ACS Publications. Most Trusted. Most Cited. Most Read
Estimating Nutrients and Chlorophyll a Relationships in Finnish Lakes
My Activity

Figure 1Loading Img
    Article

    Estimating Nutrients and Chlorophyll a Relationships in Finnish Lakes
    Click to copy article linkArticle link copied!

    View Author Information
    Finnish Environment Institute, Helsinki, Finland
    Duke University, Nicholas School of the Environment and Earth Sciences, Durham, North Carolina
    Other Access OptionsSupporting Information (1)

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2006, 40, 24, 7848–7853
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es061359b
    Published October 24, 2006
    Copyright © 2006 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    We model the response of chlorophyll aa surrogate for the phytoplankton community volumeto variations in lake total phosphorus (TP) and total nitrogen (TN) concentrations. The model is fitted to a large cross-sectional data set from the Finnish Lake monitoring network. The objective is to support the Finnish Government in identifying management actions to achieve compliance of the chlorophyll a concentration standard with a given confidence level and to provide tools for the estimation of critical (target) loads for nutrients in monitored lakes. We develop a Bayesian hierarchical linear model which combines advantages of both the currently preferred non-hierarchical lake-type-specific linear model and lake-specific linear model fitted separately using data from a single lake. The hierarchical model is less biased at lake-level compared to the lake type model. In contrast to the lake model, it predicts the lake specific chlorophyll a response to nutrients outside the lake specific observational range. The hierarchical model is used to calculate probabilities of chlorophyll a concentration exceeding the standard under different nitrogen and phosphorus concentration combinations. These probabilities can be used to estimate acceptable nitrogen−phosphorus concentration combinations by a lake manager. We discuss how our study can be useful in implementing the European Water Framework Directive.

    Copyright © 2006 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     Corresponding author phone:  358 19 40300 359; fax:  358 19 40300 391; e-mail:  [email protected].

    Supporting Information Available

    Click to copy section linkSection link copied!

    Table 1:  Observed log(TP), log(TN), log(Chla), and TN/TP-ratio within Lake types. Table 2:  Correlation between log (TP), log(TN), and log(Chla) within Lake types. Table 3:  The number of observations per year from 1988 to 2004. Table 4:  Number of observations within the lake types. Figure 1:  Conditioning plot that illustrates the log(Chla) to log(TP) relationship conditioned on log(TN) concentrations and depth. Figure 2:  Conditioning plot that illustrates the log(Chla) to log(TN) relationship conditioned on log(TP) concentrations and depth. Figure 3:  Fit plot that shows 10, 50, and 90th percentiles of predicted chlorophyll a concentration as a function of observed value for shallow, very humic lakes, type 9. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 72 publications.

    1. Yong Fang, Ruting Huang, Xian-yang Shi. Deciphering Eutrophication-Limiting Nutrients in Lakes: A Multiscale Analysis of Chinese Waters. ACS ES&T Water 2024, 4 (7) , 2995-3006. https://doi.org/10.1021/acsestwater.4c00213
    2. Craig A. Stow and YoonKyung Cha . Are Chlorophyll a–Total Phosphorus Correlations Useful for Inference and Prediction?. Environmental Science & Technology 2013, 47 (8) , 3768-3773. https://doi.org/10.1021/es304997p
    3. Yong Liu, Mary Anne Evans and Donald Scavia. Gulf of Mexico Hypoxia: Exploring Increasing Sensitivity to Nitrogen Loads. Environmental Science & Technology 2010, 44 (15) , 5836-5841. https://doi.org/10.1021/es903521n
    4. Danial Naderian, Roohollah Noori, Dongkyun Kim, Changhyun Jun, Sayed M. Bateni, R. Iestyn Woolway, Sapna Sharma, Kun Shi, Boqiang Qin, Yunlin Zhang, Erik Jeppesen, Stephen C. Maberly. Environmental controls on the conversion of nutrients to chlorophyll in lakes. Water Research 2025, 274 , 123094. https://doi.org/10.1016/j.watres.2025.123094
    5. Pooja Singh, Basant Yadav. Seasonal eutrophication in lentic small waterbodies: Understanding nutrients-chlorophyll-a relationships and implications. Journal of Hazardous Materials Advances 2025, 17 , 100563. https://doi.org/10.1016/j.hazadv.2024.100563
    6. Quehui Tang, Lei Xu, Lianggen Wang, Jiajia Ning, Delian Huang, Yafang Li, Shuangshuang Liu, Feiyan Du. Positive linear relationship between phytoplankton diversity and productivity in an artificial reef ecosystem. Aquatic Ecology 2024, 58 (4) , 1267-1279. https://doi.org/10.1007/s10452-024-10140-3
    7. Chiqian Zhang, Kyle D. McIntosh, Nathan Sienkiewicz, Erin A. Stelzer, Jennifer L. Graham, Jingrang Lu. qPCR-based phytoplankton abundance and chlorophyll a: A multi-year study in twelve large freshwater rivers across the United States. Science of The Total Environment 2024, 954 , 175067. https://doi.org/10.1016/j.scitotenv.2024.175067
    8. Lin Tan, Yuting Liu, Muqi Shen, Guifeng Wei, Linglin Wan, Quehui Tang, Bo-Ping Han. Interspecific occupancy-abundance relationship of benthic diatoms changes seasonally with attachment mode in a tropical river. Hydrobiologia 2024, 851 (9) , 2295-2308. https://doi.org/10.1007/s10750-023-05456-4
    9. Rahul Kumar, Pramod Pandey, Ujjwal Kumar, Aditya Pandey, Navneet Rai, Prachi Pandey, Jiang Huo, Marie Stillway, Vijay Singh. A Simplified Method to Determine Algal Biomass and Chlorophyll a Concentration in Shallow River Littoral Zones. 2024, 110-120. https://doi.org/10.1007/978-3-031-60436-2_8
    10. Lei Zhao, Rao Zhu, Qichao Zhou, Erik Jeppesen, Kun Yang. Trophic status and lake depth play important roles in determining the nutrient-chlorophyll a relationship: Evidence from thousands of lakes globally. Water Research 2023, 242 , 120182. https://doi.org/10.1016/j.watres.2023.120182
    11. Francisco Javier López-Andreu, Juan Antonio López-Morales, Zaida Hernández-Guillen, Juan Antonio Carrero-Rodrigo, Marta Sánchez-Alcaraz, Joaquín Francisco Atenza-Juárez, Manuel Erena. Deep Learning-Based Time Series Forecasting Models Evaluation for the Forecast of Chlorophyll a and Dissolved Oxygen in the Mar Menor. Journal of Marine Science and Engineering 2023, 11 (7) , 1473. https://doi.org/10.3390/jmse11071473
    12. Muyuan Liu, Yuzhou Huang, Jing Hu, Junyu He, Xi Xiao. Algal community structure prediction by machine learning. Environmental Science and Ecotechnology 2023, 14 , 100233. https://doi.org/10.1016/j.ese.2022.100233
    13. Muyuan Liu, Jing Hu, Yuzhou Huang, Junyu He, Kokoette Effiong, Tao Tang, Shitao Huang, Yuvna Devi Perianen, Feier Wang, Ming Li, Xi Xiao. Probabilistic prediction of algal blooms from basic water quality parameters by Bayesian scale-mixture of skew-normal model. Environmental Research Letters 2023, 18 (1) , 014034. https://doi.org/10.1088/1748-9326/acaf11
    14. Yen Binh Tran, Leonardo F. Arias-Rodriguez, Jingshui Huang. Predicting high-frequency nutrient dynamics in the Danube River with surrogate models using sensors and Random Forest. Frontiers in Water 2022, 4 https://doi.org/10.3389/frwa.2022.894548
    15. Bowen Wu, Shiniu Dai, Xinli Wen, Chang Qian, Fang Luo, Jinqian Xu, Xiaodong Wang, Ying Li, Yilong Xi. Chlorophyll-nutrient relationship changes with lake type, season and small-bodied zooplankton in a set of subtropical shallow lakes. Ecological Indicators 2022, 135 , 108571. https://doi.org/10.1016/j.ecolind.2022.108571
    16. Vassiliki Markogianni, Dionissios Kalivas, George P. Petropoulos, Elias Dimitriou. Modelling of Greek Lakes Water Quality Using Earth Observation in the Framework of the Water Framework Directive (WFD). Remote Sensing 2022, 14 (3) , 739. https://doi.org/10.3390/rs14030739
    17. Yinying Zhu, Zhi Chen, Zunaira Asif. Identification of point source emission in river pollution incidents based on Bayesian inference and genetic algorithm: Inverse modeling, sensitivity, and uncertainty analysis. Environmental Pollution 2021, 285 , 117497. https://doi.org/10.1016/j.envpol.2021.117497
    18. Qiuying Chen, Shengrui Wang, Zhaokui Ni, Ying Guo, Xiaofei Liu, Guoqiang Wang, Hong Li. No-linear dynamics of lake ecosystem in responding to changes of nutrient regimes and climate factors: Case study on Dianchi and Erhai lakes, China. Science of The Total Environment 2021, 781 , 146761. https://doi.org/10.1016/j.scitotenv.2021.146761
    19. Jianxin Zhu, Haocai Huang, Honghong Lin, Xiaojie Lei, Ruizhong Zheng. Efficient estimation of chlorophyll a concentration in artificial upwelling. Mathematics and Computers in Simulation 2021, 185 , 660-675. https://doi.org/10.1016/j.matcom.2020.12.024
    20. Zhongyao Liang, Yaoyang Xu, Qianlinglin Qiu, Yong Liu, Wentao Lu, Tyler Wagner. A framework to develop joint nutrient criteria for lake eutrophication management in eutrophic lakes. Journal of Hydrology 2021, 594 , 125883. https://doi.org/10.1016/j.jhydrol.2020.125883
    21. Nikolaos K. Mellios, S. Jannicke Moe, Chrysi Laspidou. Using Bayesian hierarchical modelling to capture cyanobacteria dynamics in Northern European lakes. Water Research 2020, 186 , 116356. https://doi.org/10.1016/j.watres.2020.116356
    22. Zhongyao Liang, Patricia A. Soranno, Tyler Wagner. The role of phosphorus and nitrogen on chlorophyll a: Evidence from hundreds of lakes. Water Research 2020, 185 , 116236. https://doi.org/10.1016/j.watres.2020.116236
    23. Amanda N. Quay, Amanda S. Hering, Meagan S. Mauter. Quantifying uncertainty in groundwater depth from sparse well data in the California Central Valley. Environmental Research Letters 2020, 15 (8) , 084029. https://doi.org/10.1088/1748-9326/ab88fb
    24. Zhongyao Liang, Feifei Dong, Song S. Qian, Yong Liu, Huili Chen, Wentao Lu. Ecoregional or site-specific lake nutrient criteria? Evidence from ecological fallacy. Ecological Indicators 2020, 111 , 105989. https://doi.org/10.1016/j.ecolind.2019.105989
    25. Kun Shan, Xiaoxiao Wang, Hong Yang, Botian Zhou, Lirong Song, Mingsheng Shang. Use statistical machine learning to detect nutrient thresholds in Microcystis blooms and microcystin management. Harmful Algae 2020, 94 , 101807. https://doi.org/10.1016/j.hal.2020.101807
    26. Song S. Qian, Craig A. Stow, Farnaz Nojavan A., Jemma Stachelek, Yoonkyung Cha, Ibrahim Alameddine, Patricia Soranno. The implications of Simpson's paradox for cross-scale inference among lakes. Water Research 2019, 163 , 114855. https://doi.org/10.1016/j.watres.2019.114855
    27. Kenya Rolle Longley, Wenrui Huang, Clayton Clark, Elijah Johnson. Effects of nutrient load from St. Jones River on water quality and eutrophication in Lake George, Florida. Limnologica 2019, 77 , 125687. https://doi.org/10.1016/j.limno.2019.125687
    28. Zhongyue Yan, Jing Xu, Xiaohong Ruan. An improved source apportionment mixing model combined with a Bayesian approach for nonpoint source pollution load estimation. Hydrology Research 2019, 50 (3) , 849-860. https://doi.org/10.2166/nh.2019.076
    29. Quehui Tang, Liang Peng, Yang Yang, Qiuqi Lin, Song S. Qian, Bo-Ping Han. Total phosphorus-precipitation and Chlorophyll a-phosphorus relationships of lakes and reservoirs mediated by soil iron at regional scale. Water Research 2019, 154 , 136-143. https://doi.org/10.1016/j.watres.2019.01.038
    30. Zhongyao Liang, Yong Liu, Huili Chen, Yao Ji. Is ecoregional scale precise enough for lake nutrient criteria? Insights from a novel relationship-based clustering approach. Ecological Indicators 2019, 97 , 341-349. https://doi.org/10.1016/j.ecolind.2018.10.034
    31. Zhongyao Liang, Song S. Qian, Sifeng Wu, Huili Chen, Yong Liu, Yanhong Yu, Xuan Yi. Using Bayesian change point model to enhance understanding of the shifting nutrients-phytoplankton relationship. Ecological Modelling 2019, 393 , 120-126. https://doi.org/10.1016/j.ecolmodel.2018.12.008
    32. Yan Wei, Haocai Huang, Bin Chen, Bofu Zheng, Yihong Wang, . Application of Extreme Learning Machine for Predicting Chlorophyll‐a Concentration Inartificial Upwelling Processes. Mathematical Problems in Engineering 2019, 2019 (1) https://doi.org/10.1155/2019/8719387
    33. Tyler Wagner, Erin M. Schliep. Combining nutrient, productivity, and landscape‐based regressions improves predictions of lake nutrients and provides insight into nutrient coupling at macroscales. Limnology and Oceanography 2018, 63 (6) , 2372-2383. https://doi.org/10.1002/lno.10944
    34. Wenchun Sun, Shouliang Huo, Chunzi Ma, Beidou Xi, Zhuoshi He, Jingtian Zhang, Jing Su, Da An. Estimating nutrient criteria of the lakes and reservoirs by reference condition approach and stressor-response models. Desalination and Water Treatment 2017, 79 , 161-177. https://doi.org/10.5004/dwt.2017.20795
    35. Turo Hjerppe, Antti Taskinen, Niina Kotamäki, Olli Malve, Juhani Kettunen. Probabilistic Evaluation of Ecological and Economic Objectives of River Basin Management Reveals a Potential Flaw in the Goal Setting of the EU Water Framework Directive. Environmental Management 2017, 59 (4) , 584-593. https://doi.org/10.1007/s00267-016-0806-z
    36. Farnaz Nojavan A., Song S. Qian, Craig A. Stow. Comparative analysis of discretization methods in Bayesian networks. Environmental Modelling & Software 2017, 87 , 64-71. https://doi.org/10.1016/j.envsoft.2016.10.007
    37. YoonKyung Cha, Ibrahim Alameddine, Song S. Qian, Craig A. Stow. A cross-scale view of N and P limitation using a Bayesian hierarchical model. Limnology and Oceanography 2016, 61 (6) , 2276-2285. https://doi.org/10.1002/lno.10375
    38. Yaoming Zhou, Haocai Huang, Jinliang Ding, Hongfeng Wang, Ying Chen, Junwei Wang. Modeling Chlorophyll <formula formulatype="inline"> <tex Notation="TeX">$a$</tex> </formula> Concentration Affected by Artificial Upwelling in Qiandao Lake. IEEE Journal of Oceanic Engineering 2016, 41 (4) , 960-969. https://doi.org/10.1109/JOE.2015.2497878
    39. Xikang Hou, Feng Zhou, Adrain Leip, Bojie Fu, Hui Yang, Yan Chen, Shuoshuo Gao, Ziyin Shang, Lekuan Ma. Spatial patterns of nitrogen runoff from Chinese paddy fields. Agriculture, Ecosystems & Environment 2016, 231 , 246-254. https://doi.org/10.1016/j.agee.2016.07.001
    40. X. H. Hu, Y. P. Li, G. H. Huang, X. W. Zhuang, X. W. Ding. A Bayesian-based two-stage inexact optimization method for supporting stream water quality management in the Three Gorges Reservoir region. Environmental Science and Pollution Research 2016, 23 (9) , 9164-9182. https://doi.org/10.1007/s11356-016-6106-6
    41. Martha S. Calderon, Kwang-Guk An. Spatio-temporal variabilities of nutrients and chlorophyll, and the trophic state index deviations on the relation of nutrients-chlorophyll-light availability. Journal of Ecology and Environment 2016, 39 (1) , 31-42. https://doi.org/10.5141/ecoenv.2016.004
    42. Olli Malve, Turo Hjerppe, Sirkka Tattari, Sari Väisänen, Inese Huttunen, Niina Kotamäki, Kari Kallio, Antti Taskinen, Pirkko Kauppila. Participatory operations model for cost-efficient monitoring and modeling of river basins — A systematic approach. Science of The Total Environment 2016, 540 , 79-89. https://doi.org/10.1016/j.scitotenv.2015.06.105
    43. Shouliang Huo, Chunzi Ma, Beidou Xi, Zhuoshi He, Jing Su, Fengchang Wu. Nonparametric approaches for estimating regional lake nutrient thresholds. Ecological Indicators 2015, 58 , 225-234. https://doi.org/10.1016/j.ecolind.2015.05.065
    44. Xi Li, Jagadeesh Yeluripati, Edward O. Jones, Yoshitaka Uchida, Ryusuke Hatano. Hierarchical Bayesian calibration of nitrous oxide (N2O) and nitrogen monoxide (NO) flux module of an agro-ecosystem model: ECOSSE. Ecological Modelling 2015, 316 , 14-27. https://doi.org/10.1016/j.ecolmodel.2015.07.020
    45. Ranran Li, Zhihong Zou. Water Environmental Capacity Analysis of Taihu Lake and Parameter Estimation Based on the Integration of the Inverse Method and Bayesian Modeling. International Journal of Environmental Research and Public Health 2015, 12 (10) , 12212-12224. https://doi.org/10.3390/ijerph121012212
    46. Yuko Shimoda, George B. Arhonditsis. Integrating hierarchical Bayes with phosphorus loading modelling. Ecological Informatics 2015, 29 , 77-91. https://doi.org/10.1016/j.ecoinf.2015.07.005
    47. Yaoyang Xu, Andrew W. Schroth, Peter D. F. Isles, Donna M. Rizzo. Quantile regression improves models of lake eutrophication with implications for ecosystem‐specific management. Freshwater Biology 2015, 60 (9) , 1841-1853. https://doi.org/10.1111/fwb.12615
    48. Niina Kotamäki, Anita Pätynen, Antti Taskinen, Timo Huttula, Olli Malve. Statistical Dimensioning of Nutrient Loading Reduction: LLR Assessment Tool for Lake Managers. Environmental Management 2015, 56 (2) , 480-491. https://doi.org/10.1007/s00267-015-0514-0
    49. JunLong Li, BingHui Zheng, Yong Liu, Zhen Wu, Fang Liu, JunBo Shao, XuPeng Hu. Classification of estuaries in China based on eutrophication susceptibility to nutrient load. Science China Earth Sciences 2015, 58 (6) , 949-961. https://doi.org/10.1007/s11430-014-5030-1
    50. Xi Li, Kiwamu Ishikura, Chunying Wang, Jagadeesh Yeluripati, Ryusuke Hatano. Hierarchical Bayesian models for soil CO 2 flux using soil texture: a case study in central Hokkaido, Japan. Soil Science and Plant Nutrition 2015, 61 (1) , 116-132. https://doi.org/10.1080/00380768.2014.978728
    51. Lester L. Yuan, Amina I. Pollard, Santhiska Pather, Jacques L. Oliver, Lesley D'Anglada. Managing microcystin: identifying national‐scale thresholds for total nitrogen and chlorophyll a. Freshwater Biology 2014, 59 (9) , 1970-1981. https://doi.org/10.1111/fwb.12400
    52. Kaishan Song, Lin Li, Lenore Tedesco, Shuai Li, Kun Shi, Bob Hall. Remote Estimation of Nutrients for a Drinking Water Source Through Adaptive Modeling. Water Resources Management 2014, 28 (9) , 2563-2581. https://doi.org/10.1007/s11269-014-0627-x
    53. Qiang An, Sha Wang, Ce Wang, Niu Qiu Huang, Byebirooha Justus. Effect of Initial Phosphorus Concentration on Chlorophyll a Contents and Extracellular Polysaccharides Contents of Scenedesmus quaclricauda in TGR. Advanced Materials Research 2014, 971-973 , 53-58. https://doi.org/10.4028/www.scientific.net/AMR.971-973.53
    54. Anita Pätynen, Niina Kotamäki, Olli Malve. Alternative approaches to modelling lake ecosystems. Freshwater Reviews 2013, 6 (2) , 63-74. https://doi.org/10.1608/FRJ-6.2.704
    55. Kaishan Song, Lin Li, Zuchuan Li, Lenore Tedesco, Bob Hall, Kun Shi. Remote detection of cyanobacteria through phycocyanin for water supply source using three-band model. Ecological Informatics 2013, 15 , 22-33. https://doi.org/10.1016/j.ecoinf.2013.02.006
    56. Jun Lu, Dongqin Gong, Yena Shen, Mei Liu, Dingjiang Chen. An inversed Bayesian modeling approach for estimating nitrogen export coefficients and uncertainty assessment in an agricultural watershed in eastern China. Agricultural Water Management 2013, 116 , 79-88. https://doi.org/10.1016/j.agwat.2012.10.015
    57. Dingjiang Chen, Randy A. Dahlgren, Yena Shen, Jun Lu. A Bayesian approach for calculating variable total maximum daily loads and uncertainty assessment. Science of The Total Environment 2012, 430 , 59-67. https://doi.org/10.1016/j.scitotenv.2012.04.042
    58. Kaishan Song, Lin Li, Shuai Li, Lenore Tedesco, Bob Hall, Linhai Li. Hyperspectral Remote Sensing of Total Phosphorus (TP) in Three Central Indiana Water Supply Reservoirs. Water, Air, & Soil Pollution 2012, 223 (4) , 1481-1502. https://doi.org/10.1007/s11270-011-0959-6
    59. Yong Liu, George B. Arhonditsis, Craig A. Stow, Donald Scavia. Predicting the Hypoxic-Volume in Chesapeake Bay with the Streeter-Phelps Model: A Bayesian Approach1. JAWRA Journal of the American Water Resources Association 2011, 47 (6) , 1348-1363. https://doi.org/10.1111/j.1752-1688.2011.00588.x
    60. TYLER WAGNER, PATRICIA A. SORANNO, KATHERINE E. WEBSTER, KENDRA SPENCE CHERUVELIL. Landscape drivers of regional variation in the relationship between total phosphorus and chlorophyll in lakes. Freshwater Biology 2011, 56 (9) , 1811-1824. https://doi.org/10.1111/j.1365-2427.2011.02621.x
    61. Meijun Chen, Jing Li, Xi Dai, Ying Sun, Feizhou Chen. Effect of phosphorus and temperature on chlorophyll a contents and cell sizes of Scenedesmus obliquus and Microcystis aeruginosa. Limnology 2011, 12 (2) , 187-192. https://doi.org/10.1007/s10201-010-0336-y
    62. Chen-wan Wang, Zhi-guang Niu, Hui Jia, Hong-wei Zhang. An assessment model of water pipe condition using Bayesian inference. Journal of Zhejiang University-SCIENCE A 2010, 11 (7) , 495-504. https://doi.org/10.1631/jzus.A0900628
    63. Yong Liu, Donald Scavia. Analysis of the Chesapeake Bay Hypoxia Regime Shift: Insights from Two Simple Mechanistic Models. Estuaries and Coasts 2010, 33 (3) , 629-639. https://doi.org/10.1007/s12237-009-9251-z
    64. Jae Hoon Lee, Ja-Myung Kim, Dong-Su Kim, Soon-Jin Hwang, Kwang-Guk An. Nutrients and chlorophyll-a dynamics in a temperate reservoir influenced by Asian monsoon along with in situ nutrient enrichment bioassays. Limnology 2010, 11 (1) , 49-62. https://doi.org/10.1007/s10201-009-0289-1
    65. S. Jannicke Moe. Bayesian Models in Assessment and Management. 2010, 97-120. https://doi.org/10.1002/9780470593028.ch6
    66. Nan Li, Zetian Fu, Xiaoshuan Zhang, Song S. Qian. Assessing the Risk of Hydroxybenzene Contamination in Fish Raised on a Chinese Aquaculture Farm. Human and Ecological Risk Assessment: An International Journal 2010, 16 (1) , 210-222. https://doi.org/10.1080/10807030903459072
    67. Vincent Cheng, George B. Arhonditsis, Michael T. Brett. A revaluation of lake‐phosphorus loading models using a Bayesian hierarchical framework. Ecological Research 2010, 25 (1) , 59-76. https://doi.org/10.1007/s11284-009-0630-5
    68. Jian Shen, Yuan Zhao. Combined Bayesian statistics and load duration curve method for bacteria nonpoint source loading estimation. Water Research 2010, 44 (1) , 77-84. https://doi.org/10.1016/j.watres.2009.09.002
    69. Weitao Zhang, George B. Arhonditsis. A Bayesian hierarchical framework for calibrating aquatic biogeochemical models. Ecological Modelling 2009, 220 (18) , 2142-2161. https://doi.org/10.1016/j.ecolmodel.2009.05.023
    70. Craig A. Stow, E. Conrad Lamon, Song S. Qian, Patricia A. Soranno, Kenneth H. Reckhow. Bayesian Hierarchical/Multilevel Models for Inference and Prediction Using Cross-System Lake Data. 2009, 111-136. https://doi.org/10.1007/978-0-387-77942-3_5
    71. Yong Liu, Pingjian Yang, Cheng Hu, Huaicheng Guo. Water quality modeling for load reduction under uncertainty: A Bayesian approach. Water Research 2008, 42 (13) , 3305-3314. https://doi.org/10.1016/j.watres.2008.04.007
    72. Brant W. Touchette, JoAnn M. Burkholder, Elle H. Allen, Jessica L. Alexander, Carol A. Kinder, Cavell Brownie, Jennifer James, Clay H. Britton. Eutrophication and cyanobacteria blooms in run-of-river impoundments in North Carolina, U.S.A.. Lake and Reservoir Management 2007, 23 (2) , 179-192. https://doi.org/10.1080/07438140709353921

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2006, 40, 24, 7848–7853
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es061359b
    Published October 24, 2006
    Copyright © 2006 American Chemical Society

    Article Views

    1006

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.