek . Development of Land Use Regression Models for PM2.5, PM2.5 Absorbance, PM10 and PMcoarse in 20 European Study Areas; Results of the ESCAPE Project. Environmental Science & Technology 2012, 46 (20) , 11195-11205. https://doi.org/10.1021/es301948k
    27. Srijan Aggarwal, Ricky Jain, and Julian D. Marshall . Real-Time Prediction of Size-Resolved Ultrafine Particulate Matter on Freeways. Environmental Science & Technology 2012, 46 (4) , 2234-2241. https://doi.org/10.1021/es203290p
    28. Dan Xie, Yi Liu, and Jining Chen . Mapping Urban Environmental Noise: A Land Use Regression Method. Environmental Science & Technology 2011, 45 (17) , 7358-7364. https://doi.org/10.1021/es200785x
    29. Eric V. Novotny, Matthew J. Bechle, Dylan B. Millet, and Julian D. Marshall . National Satellite-Based Land-Use Regression: NO2 in the United States. Environmental Science & Technology 2011, 45 (10) , 4407-4414. https://doi.org/10.1021/es103578x
    30. John Gulliver, Chloe Morris, Kayoung Lee, Danielle Vienneau, David Briggs, and Anna Hansell . Land Use Regression Modeling To Estimate Historic (1962−1991) Concentrations of Black Smoke and Sulfur Dioxide for Great Britain. Environmental Science & Technology 2011, 45 (8) , 3526-3532. https://doi.org/10.1021/es103821y
    31. Uma Ramesh K. Lagudu, Suresh Raja, Philip K. Hopke, David C. Chalupa, Mark J. Utell, Gary Casuccio, Traci L. Lersch, and Roger R. West . Heterogeneity of Coarse Particles in an Urban Area. Environmental Science & Technology 2011, 45 (8) , 3288-3296. https://doi.org/10.1021/es103831w
    32. Nectarios Rose, Christine Cowie, Robert Gillett, Guy B. Marks. Validation of a Spatiotemporal Land Use Regression Model Incorporating Fixed Site Monitors. Environmental Science & Technology 2011, 45 (1) , 294-299. https://doi.org/10.1021/es100683t
    33. Timothy Larson, Sarah B. Henderson and Michael Brauer . Mobile Monitoring of Particle Light Absorption Coefficient in an Urban Area as a Basis for Land Use Regression. Environmental Science & Technology 2009, 43 (13) , 4672-4678. https://doi.org/10.1021/es803068e
    34. Inmaculada Aguilera, Jordi Sunyer, Rosalía Fernández-Patier, Gerard Hoek, Amelia Aguirre-Alfaro, Kees Meliefste, M. Teresa Bomboi-Mingarro, Mark J. Nieuwenhuijsen, Dolores Herce-Garraleta and Bert Brunekreef . Estimation of Outdoor NOx, NO2, and BTEX Exposure in a Cohort of Pregnant Women Using Land Use Regression Modeling. Environmental Science & Technology 2008, 42 (3) , 815-821. https://doi.org/10.1021/es0715492
    35. Timothy Larson,, Jason Su,, Anne-Marie Baribeau,, Michael Buzzelli,, Eleanor Setton, and, Michael Brauer. A Spatial Model of Urban Winter Woodsmoke Concentrations. Environmental Science & Technology 2007, 41 (7) , 2429-2436. https://doi.org/10.1021/es0614060
    36. Behzad Valipour Shokouhi, Kees de Hoogh, Regula Gehrig, Marloes Eeftens. Spatiotemporal modelling of airborne birch and grass pollen concentration across Switzerland: A comparison of statistical, machine learning and ensemble methods. Environmental Research 2024, 263 , 119999. https://doi.org/10.1016/j.envres.2024.119999
    37. Scarlett B. Rakowska, Matthew D. Adams. Modelling the microscale spatial distribution of urban air temperature in suburban sprawl. Urban Climate 2024, 58 , 102136. https://doi.org/10.1016/j.uclim.2024.102136
    38. Eliot J. Kim, Tracey Holloway, Ajinkya Kokandakar, Monica Harkey, Stephanie Elkins, Daniel L. Goldberg, Colleen Heck. A Comparison of Regression Methods for Inferring Near‐Surface NO 2 With Satellite Data. Journal of Geophysical Research: Atmospheres 2024, 129 (16) https://doi.org/10.1029/2024JD040906
    39. Byung-Keun Kim, Hwan-Cheol Kim, Dong-Wook Lee, Young-Hee Nam, Da Woon Sim, Youngsoo Lee, Ji-Su Shim, Min-Suk Yang, Min-Hye Kim, So Ri Kim, Sang-Heon Kim, Young-Il Koh, Heung-Woo Park, . Effects of indoor environments and outdoor air pollutants in residential areas on acute exacerbation in patients with severe asthma. International Journal of Environmental Health Research 2024, , 1-11. https://doi.org/10.1080/09603123.2024.2390474
    40. Jenna R. Krall, Jonathan Thornburg, Ting Zhang, Anna Z. Pollack, Yi-Ching Lee, Michelle McCombs, Lucas R. F. Henneman. Short-Term Associations of Road Density and Road Features with In-Vehicle PM2.5 during Daily Trips in the Washington, D.C. Metro Area. Environments 2024, 11 (7) , 135. https://doi.org/10.3390/environments11070135
    41. Meng Cao, Daoyuan Wang, Yichun Qian, Ruyue Yu, Aizhong Ding, Yuanfang Huang. Application of Integrated Land Use Regression and Geographic Information Systems for Modeling the Spatial Distribution of Chromium in Agricultural Topsoil. Sustainability 2024, 16 (13) , 5299. https://doi.org/10.3390/su16135299
    42. Sk Nafiz Rahaman, Jake Nelson, Al Artat Bin Ali, Nishat Shermin, Narcisa G. Pricope, Abdulla Al Kafy, Md Shahaduzzaman Sabuj, Sharmin Sultana Toa. A Multivariate Geostatistical Framework to Assess the Spatio-Temporal Dynamics of Air Pollution and Land Surface Temperature in Bangladesh. Earth Systems and Environment 2024, 11 https://doi.org/10.1007/s41748-024-00418-9
    43. Souad Mahmoud Al Okla, Fatima Al Zahra Khamis Al Rasbi, Hawida Said Al Marhubi, Shima Salim Al Mataani, Yusra Mohammed Al Sawai, Hasa Ibrahim Mohammed, Muna Ali Salim Al Mamari, Salwa Abdullah Abdulrahim Al Balushi, Abdul Qader Abbady. The Impact of Air Pollution on Asthma Severity among Residents Living near the Main Industrial Complex in Oman: A Cross-Sectional Study. International Journal of Environmental Research and Public Health 2024, 21 (5) , 553. https://doi.org/10.3390/ijerph21050553
    44. Jingjing Si, Lin Zhang, Shizhuang Zhang, Yongjian Li, Zhixin Zhang, Ziqi He, Ying Chen, Hongbin Zhan. Response of air pollution to meteorological conditions and socioeconomic activities associated to the COVID-19 outbreak in the Yangtze River Economic Belt. Atmospheric Environment 2024, 323 , 120390. https://doi.org/10.1016/j.atmosenv.2024.120390
    45. Samantha Lee, Hind Sbihi, Julia L. MacIsaac, Robert Balshaw, Amirthagowri Ambalavanan, Padmaja Subbarao, Piushkumar J. Mandhane, Theo J. Moraes, Stuart E. Turvey, Qingling Duan, Michael Brauer, Jeffrey R. Brook, Michael S. Kobor, Meaghan J. Jones. Persistent DNA Methylation Changes across the First Year of Life and Prenatal NO2 Exposure in a Canadian Prospective Birth Study. Environmental Health Perspectives 2024, 132 (4) https://doi.org/10.1289/EHP13034
    46. Jiayuan Wang, Abosede S Alli, Sierra N Clark, Majid Ezzati, Michael Brauer, Allison F Hughes, James Nimo, Josephine Bedford Moses, Solomon Baah, Ricky Nathvani, Vishwanath D, Samuel Agyei-Mensah, Jill Baumgartner, James E Bennett, Raphael E Arku. Inequalities in urban air pollution in sub-Saharan Africa: an empirical modeling of ambient NO and NO 2 concentrations in Accra, Ghana. Environmental Research Letters 2024, 19 (3) , 034036. https://doi.org/10.1088/1748-9326/ad2892
    47. Seyedeh Zeinab Shogrkhodaei, Amanollah Fathnia, Seyed Vahid Razavi-Termeh, Sirous Hashemi Dareh Badami, Khalifa M. Al-Kindi. Application of dynamic spatiotemporal modeling to predict urban traffic–related air pollution changes. Air Quality, Atmosphere & Health 2024, 17 (3) , 439-454. https://doi.org/10.1007/s11869-023-01456-4
    48. Zhiyuan Li, Kin-Fai Ho, Harry Fung Lee, Steve Hung Lam Yim. Development of an integrated model framework for multi-air-pollutant exposure assessments in high-density cities. Atmospheric Chemistry and Physics 2024, 24 (1) , 649-661. https://doi.org/10.5194/acp-24-649-2024
    49. Victoria S. Fusé, Carla S. Stadler, Lucas Chiavarino, Natasha Picone, Santiago Linares, Sergio A. Guzmán, M. Paula Juliarena. Seasonal spatial variations of urban methane concentrations in a medium-sized city determined by easily measure variables. Urban Climate 2024, 53 , 101798. https://doi.org/10.1016/j.uclim.2023.101798
    50. Xuying Ma, Bin Zou, Jun Deng, Jay Gao, Ian Longley, Shun Xiao, Bin Guo, Yarui Wu, Tingting Xu, Xin Xu, Xiaosha Yang, Xiaoqi Wang, Zelei Tan, Yifan Wang, Lidia Morawska, Jennifer Salmond. A comprehensive review of the development of land use regression approaches for modeling spatiotemporal variations of ambient air pollution: A perspective from 2011 to 2023. Environment International 2024, 183 , 108430. https://doi.org/10.1016/j.envint.2024.108430
    51. Bhushan Pawar, Lalit Garg, Vijay Prakash, Charles Galdies, Sandra Buttigieg, Neville Calleja. A Systematic Review of Air Pollution and Weather Parameters Detection Methods in Satellite Remote Sensing. 2024, 17-28. https://doi.org/10.1007/978-981-99-9040-5_2
    52. Azza Kamal. Geospatial Thinking to Prioritise and Inform LID Retrofits and Ecological Placemaking for BMP Sites. 2024, 197-213. https://doi.org/10.1007/978-981-97-4924-9_10
    53. Alpamys Issanov, Trevor Dummer. Not Only Smoking: Preventing Lung Cancers Caused by Environmental Exposures. 2024, 151-175. https://doi.org/10.1007/978-3-031-66413-7_7
    54. Yongyue Wang, Qiwei Li, Zhenyu Luo, Junchao Zhao, Zhaofeng Lv, Qiuju Deng, Jing Liu, Majid Ezzati, Jill Baumgartner, Huan Liu, Kebin He. Ultra-high-resolution mapping of ambient fine particulate matter to estimate human exposure in Beijing. Communications Earth & Environment 2023, 4 (1) https://doi.org/10.1038/s43247-023-01119-3
    55. Dries S. Martens, De-Wei An, Yu-Ling Yu, Babangida S. Chori, Congrong Wang, Ana Inês Silva, Fang-Fei Wei, Chen Liu, Katarzyna Stolarz-Skrzypek, Marek Rajzer, Agnieszka Latosinska, Harald Mischak, Jan A. Staessen, Tim S. Nawrot, . Association of Air Pollution with a Urinary Biomarker of Biological Aging and Effect Modification by Vitamin K in the FLEMENGHO Prospective Population Study. Environmental Health Perspectives 2023, 131 (12) https://doi.org/10.1289/EHP13414
    56. Wenbo Chen, Fuqing Zhang, Xue Shang, Tongyue Zhang, Feiying Guan. The effects of surface vegetation coverage on the spatial distribution of PM2.5 in the central area of Nanchang City, China. Environmental Science and Pollution Research 2023, 30 (60) , 125977-125990. https://doi.org/10.1007/s11356-023-31031-4
    57. Saiwei Luo, Wenbo Chen, Zhenyan Sheng, Peiqi Wang. The impact of urban green space landscape on PM2.5 in the central urban area of Nanchang city, China. Atmospheric Pollution Research 2023, 14 (11) , 101903. https://doi.org/10.1016/j.apr.2023.101903
    58. Qi Meng, Jonathan Liu, Jiaqi Shen, Irish Del Rosario, Pascale S.J. Lakey, Manabu Shiraiwa, Jason Su, Scott Weichenthal, Yifang Zhu, Farzan Oroumiyeh, Suzanne E. Paulson, Michael Jerrett, Beate Ritz. Fine Particulate Matter Metal Composition, Oxidative Potential, and Adverse Birth Outcomes in Los Angeles. Environmental Health Perspectives 2023, 131 (10) https://doi.org/10.1289/EHP12196
    59. Yuankai Huang, Jintao Zhang, Zheng Ren, Wenjun Xiang, Iram Sifat, Wei Zhang, Jin Zhu, Baikun Li. Next generation decentralized water systems: a water-energy-infrastructure-human nexus (WEIHN) approach. Environmental Science: Water Research & Technology 2023, 9 (10) , 2446-2471. https://doi.org/10.1039/D3EW00506B
    60. Ying Zhang, Song Xi Chen, Le Bao. Air pollution estimation under air stagnation—A case study of Beijing. Environmetrics 2023, 34 (6) https://doi.org/10.1002/env.2819
    61. Dong Gao, Sarah Esenther, Laura Minet, Alexander De Jesus, Sarita Hudson, Brian Leaderer, Marianne Hatzopoulou, Krystal J. Godri Pollitt. Assessment of children's personal and land use regression model-estimated exposure to NO2 in Springfield, Massachusetts. Science of The Total Environment 2023, 892 , 164681. https://doi.org/10.1016/j.scitotenv.2023.164681
    62. Emre Yücer, Arzu Erener, Gülcan Sarp. A Land Use Regression Model to Estimate Ambient Concentrations of PM10 and SO2 in İzmit, Turkey. Journal of the Indian Society of Remote Sensing 2023, 51 (6) , 1329-1341. https://doi.org/10.1007/s12524-023-01704-1
    63. Abosede S. Alli, Sierra N. Clark, Jiayuan Wang, James Bennett, Allison F. Hughes, Majid Ezzati, Michael Brauer, James Nimo, Josephine Bedford-Moses, Solomon Baah, Alicia Cavanaugh, Samuel Agyei-Mensah, George Owusu, Jill Baumgartner, Raphael E. Arku. High-resolution patterns and inequalities in ambient fine particle mass (PM2.5) and black carbon (BC) in the Greater Accra Metropolis, Ghana. Science of The Total Environment 2023, 875 , 162582. https://doi.org/10.1016/j.scitotenv.2023.162582
    64. Yong Wan, Fangfang Chen, Lu Fan, Dong Sun, Hu He, Yongshou Dai, Ligang Li, Yuyu Chen. Conversion of surface CH4 concentrations from GOSAT satellite observations using XGBoost algorithm. Atmospheric Environment 2023, 301 , 119694. https://doi.org/10.1016/j.atmosenv.2023.119694
    65. Kousik Das, Nilanjana Das Chatterjee, Debarati Jana, Raj Kumar Bhattacharya. Application of land-use regression model with regularization algorithm to assess PM2.5 and PM10 concentration and health risk in Kolkata Metropolitan. Urban Climate 2023, 49 , 101473. https://doi.org/10.1016/j.uclim.2023.101473
    66. Wan Nurul Farah Wan Azmi, Thulasyammal Ramiah Pillai, Mohd Talib Latif, Shajan Koshy, Rafiza Shaharudin. Application of land use regression model to assess outdoor air pollution exposure: A review. Environmental Advances 2023, 11 , 100353. https://doi.org/10.1016/j.envadv.2023.100353
    67. Ayibota Tuerxunbieke, Xiangyu Xu, Wen Pei, Ling Qi, Ning Qin, Xiaoli Duan. Development of Phase and Seasonally Dependent Land-Use Regression Models to Predict Atmospheric PAH Levels. Toxics 2023, 11 (4) , 316. https://doi.org/10.3390/toxics11040316
    68. Soon-Sun Kwon, Hosik Choi, Whanhee Lee, Yeonjin Kim, Hwan-Cheol Kim, Woojoo Lee. Reformulating land-use regression method as sign-constrained regularized regressions: Advantages and improvements. Environmental Modelling & Software 2023, 162 , 105653. https://doi.org/10.1016/j.envsoft.2023.105653
    69. Md H. Rahman, Shivang Agarwal, Sumit Sharma, R. Suresh, Seema Kundu, Stijn Vranckx, Bino Maiheu, Lisa Blyth, Stijn Janssen, Sousa Jorge, Prashant Gargava, V. K. Shukla, Sakshi Batra. High-Resolution Mapping of Air Pollution in Delhi Using Detrended Kriging Model. Environmental Modeling & Assessment 2023, 28 (1) , 39-54. https://doi.org/10.1007/s10666-022-09842-5
    70. Xingdong Deng, Feng Gao, Shunyi Liao, Shaoying Li. Unraveling the association between the built environment and air pollution from a geospatial perspective. Journal of Cleaner Production 2023, 386 , 135768. https://doi.org/10.1016/j.jclepro.2022.135768
    71. Hao Chen, Gregory J. Smith, Syed Masood, Haiyan Tong. Extracellular MicroRNAs as Putative Biomarkers of Air Pollution Exposure. 2023, 439-462. https://doi.org/10.1007/978-3-031-07392-2_28
    72. Arezoo Mokhtari, Behnam Tashayo. Locally weighted total least-squares variance component estimation for modeling urban air pollution. Environmental Monitoring and Assessment 2022, 194 (11) https://doi.org/10.1007/s10661-022-10499-6
    73. Jonathan Liu, Sudipto Banerjee, Farzan Oroumiyeh, Jiaqi Shen, Irish del Rosario, Jonah Lipsitt, Suzanne Paulson, Beate Ritz, Jason Su, Scott Weichenthal, Pascale Lakey, Manabu Shiraiwa, Yifang Zhu, Michael Jerrett. Co-kriging with a low-cost sensor network to estimate spatial variation of brake and tire-wear metals and oxidative stress potential in Southern California. Environment International 2022, 168 , 107481. https://doi.org/10.1016/j.envint.2022.107481
    74. Xin Dong, Shili Yang, Chunxiao Zhang. Air Pollution Increased the Demand for Gym Sports under COVID-19: Evidence from Beijing, China. International Journal of Environmental Research and Public Health 2022, 19 (19) , 12614. https://doi.org/10.3390/ijerph191912614
    75. A. d. S. Leite, S. Rousse, J.‐F. Léon, R. I. F. Trindade, S. Haoues‐Jouve, C. Carvallo, M. Dias‐Alves, A. Proietti, E. Nardin, M. Macouin. Barking up the Right Tree: Using Tree Bark to Track Airborne Particles in School Environment and Link Science to Society. GeoHealth 2022, 6 (9) https://doi.org/10.1029/2022GH000633
    76. Haiou Yang, Qingming Leng, Yanfang Xiao, Wenbo Chen. Investigating the impact of urban landscape composition and configuration on PM2.5 concentration under the LCZ scheme: A case study in Nanchang, China. Sustainable Cities and Society 2022, 84 , 104006. https://doi.org/10.1016/j.scs.2022.104006
    77. Dahao Zhang, Chunshan Zhou, Bao-Jie He. Spatial and temporal heterogeneity of urban land area and PM2.5 concentration in China. Urban Climate 2022, 45 , 101268. https://doi.org/10.1016/j.uclim.2022.101268
    78. Lief Pagalan, Tim F. Oberlander, Gillian E. Hanley, Laura C. Rosella, Celeste Bickford, Whitney Weikum, Nancy Lanphear, Bruce Lanphear, Michael Brauer, Matilda van den Bosch. The association between prenatal greenspace exposure and Autism spectrum disorder, and the potentially mediating role of air pollution reduction: A population-based birth cohort study. Environment International 2022, 167 , 107445. https://doi.org/10.1016/j.envint.2022.107445
    79. Tin Thongthammachart, Shin Araki, Hikari Shimadera, Tomohito Matsuo, Akira Kondo. Incorporating Light Gradient Boosting Machine to land use regression model for estimating NO2 and PM2.5 levels in Kansai region, Japan. Environmental Modelling & Software 2022, 155 , 105447. https://doi.org/10.1016/j.envsoft.2022.105447
    80. Wenbo Chen, Fuqing Zhang, Saiwei Luo, Taojie Lu, Jiao Zheng, Lei He. Three-Dimensional Landscape Pattern Characteristics of Land Function Zones and Their Influence on PM2.5 Based on LUR Model in the Central Urban Area of Nanchang City, China. International Journal of Environmental Research and Public Health 2022, 19 (18) , 11696. https://doi.org/10.3390/ijerph191811696
    81. Sheng Zheng, Chengjie Zhang, Xue Wu. Estimating PM2.5 Concentrations Using an Improved Land Use Regression Model in Zhejiang, China. Atmosphere 2022, 13 (8) , 1273. https://doi.org/10.3390/atmos13081273
    82. Esra Suel, Meytar Sorek-Hamer, Izabela Moise, Michael von Pohle, Adwait Sahasrabhojanee, Ata Akbari Asanjan, Raphael E. Arku, Abosede S. Alli, Benjamin Barratt, Sierra N. Clark, Ariane Middel, Emily Deardorff, Violet Lingenfelter, Nikunj C. Oza, Nishant Yadav, Majid Ezzati, Michael Brauer. What You See Is What You Breathe? Estimating Air Pollution Spatial Variation Using Street-Level Imagery. Remote Sensing 2022, 14 (14) , 3429. https://doi.org/10.3390/rs14143429
    83. Stefania Bertazzon, Isabelle Couloigner, Mojgan Mirzaei. Spatial regression modelling of particulate pollution in Calgary, Canada. GeoJournal 2022, 87 (3) , 2141-2157. https://doi.org/10.1007/s10708-020-10345-7
    84. Xuying Ma, Jay Gao, Ian Longley, Bin Zou, Bin Guo, Xin Xu, Jennifer Salmond. Development of transferable neighborhood land use regression models for predicting intra-urban ambient nitrogen dioxide (NO2) spatial variations. Environmental Science and Pollution Research 2022, 29 (30) , 45903-45918. https://doi.org/10.1007/s11356-022-19141-x
    85. Haesung Ahn, Jeongwoo Lee, Andy Hong. Urban form and air pollution: Clustering patterns of urban form factors related to particulate matter in Seoul, Korea. Sustainable Cities and Society 2022, 81 , 103859. https://doi.org/10.1016/j.scs.2022.103859
    86. No Ol Lim, Jinhoo Hwang, Sung-Joo Lee, Youngjae Yoo, Yuyoung Choi, Seongwoo Jeon. Spatialization and Prediction of Seasonal NO2 Pollution Due to Climate Change in the Korean Capital Area through Land Use Regression Modeling. International Journal of Environmental Research and Public Health 2022, 19 (9) , 5111. https://doi.org/10.3390/ijerph19095111
    87. Meytar Sorek-Hamer, Michael Von Pohle, Adwait Sahasrabhojanee, Ata Akbari Asanjan, Emily Deardorff, Esra Suel, Violet Lingenfelter, Kamalika Das, Nikunj C. Oza, Majid Ezzati, Michael Brauer. A Deep Learning Approach for Meter-Scale Air Quality Estimation in Urban Environments Using Very High-Spatial-Resolution Satellite Imagery. Atmosphere 2022, 13 (5) , 696. https://doi.org/10.3390/atmos13050696
    88. Huizi Wang, Xiao Luo, Chao Liu, Qingyan Fu, Min Yi. Spatio-Temporal Variation-Induced Group Disparity of Intra-Urban NO2 Exposure. International Journal of Environmental Research and Public Health 2022, 19 (10) , 5872. https://doi.org/10.3390/ijerph19105872
    89. Liyue Zeng, Jian Hang, Xuemei Wang, Min Shao. Influence of urban spatial and socioeconomic parameters on PM2.5 at subdistrict level: A land use regression study in Shenzhen, China. Journal of Environmental Sciences 2022, 114 , 485-502. https://doi.org/10.1016/j.jes.2021.12.002
    90. Yihui Ge, Qingyan Fu, Min Yi, Yuan Chao, Xiaoning Lei, Xueyi Xu, Zhenchun Yang, Jianlin Hu, Haidong Kan, Jing Cai. High spatial resolution land-use regression model for urban ultrafine particle exposure assessment in Shanghai, China. Science of The Total Environment 2022, 816 , 151633. https://doi.org/10.1016/j.scitotenv.2021.151633
    91. Gabriel Yoshikazu Oukawa, Patricia Krecl, Admir Créso Targino. Fine-scale modeling of the urban heat island: A comparison of multiple linear regression and random forest approaches. Science of The Total Environment 2022, 815 , 152836. https://doi.org/10.1016/j.scitotenv.2021.152836
    92. Sichen Wang, Yanfeng Huo, Xi Mu, Peng Jiang, Shangpei Xun, Binfang He, Wenyu Wu, Lin Liu, Yonghong Wang. A High-Performance Convolutional Neural Network for Ground-Level Ozone Estimation in Eastern China. Remote Sensing 2022, 14 (7) , 1640. https://doi.org/10.3390/rs14071640
    93. Hee-Jin Choi, Young-Man Roh, Young-Wook Lim, Yong-Jin Lee, Ki-Youn Kim. Land-Use Regression Modeling to Estimate NO2 and VOC Concentrations in Pohang City, South Korea. Atmosphere 2022, 13 (4) , 577. https://doi.org/10.3390/atmos13040577
    94. Jaekyung Lee, Changyeon Lee. Investigating the performance of models estimating NO 2 and PM 2.5 in the US metropolitan areas and their environmental inequality and vulnerable people areas. Local Environment 2022, 27 (3) , 309-326. https://doi.org/10.1080/13549839.2022.2040462
    95. Xueyi Xu, Yihui Ge, Weidong Wang, Xiaoning Lei, Haidong Kan, Jing Cai. Application of land use regression to map environmental noise in Shanghai, China. Environment International 2022, 161 , 107111. https://doi.org/10.1016/j.envint.2022.107111
    96. Weiran Yuchi, Michael Brauer, Agatha Czekajlo, Hugh W. Davies, Zoë Davis, Martin Guhn, Ingrid Jarvis, Michael Jerrett, Lorien Nesbitt, Tim F. Oberlander, Hind Sbihi, Jason Su, Matilda van den Bosch. Neighborhood environmental exposures and incidence of attention deficit/hyperactivity disorder: A population-based cohort study. Environment International 2022, 161 , 107120. https://doi.org/10.1016/j.envint.2022.107120
    97. Wenfeng Fan, Linyu Xu, Hanzhong Zheng. Using Multisource Data to Assess PM2.5 Exposure and Spatial Analysis of Lung Cancer in Guangzhou, China. International Journal of Environmental Research and Public Health 2022, 19 (5) , 2629. https://doi.org/10.3390/ijerph19052629
    98. Jaehyun Park, Woo Jin Kim, Jeeyoung Kim, Chan-Yeong Jeong, Hyesook Park, Yun-Chul Hong, Mina Ha, Yangho Kim, Sungho Won, Eunhee Ha. Prenatal Exposure to Traffic-Related Air Pollution and the DNA Methylation in Cord Blood Cells: MOCEH Study. International Journal of Environmental Research and Public Health 2022, 19 (6) , 3292. https://doi.org/10.3390/ijerph19063292
    99. Peng Wu, Yongze Song. Land Use Quantile Regression Modeling of Fine Particulate Matter in Australia. Remote Sensing 2022, 14 (6) , 1370. https://doi.org/10.3390/rs14061370
    100. Joyce J.Y. Zhang, Liu Sun, Daniel Rainham, Trevor J.B. Dummer, Amanda J. Wheeler, Angelos Anastasopolos, Mark Gibson, Markey Johnson. Predicting intraurban airborne PM1.0-trace elements in a port city: Land use regression by ordinary least squares and a machine learning algorithm. Science of The Total Environment 2022, 806 , 150149. https://doi.org/10.1016/j.scitotenv.2021.150149
    Load more citations

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2007, 41, 7, 2422–2428
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es0606780
    Published March 9, 2007
    Copyright © 2007 American Chemical Society

    Article Views

    4537

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.