ACS Publications. Most Trusted. Most Cited. Most Read
Establishing Policy Relevant Background (PRB) Ozone Concentrations in the United States
My Activity

Figure 1Loading Img
    Critical Review

    Establishing Policy Relevant Background (PRB) Ozone Concentrations in the United States
    Click to copy article linkArticle link copied!

    View Author Information
    University of Texas at Austin, Austin Texas
    Lawrence Berkeley National Laboratory, Berkeley, California
    § Harvard University, Cambridge, Massachusetts
    University of Washington, Bothell, Washington
    Aerodyne Research, Inc., Billerica, Massachusetts
    # ASL & Associates, Helena, Montana
    National Oceanic and Atmospheric Administration, Boulder, Colorado
    ENVIRON International, Novato, California
    Phone: (512) 471-0049; fax: (512) 471-1720; e-mail: [email protected]
    Other Access Options

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2011, 45, 22, 9484–9497
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es2022818
    Published October 10, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Policy Relevant Background (PRB) ozone concentrations are defined by the United States (U.S.) Environmental Protection Agency (EPA) as those concentrations that would occur in the U.S. in the absence of anthropogenic emissions in continental North America (i.e., the U.S, Canada, and Mexico). Estimates of PRB ozone have had an important role historically in the EPA’s human health and welfare risk analyses used in establishing National Ambient Air Quality Standards (NAAQS). The margin of safety for the protection of public health in the ozone rulemaking process has been established from human health risks calculated based on PRB ozone estimates. Sensitivity analyses conducted by the EPA have illustrated that changing estimates of PRB ozone concentrations have a progressively greater impact on estimates of mortality risk as more stringent standards are considered. As defined by the EPA, PRB ozone is a model construct, but it is informed by measurements at relatively remote monitoring sites (RRMS). This review examines the current understanding of PRB ozone, based on both model predictions and measurements at RRMS, and provides recommendations for improving the definition and determination of PRB ozone.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 62 publications.

    1. Weibo Ling, Zhihua Ren, Weichao Wang, Dawei Lu, Qunfang Zhou, Qian Liu, Guibin Jiang. Chronic Ambient Ozone Exposure Aggravates Autism-Like Symptoms in a Susceptible Mouse Model. Environmental Science & Technology 2023, 57 (38) , 14248-14259. https://doi.org/10.1021/acs.est.3c00607
    2. T. Nash Skipper, Yongtao Hu, M. Talat Odman, Barron H. Henderson, Christian Hogrefe, Rohit Mathur, Armistead G. Russell. Estimating US Background Ozone Using Data Fusion. Environmental Science & Technology 2021, 55 (8) , 4504-4512. https://doi.org/10.1021/acs.est.0c08625
    3. Pao M. Baylon, Daniel A. Jaffe, R. Bradley Pierce, and Mae S. Gustin . Interannual Variability in Baseline Ozone and Its Relationship to Surface Ozone in the Western U.S.. Environmental Science & Technology 2016, 50 (6) , 2994-3001. https://doi.org/10.1021/acs.est.6b00219
    4. Erika von Schneidemesser, Paul S. Monks, James D. Allan, Lori Bruhwiler, Piers Forster, David Fowler, Axel Lauer, William T. Morgan, Pauli Paasonen, Mattia Righi, Katerina Sindelarova, and Mark A. Sutton . Chemistry and the Linkages between Air Quality and Climate Change. Chemical Reviews 2015, 115 (10) , 3856-3897. https://doi.org/10.1021/acs.chemrev.5b00089
    5. Shaena R. Berlin, Andrew O. Langford, Mark Estes, Melody Dong, and David D. Parrish . Magnitude, Decadal Changes, and Impact of Regional Background Ozone Transported into the Greater Houston, Texas, Area. Environmental Science & Technology 2013, 47 (24) , 13985-13992. https://doi.org/10.1021/es4037644
    6. Daniel A. Jaffe, Nicole Wigder, Nicole Downey, Gabriele Pfister, Anne Boynard, and Stephen B. Reid . Impact of Wildfires on Ozone Exceptional Events in the Western U.S.. Environmental Science & Technology 2013, 47 (19) , 11065-11072. https://doi.org/10.1021/es402164f
    7. Subhojit Mandal, Suresh Boppani, Vaibhav Dasari, Mainak Thakur. A bivariate simultaneous pollutant forecasting approach by Unified Spectro-Spatial Graph Neural Network (USSGNN) and its application in prediction of O3 and NO2 for New Delhi, India. Sustainable Cities and Society 2024, 114 , 105741. https://doi.org/10.1016/j.scs.2024.105741
    8. Grace Betito, Avelino Arellano, Armin Sorooshian. Influence of Transboundary Pollution on the Variability of Surface Ozone Concentrations in the Desert Southwest of the U.S.: Case Study for Arizona. Atmosphere 2024, 15 (4) , 401. https://doi.org/10.3390/atmos15040401
    9. Zhixu Sun, Jiani Tan, Fangting Wang, Rui Li, Xinxin Zhang, Jiaqiang Liao, Yangjun Wang, Ling Huang, Kun Zhang, Joshua S. Fu, Li Li. Regional background ozone estimation for China through data fusion of observation and simulation. Science of The Total Environment 2024, 912 , 169411. https://doi.org/10.1016/j.scitotenv.2023.169411
    10. T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, Armistead G. Russell. Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ. Geoscientific Model Development 2024, 17 (22) , 8373-8397. https://doi.org/10.5194/gmd-17-8373-2024
    11. Mingjie Kang, Hongliang Zhang, Qi Ying. Enhanced summertime background ozone by anthropogenic emissions – Implications on ozone control policy and health risk assessment. Atmospheric Environment 2023, 314 , 120116. https://doi.org/10.1016/j.atmosenv.2023.120116
    12. Eugene S Mananga, Erika Lopez, Aissata Diop, Paulin JT Dongomale, Fambougouri Diane. The impact of the air pollution on health in New York City. Journal of Public Health Research 2023, 12 (4) https://doi.org/10.1177/22799036231205870
    13. Matthew L. Riley, Ningbo Jiang, Hiep Nguyen Duc, Merched Azzi. Long-Term Trends in Inferred Continental Background Ozone in Eastern Australia. Atmosphere 2023, 14 (7) , 1104. https://doi.org/10.3390/atmos14071104
    14. F. T. Wang, K. Zhang, J. Xue, L. Huang, Y. J. Wang, H. Chen, S. Y. Wang, J. S. Fu, L. Li. Understanding Regional Background Ozone by Multiple Methods: A Case Study in the Shandong Region, China, 2018–2020. Journal of Geophysical Research: Atmospheres 2022, 127 (22) https://doi.org/10.1029/2022JD036809
    15. Matthew L. Riley, Sean Watt, Ningbo Jiang. Tropospheric ozone measurements at a rural town in New South Wales, Australia. Atmospheric Environment 2022, 281 , 119143. https://doi.org/10.1016/j.atmosenv.2022.119143
    16. Weihua Chen, Alex B. Guenther, Min Shao, Bin Yuan, Shiguo Jia, Jingying Mao, Fenghua Yan, Padmaja Krishnan, Xuemei Wang. Assessment of background ozone concentrations in China and implications for using region-specific volatile organic compounds emission abatement to mitigate air pollution. Environmental Pollution 2022, 305 , 119254. https://doi.org/10.1016/j.envpol.2022.119254
    17. Yun Fat Lam, Hung Ming Cheung. Investigation of Policy Relevant Background (PRB) Ozone in East Asia. Atmosphere 2022, 13 (5) , 723. https://doi.org/10.3390/atmos13050723
    18. Li Zhang, Georg A. Grell, Stuart A. McKeen, Ravan Ahmadov, Karl D. Froyd, Daniel Murphy. Inline coupling of simple and complex chemistry modules within the global weather forecast model FIM (FIM-Chem v1). Geoscientific Model Development 2022, 15 (2) , 467-491. https://doi.org/10.5194/gmd-15-467-2022
    19. Shuchang Liu, Jia Xing, Shuxiao Wang, Dian Ding, Lei Chen, Jiming Hao. Revealing the impacts of transboundary pollution on PM2.5-related deaths in China. Environment International 2020, 134 , 105323. https://doi.org/10.1016/j.envint.2019.105323
    20. Golam Sarwar, Brett Gantt, Kristen Foley, Kathleen Fahey, Tanya L. Spero, Daiwen Kang, Rohit Mathur, Hosein Foroutan, Jia Xing, Tomás Sherwen, Alfonso Saiz-Lopez. Influence of bromine and iodine chemistry on annual, seasonal, diurnal, and background ozone: CMAQ simulations over the Northern Hemisphere. Atmospheric Environment 2019, 213 , 395-404. https://doi.org/10.1016/j.atmosenv.2019.06.020
    21. Nenad Aleksic, John Kent, Chris Walcek. On ground truth in cross-border ozone transport. Journal of the Air & Waste Management Association 2019, 69 (8) , 977-987. https://doi.org/10.1080/10962247.2019.1617209
    22. Alan M. Dunker, Bonyoung Koo, Greg Yarwood. Standard and alternative procedures for projecting future ozone in the Houston area using relative reduction factors. Atmospheric Environment: X 2019, 2 , 100029. https://doi.org/10.1016/j.aeaoa.2019.100029
    23. Xiao Lu, Lin Zhang, Youfan Chen, Mi Zhou, Bo Zheng, Ke Li, Yiming Liu, Jintai Lin, Tzung-May Fu, Qiang Zhang. Exploring 2016–2017 surface ozone pollution over China: source contributions and meteorological influences. Atmospheric Chemistry and Physics 2019, 19 (12) , 8339-8361. https://doi.org/10.5194/acp-19-8339-2019
    24. Katherine R. Travis, Daniel J. Jacob. Systematic bias in evaluating chemical transport models with maximum daily 8 h average (MDA8) surface ozone for air quality applications: a case study with GEOS-Chem v9.02. Geoscientific Model Development 2019, 12 (8) , 3641-3648. https://doi.org/10.5194/gmd-12-3641-2019
    25. Mojtaba Moghani, Cristina L. Archer, Ali Mirzakhalili. The importance of transport to ozone pollution in the U.S. Mid-Atlantic. Atmospheric Environment 2018, 191 , 420-431. https://doi.org/10.1016/j.atmosenv.2018.08.005
    26. Sing‐Chun Wang, Yuxuan Wang, Mark Estes, Ruixue Lei, Robert Talbot, Liye Zhu, Pei Hou. Transport of Central American Fire Emissions to the U.S. Gulf Coast: Climatological Pathways and Impacts on Ozone and PM 2.5. Journal of Geophysical Research: Atmospheres 2018, 123 (15) , 8344-8361. https://doi.org/10.1029/2018JD028684
    27. Martha L. Carvour, Amy E. Hughes, Neal Fann, Robert W. Haley. Estimating the Health and Economic Impacts of Changes in Local Air Quality. American Journal of Public Health 2018, 108 (S2) , S151-S157. https://doi.org/10.2105/AJPH.2017.304252
    28. Deborah McGlynn, Huiting Mao, Zhaohua Wu, Barkley Sive, Timothy Sharac. Understanding Long-Term Variations in Surface Ozone in United States (U.S.) National Parks. Atmosphere 2018, 9 (4) , 125. https://doi.org/10.3390/atmos9040125
    29. Daniel A. Jaffe, Owen R. Cooper, Arlene M. Fiore, Barron H. Henderson, Gail S. Tonnesen, Armistead G. Russell, Daven K. Henze, Andrew O. Langford, Meiyun Lin, Tom Moore, , . Scientific assessment of background ozone over the U.S.: Implications for air quality management. Elementa: Science of the Anthropocene 2018, 6 https://doi.org/10.1525/elementa.309
    30. Lei Zhang, Daniel A. Jaffe. Trends and sources of ozone and sub-micron aerosols at the Mt. Bachelor Observatory (MBO) during 2004–2015. Atmospheric Environment 2017, 165 , 143-154. https://doi.org/10.1016/j.atmosenv.2017.06.042
    31. T. W. Tokarek, D. K. Brownsey, N. Jordan, N. M. Garner, C. Z. Ye, F. V. Assad, A. Peace, C. L. Schiller, R. H. Mason, R. Vingarzan, H. D. Osthoff. Biogenic Emissions and Nocturnal Ozone Depletion Events at the Amphitrite Point Observatory on Vancouver Island. Atmosphere-Ocean 2017, 55 (2) , 121-132. https://doi.org/10.1080/07055900.2017.1306687
    32. Alan M. Dunker, Bonyoung Koo, Greg Yarwood. Contributions of foreign, domestic and natural emissions to US ozone estimated using the path-integral method in CAMx nested within GEOS-Chem. Atmospheric Chemistry and Physics 2017, 17 (20) , 12553-12571. https://doi.org/10.5194/acp-17-12553-2017
    33. Min Huang, Gregory R. Carmichael, R. Bradley Pierce, Duseong S. Jo, Rokjin J. Park, Johannes Flemming, Louisa K. Emmons, Kevin W. Bowman, Daven K. Henze, Yanko Davila, Kengo Sudo, Jan Eiof Jonson, Marianne Tronstad Lund, Greet Janssens-Maenhout, Frank J. Dentener, Terry J. Keating, Hilke Oetjen, Vivienne H. Payne. Impact of intercontinental pollution transport on North American ozone air pollution: an HTAP phase 2 multi-model study. Atmospheric Chemistry and Physics 2017, 17 (9) , 5721-5750. https://doi.org/10.5194/acp-17-5721-2017
    34. Uarporn Nopmongcol, Zhen Liu, Till Stoeckenius, Greg Yarwood. Modeling intercontinental transport of ozone in North America with CAMx for the Air Quality Model Evaluation International Initiative (AQMEII) Phase 3. Atmospheric Chemistry and Physics 2017, 17 (16) , 9931-9943. https://doi.org/10.5194/acp-17-9931-2017
    35. Nenad Aleksic, John Kent, Chris Walcek. Ozone concentrations in air flowing into New York State. Atmospheric Environment 2016, 141 , 454-461. https://doi.org/10.1016/j.atmosenv.2016.07.007
    36. Lee T. Murray. Lightning NO x and Impacts on Air Quality. Current Pollution Reports 2016, 2 (2) , 115-133. https://doi.org/10.1007/s40726-016-0031-7
    37. Katherine R. Travis, Daniel J. Jacob, Jenny A. Fisher, Patrick S. Kim, Eloise A. Marais, Lei Zhu, Karen Yu, Christopher C. Miller, Robert M. Yantosca, Melissa P. Sulprizio, Anne M. Thompson, Paul O. Wennberg, John D. Crounse, Jason M. St. Clair, Ronald C. Cohen, Joshua L. Laughner, Jack E. Dibb, Samuel R. Hall, Kirk Ullmann, Glenn M. Wolfe, Illana B. Pollack, Jeff Peischl, Jonathan A. Neuman, Xianliang Zhou. Why do models overestimate surface ozone in the Southeast United States?. Atmospheric Chemistry and Physics 2016, 16 (21) , 13561-13577. https://doi.org/10.5194/acp-16-13561-2016
    38. Xiao Lu, Lin Zhang, Xu Yue, Jiachen Zhang, Daniel A. Jaffe, Andreas Stohl, Yuanhong Zhao, Jingyuan Shao. Wildfire influences on the variability and trend of summer surface ozone in the mountainous western United States. Atmospheric Chemistry and Physics 2016, 16 (22) , 14687-14702. https://doi.org/10.5194/acp-16-14687-2016
    39. Rebekka Fine, Matthieu B. Miller, Joel Burley, Daniel A. Jaffe, R. Bradley Pierce, Meiyun Lin, Mae Sexauer Gustin. Variability and sources of surface ozone at rural sites in Nevada, USA: Results from two years of the Nevada Rural Ozone Initiative. Science of The Total Environment 2015, 530-531 , 471-482. https://doi.org/10.1016/j.scitotenv.2014.12.027
    40. Rebekka Fine, Matthieu B. Miller, Emma L. Yates, Laura T. Iraci, Mae Sexauer Gustin. Investigating the influence of long-range transport on surface O3 in Nevada, USA, using observations from multiple measurement platforms. Science of The Total Environment 2015, 530-531 , 493-504. https://doi.org/10.1016/j.scitotenv.2015.03.125
    41. Rebekka Fine, Matthieu B. Miller, Mae Sexauer Gustin. Development of a statistical model to identify spatial and meteorological drivers of elevated O 3 in Nevada and its application to other rural mountainous regions. Science of The Total Environment 2015, 530-531 , 526-533. https://doi.org/10.1016/j.scitotenv.2015.03.148
    42. Arlene M. Fiore, Vaishali Naik, Eric M. Leibensperger. Air Quality and Climate Connections. Journal of the Air & Waste Management Association 2015, 65 (6) , 645-685. https://doi.org/10.1080/10962247.2015.1040526
    43. L.E. Gratz, D.A. Jaffe, J.R. Hee. Causes of increasing ozone and decreasing carbon monoxide in springtime at the Mt. Bachelor Observatory from 2004 to 2013. Atmospheric Environment 2015, 109 , 323-330. https://doi.org/10.1016/j.atmosenv.2014.05.076
    44. Pat Dolwick, Farhan Akhtar, Kirk R. Baker, Norm Possiel, Heather Simon, Gail Tonnesen. Comparison of background ozone estimates over the western United States based on two separate model methodologies. Atmospheric Environment 2015, 109 , 282-296. https://doi.org/10.1016/j.atmosenv.2015.01.005
    45. Min Huang, Kevin W. Bowman, Gregory R. Carmichael, Meemong Lee, Tianfeng Chai, Scott N. Spak, Daven K. Henze, Anton S. Darmenov, Arlindo M. da Silva. Improved western U.S. background ozone estimates via constraining nonlocal and local source contributions using Aura TES and OMI observations. Journal of Geophysical Research: Atmospheres 2015, 120 (8) , 3572-3592. https://doi.org/10.1002/2014JD022993
    46. A.M. Fiore, J.T. Oberman, M.Y. Lin, L. Zhang, O.E. Clifton, D.J. Jacob, V. Naik, L.W. Horowitz, J.P. Pinto, G.P. Milly. Estimating North American background ozone in U.S. surface air with two independent global models: Variability, uncertainties, and recommendations. Atmospheric Environment 2014, 96 , 284-300. https://doi.org/10.1016/j.atmosenv.2014.07.045
    47. Ian McKendry, Eric Christensen, Corinne Schiller, Roxanne Vingarzan, Anne Marie Macdonald, Yimei Li. Low Ozone Episodes at Amphitrite Point Marine Boundary Layer Observatory, British Columbia, Canada. Atmosphere-Ocean 2014, 52 (3) , 271-280. https://doi.org/10.1080/07055900.2014.910164
    48. Ming-Hung Chen, Chung-Shin Lu, Ren-Jang Wu. Novel Pt/TiO2–WO3 materials irradiated by visible light used in a photoreductive ozone sensor. Journal of the Taiwan Institute of Chemical Engineers 2014, 45 (3) , 1043-1048. https://doi.org/10.1016/j.jtice.2013.08.020
    49. Allen S. Lefohn, Christopher Emery, Douglas Shadwick, Heini Wernli, Jeagun Jung, Samuel J. Oltmans. Estimates of background surface ozone concentrations in the United States based on model-derived source apportionment. Atmospheric Environment 2014, 84 , 275-288. https://doi.org/10.1016/j.atmosenv.2013.11.033
    50. Kateryna Lapina, Daven K. Henze, Jana B. Milford, Min Huang, Meiyun Lin, Arlene M. Fiore, Greg Carmichael, Gabriele G. Pfister, Kevin Bowman. Assessment of source contributions to seasonal vegetative exposure to ozone in the U.S.. Journal of Geophysical Research: Atmospheres 2014, 119 (1) , 324-340. https://doi.org/10.1002/2013JD020905
    51. L. Zhang, D. J. Jacob, X. Yue, N. V. Downey, D. A. Wood, D. Blewitt. Sources contributing to background surface ozone in the US Intermountain West. Atmospheric Chemistry and Physics 2014, 14 (11) , 5295-5309. https://doi.org/10.5194/acp-14-5295-2014
    52. Junghwa Heo, Sang-Woo Kim, Soon-Chang Yoon, Ji-Hyoung Kim, Man-Hae Kim, Yumi Kim. On the Determination Method of Background Aerosol Concentration. Atmosphere 2013, 23 (4) , 501-511. https://doi.org/10.14191/Atmos.2013.23.4.501
    53. Gabriele G. Pfister, Stacy Walters, Louisa K. Emmons, David P. Edwards, Jeremy Avise. Quantifying the contribution of inflow on surface ozone over California during summer 2008. Journal of Geophysical Research: Atmospheres 2013, 118 (21) https://doi.org/10.1002/2013JD020336
    54. Nicole L. Wigder, Daniel A. Jaffe, Farren L. Herron‐Thorpe, Joseph K. Vaughan. Influence of daily variations in baseline ozone on urban air quality in the United States Pacific Northwest. Journal of Geophysical Research: Atmospheres 2013, 118 (8) , 3343-3354. https://doi.org/10.1029/2012JD018738
    55. S.J. Oltmans, A.S. Lefohn, D. Shadwick, J.M. Harris, H.E. Scheel, I. Galbally, D.W. Tarasick, B.J. Johnson, E.-G. Brunke, H. Claude, G. Zeng, S. Nichol, F. Schmidlin, J. Davies, E. Cuevas, A. Redondas, H. Naoe, T. Nakano, T. Kawasato. Recent tropospheric ozone changes – A pattern dominated by slow or no growth. Atmospheric Environment 2013, 67 , 331-351. https://doi.org/10.1016/j.atmosenv.2012.10.057
    56. Andrzej Bytnerowicz, Mark Fenn, Steven McNulty, Fengming Yuan, Afshin Pourmokhtarian, Charles Driscoll, Tom Meixner. Interactive Effects of Air Pollution and Climate Change on Forest Ecosystems in the United States. 2013, 333-369. https://doi.org/10.1016/B978-0-08-098349-3.00016-5
    57. Allen S. Lefohn, Heini Wernli, Douglas Shadwick, Samuel J. Oltmans, Melvyn Shapiro. Quantifying the importance of stratospheric-tropospheric transport on surface ozone concentrations at high- and low-elevation monitoring sites in the United States. Atmospheric Environment 2012, 62 , 646-656. https://doi.org/10.1016/j.atmosenv.2012.09.004
    58. J. A. Neuman, M. Trainer, K. C. Aikin, W. M. Angevine, J. Brioude, S. S. Brown, J. A. de Gouw, W. P. Dube, J. H. Flynn, M. Graus, J. S. Holloway, B. L. Lefer, P. Nedelec, J. B. Nowak, D. D. Parrish, I. B. Pollack, J. M. Roberts, T. B. Ryerson, H. Smit, V. Thouret, N. L. Wagner. Observations of ozone transport from the free troposphere to the Los Angeles basin. Journal of Geophysical Research: Atmospheres 2012, 117 (D21) https://doi.org/10.1029/2011JD016919
    59. Meiyun Lin, Arlene M. Fiore, Owen R. Cooper, Larry W. Horowitz, Andrew O. Langford, Hiram Levy, Bryan J. Johnson, Vaishali Naik, Samuel J. Oltmans, Christoph J. Senff. Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions. Journal of Geophysical Research: Atmospheres 2012, 117 (D21) https://doi.org/10.1029/2012JD018151
    60. Christopher Rabideau, Kenneth Satin. Challenges When Ambient Air Standards are Set Near Background Levels. 2012https://doi.org/10.2118/156743-MS
    61. Y. Li, A. K.‐H. Lau, J. C.‐H. Fung, J. Y. Zheng, L. J. Zhong, P. K. K. Louie. Ozone source apportionment (OSAT) to differentiate local regional and super‐regional source contributions in the Pearl River Delta region, China. Journal of Geophysical Research: Atmospheres 2012, 117 (D15) https://doi.org/10.1029/2011JD017340
    62. D. D. Parrish, K. S. Law, J. Staehelin, R. Derwent, O. R. Cooper, H. Tanimoto, A. Volz-Thomas, S. Gilge, H.-E. Scheel, M. Steinbacher, E. Chan. Long-term changes in lower tropospheric baseline ozone concentrations at northern mid-latitudes. Atmospheric Chemistry and Physics 2012, 12 (23) , 11485-11504. https://doi.org/10.5194/acp-12-11485-2012

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2011, 45, 22, 9484–9497
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es2022818
    Published October 10, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    1492

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.