ACS Publications. Most Trusted. Most Cited. Most Read
Electrochemical Acceleration of Chemical Weathering as an Energetically Feasible Approach to Mitigating Anthropogenic Climate Change
My Activity

Figure 1Loading Img
    Article

    Electrochemical Acceleration of Chemical Weathering as an Energetically Feasible Approach to Mitigating Anthropogenic Climate Change
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Earth and Planetary Sciences, Harvard University, Cambridge Massachusetts 02138, Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802, and Harvard School of Engineering and Applied Sciences, Cambridge Massachusetts 02138
    * Corresponding author e-mail: [email protected]; phone: 310 890 4140; mail: 24 Oxford St., HUCE Suite #305, Cambridge, MA 02139.
    †Department of Earth and Planetary Sciences, Harvard University.
    ‡Pennsylvania State University.
    §Harvard School of Engineering and Applied Sciences.
    Other Access Options

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2007, 41, 24, 8464–8470
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es0701816
    Published November 7, 2007
    Copyright © 2007 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    We describe an approach to CO2 capture and storage from the atmosphere that involves enhancing the solubility of CO2 in the ocean by a process equivalent to the natural silicate weathering reaction. HCl is electrochemically removed from the ocean and neutralized through reaction with silicate rocks. The increase in ocean alkalinity resulting from the removal of HCl causes atmospheric CO2 to dissolve into the ocean where it will be stored primarily as HCO3 without further acidifying the ocean. On timescales of hundreds of years or longer, some of the additional alkalinity will likely lead to precipitation or enhanced preservation of CaCO3, resulting in the permanent storage of the associated carbon, and the return of an equal amount of carbon to the atmosphere. Whereas the natural silicate weathering process is effected primarily by carbonic acid, the engineered process accelerates the weathering kinetics to industrial rates by replacing this weak acid with HCl. In the thermodynamic limit—and with the appropriate silicate rocks—the overall reaction is spontaneous. A range of efficiency scenarios indicates that the process should require 100–400 kJ of work per mol of CO2 captured and stored for relevant timescales. The process can be powered from stranded energy sources too remote to be useful for the direct needs of population centers. It may also be useful on a regional scale for protection of coral reefs from further ocean acidification. Application of this technology may involve neutralizing the alkaline solution that is coproduced with HCl with CO2 from a point source or from the atmosphere prior to being returned to the ocean.

    Copyright © 2007 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 87 publications.

    1. Saeed Talei, Agnes Szanyi, Peter Mizsey. Comparison of Water- and Amine-Based Carbon Capture Processes for Air and Oxyfuel Combustion Technologies. Industrial & Engineering Chemistry Research 2024, 63 (38) , 16486-16496. https://doi.org/10.1021/acs.iecr.4c02216
    2. Erika Callagon La Plante, Xin Chen, Steven Bustillos, Arnaud Bouissonnie, Thomas Traynor, David Jassby, Lorenzo Corsini, Dante A. Simonetti, Gaurav N. Sant. Electrolytic Seawater Mineralization and the Mass Balances That Demonstrate Carbon Dioxide Removal. ACS ES&T Engineering 2023, 3 (7) , 955-968. https://doi.org/10.1021/acsestengg.3c00004
    3. Erika Callagon La Plante, Dante A. Simonetti, Jingbo Wang, Abdulaziz Al-Turki, Xin Chen, David Jassby, Gaurav N. Sant. Saline Water-Based Mineralization Pathway for Gigatonne-Scale CO2 Management. ACS Sustainable Chemistry & Engineering 2021, 9 (3) , 1073-1089. https://doi.org/10.1021/acssuschemeng.0c08561
    4. Yifan Wu, Heping Xie, Tao Liu, Yufei Wang, Fuhuan Wang, Xiaolin Gao, Bin Liang. Soda Ash Production with Low Energy Consumption Using Proton Cycled Membrane Electrolysis. Industrial & Engineering Chemistry Research 2019, 58 (8) , 3450-3458. https://doi.org/10.1021/acs.iecr.8b05371
    5. Eloy S. Sanz-Pérez, Christopher R. Murdock, Stephanie A. Didas, and Christopher W. Jones . Direct Capture of CO2 from Ambient Air. Chemical Reviews 2016, 116 (19) , 11840-11876. https://doi.org/10.1021/acs.chemrev.6b00173
    6. Lu Lu, Zhe Huang, Greg H. Rau, and Zhiyong Jason Ren . Microbial Electrolytic Carbon Capture for Carbon Negative and Energy Positive Wastewater Treatment. Environmental Science & Technology 2015, 49 (13) , 8193-8201. https://doi.org/10.1021/acs.est.5b00875
    7. P. Renforth and T. Kruger . Coupling Mineral Carbonation and Ocean Liming. Energy & Fuels 2013, 27 (8) , 4199-4207. https://doi.org/10.1021/ef302030w
    8. Chuan Wang, Hong Liu, Xiangzhong Li, and Linze Zheng . Importance of Ambient O2 for Electrochemical Enrichment of Atmospheric CO2. Industrial & Engineering Chemistry Research 2013, 52 (7) , 2470-2476. https://doi.org/10.1021/ie302991y
    9. Zhuangjie Li and Baoquan Zhang . Experimental and Theoretical Investigation of Homogeneous Gaseous Reaction of CO2(g) + nH2O(g) + nNH3(g) → Products (n = 1, 2). The Journal of Physical Chemistry A 2012, 116 (36) , 8989-9000. https://doi.org/10.1021/jp303848h
    10. Greg H. Rau. Electrochemical Splitting of Calcium Carbonate to Increase Solution Alkalinity: Implications for Mitigation of Carbon Dioxide and Ocean Acidity. Environmental Science & Technology 2008, 42 (23) , 8935-8940. https://doi.org/10.1021/es800366q
    11. Eunice Oppon, S.C. Lenny Koh, Rafael Eufrasio. Sustainability performance of enhanced weathering across countries: A triple bottom line approach. Energy Economics 2024, 136 , 107722. https://doi.org/10.1016/j.eneco.2024.107722
    12. David D.J. Antia. Carbon capture using halite, seawater, and saline water. 2024, 621-671. https://doi.org/10.1016/B978-0-323-96125-7.00014-9
    13. Gursel Abbas, Ozge Yuksel Orhan. Energy penalties of CO2 storage and transportation. 2024, 187-216. https://doi.org/10.1016/B978-0-443-19067-4.00011-5
    14. Liam A. Bullock, Jose-Luis Fernandez-Turiel, David Benavente. Experimental investigation of multiple industrial wastes for carbon dioxide removal strategies. International Journal of Greenhouse Gas Control 2023, 129 , 103990. https://doi.org/10.1016/j.ijggc.2023.103990
    15. Liam A. Bullock, Juan Alcalde, Fernando Tornos, Jose-Luis Fernandez-Turiel. Geochemical carbon dioxide removal potential of Spain. Science of The Total Environment 2023, 867 , 161287. https://doi.org/10.1016/j.scitotenv.2022.161287
    16. Eelco J Rohling. Marine methods for carbon dioxide removal: fundamentals and myth-busting for the wider community. Oxford Open Climate Change 2023, 3 (1) https://doi.org/10.1093/oxfclm/kgad004
    17. Selene Cobo, Valentina Negri, Antonio Valente, David M Reiner, Lorie Hamelin, Niall Mac Dowell, Gonzalo Guillén-Gosálbez. Sustainable scale-up of negative emissions technologies and practices: where to focus. Environmental Research Letters 2023, 18 (2) , 023001. https://doi.org/10.1088/1748-9326/acacb3
    18. Steve Rackley, Michael Tyka. Ocean storage and ocean CDR methods. 2023, 357-390. https://doi.org/10.1016/B978-0-12-819663-2.00003-4
    19. Jing He, Michael D. Tyka. Limits and CO 2 equilibration of near-coast alkalinity enhancement. Biogeosciences 2023, 20 (1) , 27-43. https://doi.org/10.5194/bg-20-27-2023
    20. Jens Hartmann, Niels Suitner, Carl Lim, Julieta Schneider, Laura Marín-Samper, Javier Arístegui, Phil Renforth, Jan Taucher, Ulf Riebesell. Stability of alkalinity in ocean alkalinity enhancement (OAE) approaches – consequences for durability of CO 2 storage. Biogeosciences 2023, 20 (4) , 781-802. https://doi.org/10.5194/bg-20-781-2023
    21. Matthew D. Eisaman, Sonja Geilert, Phil Renforth, Laura Bastianini, James Campbell, Andrew W. Dale, Spyros Foteinis, Patricia Grasse, Olivia Hawrot, Carolin R. Löscher, Greg H. Rau, Jakob Rønning. Assessing the technical aspects of ocean-alkalinity-enhancement approaches. State of the Planet 2023, 2-oae2023 , 1-29. https://doi.org/10.5194/sp-2-oae2023-3-2023
    22. Spyros Foteinis, John Andresen, Francesco Campo, Stefano Caserini, Phil Renforth. Life cycle assessment of ocean liming for carbon dioxide removal from the atmosphere. Journal of Cleaner Production 2022, 370 , 133309. https://doi.org/10.1016/j.jclepro.2022.133309
    23. Yayuan Liu, Éowyn Lucas, Ian Sullivan, Xing Li, Chengxiang Xiang. Challenges and opportunities in continuous flow processes for electrochemically mediated carbon capture. iScience 2022, 25 (10) , 105153. https://doi.org/10.1016/j.isci.2022.105153
    24. Atsu Kludze, Devan Solanki, Marcelo Lejeune, Rito Yanagi, Momoko Ishii, Neera Raychaudhuri, Paul Anastas, Nanette Boyle, Shu Hu. Biocement from the ocean: Hybrid microbial-electrochemical mineralization of CO2. iScience 2022, 25 (10) , 105156. https://doi.org/10.1016/j.isci.2022.105156
    25. Hunter B. Vibbert, Ah-Hyung Alissa Park. Harvesting, storing, and converting carbon from the ocean to create a new carbon economy: Challenges and opportunities. Frontiers in Energy Research 2022, 10 https://doi.org/10.3389/fenrg.2022.999307
    26. Palash Badjatya, Abdullah H. Akca, Daniela V. Fraga Alvarez, Baoqi Chang, Siwei Ma, Xueqi Pang, Emily Wang, Quinten van Hinsberg, Daniel V. Esposito, Shiho Kawashima. Carbon-negative cement manufacturing from seawater-derived magnesium feedstocks. Proceedings of the National Academy of Sciences 2022, 119 (34) https://doi.org/10.1073/pnas.2114680119
    27. Olivia Hawrot, James Campbell, Frances Buckingham, Phil Renforth. Geochemical Negative Emission Technologies. 2022, 138-193. https://doi.org/10.1039/9781839165245-00138
    28. James S. Campbell, Spyros Foteinis, Veronica Furey, Olivia Hawrot, Daniel Pike, Silvan Aeschlimann, Cara N. Maesano, Paul L. Reginato, Daniel R. Goodwin, Loren L. Looger, Edward S. Boyden, Phil Renforth. Geochemical Negative Emissions Technologies: Part I. Review. Frontiers in Climate 2022, 4 https://doi.org/10.3389/fclim.2022.879133
    29. Michael D. Tyka, Christopher Van Arsdale, John C. Platt. CO 2 capture by pumping surface acidity to the deep ocean. Energy & Environmental Science 2022, 15 (2) , 786-798. https://doi.org/10.1039/D1EE01532J
    30. Anatoly Rinberg, Andrew M. Bergman, Daniel P. Schrag, Michael J. Aziz. Alkalinity Concentration Swing for Direct Air Capture of Carbon Dioxide. ChemSusChem 2021, 14 (20) , 4439-4453. https://doi.org/10.1002/cssc.202100786
    31. S.M. Saeed Arabi, Jackson Alicata, David Hanigan, Sage R. Hiibel. Capturing atmospheric carbon dioxide by depleting inorganic carbon in municipal wastewater. International Journal of Greenhouse Gas Control 2021, 111 , 103472. https://doi.org/10.1016/j.ijggc.2021.103472
    32. Emma Cotter, Robert Cavagnaro, Andrea Copping, Simon Geerlofs. Powering Negative-Emissions Technologies with Marine Renewable Energy. 2021, 1-8. https://doi.org/10.23919/OCEANS44145.2021.9705807
    33. Saeed Talei, Zahra Soleimani. Comparative Analysis of Three Different Negative Emission Technologies, BECCS, Absorption and Adsorption of Atmospheric CO2. Civil and Environmental Engineering Reports 2021, 31 (3) , 99-117. https://doi.org/10.2478/ceer-2021-0036
    34. Congquan Zhou, Jihong Ni, Huiqi Chen, Xiaofei Guan. Harnessing electrochemical pH gradient for direct air capture with hydrogen and oxygen by-products in a calcium-based loop. Sustainable Energy & Fuels 2021, 5 (17) , 4355-4367. https://doi.org/10.1039/D1SE00718A
    35. MARIIA BELAIA, JUAN B. MORENO-CRUZ, DAVID W. KEITH. OPTIMAL CLIMATE POLICY IN 3D: MITIGATION, CARBON REMOVAL, AND SOLAR GEOENGINEERING. Climate Change Economics 2021, 12 (03) https://doi.org/10.1142/S2010007821500081
    36. Subodh Chandra Pal, Rabin Chakrabortty, Paramita Roy, Indrajit Chowdhuri, Biswajit Das, Asish Saha, Manisa Shit. Changing climate and land use of 21st century influences soil erosion in India. Gondwana Research 2021, 94 , 164-185. https://doi.org/10.1016/j.gr.2021.02.021
    37. Anita Punia. Carbon dioxide sequestration by mines: implications for climate change. Climatic Change 2021, 165 (1-2) https://doi.org/10.1007/s10584-021-03038-8
    38. June Sekera, Andreas Lichtenberger. Assessing Carbon Capture: Public Policy, Science, and Societal Need. Biophysical Economics and Sustainability 2020, 5 (3) https://doi.org/10.1007/s41247-020-00080-5
    39. Jawad Mustafa, Aya A.-H.I. Mourad, Ali H. Al-Marzouqi, Muftah H. El-Naas. Simultaneous treatment of reject brine and capture of carbon dioxide: A comprehensive review. Desalination 2020, 483 , 114386. https://doi.org/10.1016/j.desal.2020.114386
    40. Sarah Gore, Phil Renforth, Rupert Perkins. The potential environmental response to increasing ocean alkalinity for negative emissions. Mitigation and Adaptation Strategies for Global Change 2019, 24 (7) , 1191-1211. https://doi.org/10.1007/s11027-018-9830-z
    41. . References. 2019, 193-211. https://doi.org/10.1002/9781119657859.refs
    42. Rebecca Albright, Sarah Cooley. A review of interventions proposed to abate impacts of ocean acidification on coral reefs. Regional Studies in Marine Science 2019, 29 , 100612. https://doi.org/10.1016/j.rsma.2019.100612
    43. Renaud de Richter, Sylvain Caillol, Tingzhen Ming. Geoengineering: Sunlight reflection methods and negative emissions technologies for greenhouse gas removal. 2019, 581-636. https://doi.org/10.1016/B978-0-12-814104-5.00020-X
    44. Mark G. Lawrence, Stefan Schäfer, Helene Muri, Vivian Scott, Andreas Oschlies, Naomi E. Vaughan, Olivier Boucher, Hauke Schmidt, Jim Haywood, Jürgen Scheffran. Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-05938-3
    45. Greg H. Rau, Jim R. Baird. Negative-CO2-emissions ocean thermal energy conversion. Renewable and Sustainable Energy Reviews 2018, 95 , 265-272. https://doi.org/10.1016/j.rser.2018.07.027
    46. Greg H. Rau, Heather D. Willauer, Zhiyong Jason Ren. The global potential for converting renewable electricity to negative-CO2-emissions hydrogen. Nature Climate Change 2018, 8 (7) , 621-625. https://doi.org/10.1038/s41558-018-0203-0
    47. Sabine Fuss, William F Lamb, Max W Callaghan, Jérôme Hilaire, Felix Creutzig, Thorben Amann, Tim Beringer, Wagner de Oliveira Garcia, Jens Hartmann, Tarun Khanna, Gunnar Luderer, Gregory F Nemet, Joeri Rogelj, Pete Smith, José Luis Vicente Vicente, Jennifer Wilcox, Maria del Mar Zamora Dominguez, Jan C Minx. Negative emissions—Part 2: Costs, potentials and side effects. Environmental Research Letters 2018, 13 (6) , 063002. https://doi.org/10.1088/1748-9326/aabf9f
    48. Heping Xie, Fuhuan Wang, Yufei Wang, Tao Liu, Yifan Wu, Bin Liang. CO2 mineralization of natural wollastonite into porous silica and CaCO3 powders promoted via membrane electrolysis. Environmental Earth Sciences 2018, 77 (4) https://doi.org/10.1007/s12665-018-7330-9
    49. Ibanga B. Ikpe. Science, morality and method in environmental discourse. Human Affairs 2018, 28 (1) , 71-87. https://doi.org/10.1515/humaff-2018-0007
    50. Heping Xie, Bin Liang, Hairong Yue, Yufei Wang. Carbon Dioxide Capture by Electrochemical Mineralization. Chem 2018, 4 (1) , 24-26. https://doi.org/10.1016/j.chempr.2017.12.024
    51. P. A. Davies, Q. Yuan, R. de Richter. Desalination as a negative emissions technology. Environmental Science: Water Research & Technology 2018, 4 (6) , 839-850. https://doi.org/10.1039/C7EW00502D
    52. E. Y. Feng, W. Koeve, D. P. Keller, A. Oschlies. Model‐Based Assessment of the CO 2 Sequestration Potential of Coastal Ocean Alkalinization. Earth's Future 2017, 5 (12) , 1252-1266. https://doi.org/10.1002/2017EF000659
    53. Phil Renforth, Gideon Henderson. Assessing ocean alkalinity for carbon sequestration. Reviews of Geophysics 2017, 55 (3) , 636-674. https://doi.org/10.1002/2016RG000533
    54. Gretta L.A.F. Arce, Turibio G. Soares Neto, I. Ávila, Carlos M.R. Luna, João A. Carvalho. Leaching optimization of mining wastes with lizardite and brucite contents for use in indirect mineral carbonation through the pH swing method. Journal of Cleaner Production 2017, 141 , 1324-1336. https://doi.org/10.1016/j.jclepro.2016.09.204
    55. Heping Xie, Jinlong Wang, Zhengmeng Hou, Yufei Wang, Tao Liu, Liang Tang, Wen Jiang. CO2 sequestration through mineral carbonation of waste phosphogypsum using the technique of membrane electrolysis. Environmental Earth Sciences 2016, 75 (17) https://doi.org/10.1007/s12665-016-6009-3
    56. S. Marini, C. Strada, M. Villa, M. Berrettoni, T. Zerlia. How solar energy and electrochemical technologies may help developing countries and the environment. Energy Conversion and Management 2014, 87 , 1134-1140. https://doi.org/10.1016/j.enconman.2014.04.087
    57. S.J.T. Hangx, A.M.H. Pluymakers, A. Ten Hove, C.J. Spiers. The effects of lateral variations in rock composition and texture on anhydrite caprock integrity of CO2 storage systems. International Journal of Rock Mechanics and Mining Sciences 2014, 69 , 80-92. https://doi.org/10.1016/j.ijrmms.2014.03.001
    58. Greg H. Rau. Enhancing the Ocean’s Role in CO2 Mitigation. 2014, 817-824. https://doi.org/10.1007/978-94-007-5784-4_54
    59. P. Renforth, B.G. Jenkins, T. Kruger. Engineering challenges of ocean liming. Energy 2013, 60 , 442-452. https://doi.org/10.1016/j.energy.2013.08.006
    60. François S. Paquay, Richard E. Zeebe. Assessing possible consequences of ocean liming on ocean pH, atmospheric CO2 concentration and associated costs. International Journal of Greenhouse Gas Control 2013, 17 , 183-188. https://doi.org/10.1016/j.ijggc.2013.05.005
    61. Tracy Hester. Remaking the World to Save It. 2013, 263-314. https://doi.org/10.1017/CBO9781139161824.015
    62. Greg H. Rau, Susan A. Carroll, William L. Bourcier, Michael J. Singleton, Megan M. Smith, Roger D. Aines. Direct electrolytic dissolution of silicate minerals for air CO 2 mitigation and carbon-negative H 2 production. Proceedings of the National Academy of Sciences 2013, 110 (25) , 10095-10100. https://doi.org/10.1073/pnas.1222358110
    63. Hans Geerlings, Ron Zevenhoven. CO 2 Mineralization—Bridge Between Storage and Utilization of CO 2. Annual Review of Chemical and Biomolecular Engineering 2013, 4 (1) , 103-117. https://doi.org/10.1146/annurev-chembioeng-062011-080951
    64. Ken Caldeira, Govindasamy Bala, Long Cao. The Science of Geoengineering. Annual Review of Earth and Planetary Sciences 2013, 41 (1) , 231-256. https://doi.org/10.1146/annurev-earth-042711-105548
    65. Renaud Kiesgen de_Richter, Tingzhen Ming, Sylvain Caillol. Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors. Renewable and Sustainable Energy Reviews 2013, 19 , 82-106. https://doi.org/10.1016/j.rser.2012.10.026
    66. Roberto Barbero, Lino Carnelli, Anna Simon, Albert Kao, Alessandra d'Arminio Monforte, Moreno Riccò, Daniele Bianchi, Angela Belcher. Engineered yeast for enhanced CO2 mineralization. Energy & Environmental Science 2013, 6 (2) , 660. https://doi.org/10.1039/c2ee24060b
    67. Duncan McLaren. A comparative global assessment of potential negative emissions technologies. Process Safety and Environmental Protection 2012, 90 (6) , 489-500. https://doi.org/10.1016/j.psep.2012.10.005
    68. William L. Ahlgren. The Dual-Fuel Strategy: An Energy Transition Plan. Proceedings of the IEEE 2012, 100 (11) , 3001-3052. https://doi.org/10.1109/JPROC.2012.2192469
    69. Greg H. Rau, Elizabeth L. McLeod, Ove Hoegh-Guldberg. The need for new ocean conservation strategies in a high-carbon dioxide world. Nature Climate Change 2012, 2 (10) , 720-724. https://doi.org/10.1038/nclimate1555
    70. Thomas Björklöf, Ron Zevenhoven. Energy efficiency analysis of CO2 mineral sequestration in magnesium silicate rock using electrochemical steps. Chemical Engineering Research and Design 2012, 90 (10) , 1467-1472. https://doi.org/10.1016/j.cherd.2012.02.001
    71. Daniel P. Schrag. Geobiology of the Anthropocene. 2012, 425-436. https://doi.org/10.1002/9781118280874.ch22
    72. Brian Huskinson, Jason Rugolo, Sujit K. Mondal, Michael J. Aziz. A high power density, high efficiency hydrogen–chlorine regenerative fuel cell with a low precious metal content catalyst. Energy & Environmental Science 2012, 5 (9) , 8690. https://doi.org/10.1039/c2ee22274d
    73. Jun Young Yi, Ji Won Choi, Bo Young Jeon, Il Lae Jung, Doo Hyun Park. Effect of electric pulse charged to culture soil on improvement of nutritional soil condition and growth of lettuce (Lactuca sative L.). Agricultural Sciences 2012, 03 (07) , 941-948. https://doi.org/10.4236/as.2012.37115
    74. Ellis M. Gartner, Donald E. Macphee. A physico-chemical basis for novel cementitious binders. Cement and Concrete Research 2011, 41 (7) , 736-749. https://doi.org/10.1016/j.cemconres.2011.03.006
    75. Samuel C.M. Krevor, Klaus S. Lackner. Enhancing serpentine dissolution kinetics for mineral carbon dioxide sequestration. International Journal of Greenhouse Gas Control 2011, 5 (4) , 1073-1080. https://doi.org/10.1016/j.ijggc.2011.01.006
    76. Beth A. Middleton. Multidisciplinary Approaches to Climate Change Questions. 2011, 129-136. https://doi.org/10.1007/978-94-007-0551-7_7
    77. Viorel Badescu, Richard B. Cathcart, Marius Paulescu, Paul Gravila, Alexander A. Bolonkin. Macro-Engineering Lake Eyre with Imported Seawater. 2010, 553-581. https://doi.org/10.1007/978-3-642-14779-1_25
    78. Suzanne J.T. Hangx, Christopher J. Spiers. Coastal spreading of olivine to control atmospheric CO2 concentrations: A critical analysis of viability. International Journal of Greenhouse Gas Control 2009, 3 (6) , 757-767. https://doi.org/10.1016/j.ijggc.2009.07.001
    79. David W. Keith. Why Capture CO 2 from the Atmosphere?. Science 2009, 325 (5948) , 1654-1655. https://doi.org/10.1126/science.1175680
    80. Sarah R Cooley, Scott C Doney. Anticipating ocean acidification’s economic consequences for commercial fisheries. Environmental Research Letters 2009, 4 (2) , 024007. https://doi.org/10.1088/1748-9326/4/2/024007
    81. Wenzhi Li, Wen Li, Baoqing Li, Zongqing Bai. Electrolysis and heat pretreatment methods to promote CO2 sequestration by mineral carbonation. Chemical Engineering Research and Design 2009, 87 (2) , 210-215. https://doi.org/10.1016/j.cherd.2008.08.001
    82. Greg H. Rau. Electrochemical CO2 capture and storage with hydrogen generation. Energy Procedia 2009, 1 (1) , 823-828. https://doi.org/10.1016/j.egypro.2009.01.109
    83. Kurt Zenz House, Christopher H. House, Daniel P. Schrag, Michael J. Aziz. Electrochemical acceleration of chemical weathering for carbon capture and sequestration. Energy Procedia 2009, 1 (1) , 4953-4960. https://doi.org/10.1016/j.egypro.2009.02.327
    84. Jens Hartmann, Stephan Kempe. What is the maximum potential for CO2 sequestration by “stimulated” weathering on the global scale?. Naturwissenschaften 2008, 95 (12) , 1159-1164. https://doi.org/10.1007/s00114-008-0434-4
    85. David G. Victor. On the regulation of geoengineering. Oxford Review of Economic Policy 2008, 24 (2) , 322-336. https://doi.org/10.1093/oxrep/grn018
    86. Fritz Scholz, Ulrich Hasse. Permanent Wood Sequestration: The Solution to the Global Carbon Dioxide Problem. ChemSusChem 2008, 1 (5) , 381-384. https://doi.org/10.1002/cssc.200800048
    87. John Shepherd. Journal club. Nature 2008, 451 (7180) , 749-749. https://doi.org/10.1038/451749a

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2007, 41, 24, 8464–8470
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es0701816
    Published November 7, 2007
    Copyright © 2007 American Chemical Society

    Article Views

    6282

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.