ACS Publications. Most Trusted. Most Cited. Most Read
Surface Evolution of the Deepwater Horizon Oil Spill Patch: Combined Effects of Circulation and Wind-Induced Drift
My Activity

Figure 1Loading Img
    Article

    Surface Evolution of the Deepwater Horizon Oil Spill Patch: Combined Effects of Circulation and Wind-Induced Drift
    Click to copy article linkArticle link copied!

    View Author Information
    Cooperative Institute for Marine and Atmospheric Studies (CIMAS), University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149-1098, United States
    Rosenstiel School of Marine and Atmospheric Science (RSMAS), University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149-1098, United States
    § Center for Computational Science (CCS), University of Miami, Coral Gables, Florida 33124, United States
    Colorado School of Mines, 1500 Illinois St., Golden, Colorado 80401, United States
    Naval Research Laboratory, Stennis Space Center, Mississippi 39529, United States
    *Phone: (1) 305 421 4154; fax: (1) 305 421 4221; e-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2012, 46, 13, 7267–7273
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es301570w
    Published May 31, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Following the Deepwater Horizon blowout, major concerns were raised about the probability that the Loop Current would entrain oil at the surface of the Gulf of Mexico toward South Florida. However, such a scenario did not materialize. Results from a modeling approach suggest that the prevailing winds, through the drift they induced at the ocean surface, played a major role in pushing the oil toward the coasts along the northern Gulf, and, in synergy with the Loop Current evolution, prevented the oil from reaching the Florida Straits. This implies that both oceanic currents and surface wind-induced drift must be taken into account for the successful forecasting of the trajectories and landfall of oil particles, even in energetic environments such as the Gulf of Mexico. Consequently, the time range of these predictions is limited to the weather forecasting range, in addition to the range set up by ocean forecasting capabilities.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional material as noted in the text. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 119 publications.

    1. Michel C. Boufadel, Ali Abdollahi-Nasab, Xiaolong Geng, Jerry Galt, and Jagadish Torlapati . Simulation of the Landfall of the Deepwater Horizon Oil on the Shorelines of the Gulf of Mexico. Environmental Science & Technology 2014, 48 (16) , 9496-9505. https://doi.org/10.1021/es5012862
    2. Claire B. Paris, Matthieu Le Hénaff, Zachary M. Aman, Ajit Subramaniam, Judith Helgers, Dong-Ping Wang, Vassiliki H. Kourafalou, and Ashwanth Srinivasan . Evolution of the Macondo Well Blowout: Simulating the Effects of the Circulation and Synthetic Dispersants on the Subsea Oil Transport. Environmental Science & Technology 2012, 46 (24) , 13293-13302. https://doi.org/10.1021/es303197h
    3. Xue Yu, Xiaorong Luo, Yuhang Ye, Mengke Zhang, Mengyao Xu, Chenglong Han, Xueqiang Lu. Migration and Transformation of Microplastics. 2025, 85-136. https://doi.org/10.1002/9783527842124.ch2
    4. Marine Gouezo, Clothilde Langlais, Jack Beardsley, George Roff, Peter L. Harrison, Damian P. Thomson, Christopher Doropoulos. Going with the flow: Leveraging reef‐scale hydrodynamics for upscaling larval‐based restoration. Ecological Applications 2025, 35 (3) https://doi.org/10.1002/eap.70020
    5. Weixu Qian, Huatai Liu, Xiaoya Liu, Rui Yao, Yue Wu, Libo Wu, Dongdong Cheng, Xinhong Wang. Spatial-temporal distribution and fluxes of microplastics in Jiulong River basin. Journal of Oceanology and Limnology 2025, 43 (2) , 360-371. https://doi.org/10.1007/s00343-024-3238-2
    6. H. V. R. Mittal, Mohamad Abed El Rahman Hammoud, Ana K. Carrasco, Ibrahim Hoteit, Omar M. Knio. Oil spill risk analysis for the NEOM shoreline. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-57048-4
    7. Wenwen Luo, Jia Zhang, Meichen Liu, Anli Yi, Rui Jiao, Zhaoqi Zhu, Jiyan Li, Hanxue Sun, An Li. Excellent solar-driven interface evaporation by an oil repellence Janus photothermal membrane for oily wastewater treatment. Chemical Engineering Journal 2024, 483 , 149211. https://doi.org/10.1016/j.cej.2024.149211
    8. Xingchen Yang, Matthieu Le Hénaff, Brian Mapes, Mohamed Iskandarani. Dynamical interactions between Loop Current and Loop Current Frontal Eddies in a HYCOM ensemble of the circulation in the Gulf of Mexico. Frontiers in Marine Science 2023, 10 https://doi.org/10.3389/fmars.2023.1048780
    9. Panagiota Keramea, Nikolaos Kokkos, George Zodiatis, Georgios Sylaios. Modes of Operation and Forcing in Oil Spill Modeling: State-of-Art, Deficiencies and Challenges. Journal of Marine Science and Engineering 2023, 11 (6) , 1165. https://doi.org/10.3390/jmse11061165
    10. Dung M. Nguyen, Lars R. Hole, Øyvind Breivik, Thuy B. Nguyen, Ngoc Kh. Pham. Marine Plastic Drift from the Mekong River to Southeast Asia. Journal of Marine Science and Engineering 2023, 11 (5) , 925. https://doi.org/10.3390/jmse11050925
    11. I. M. Abdallah, V. Y. Chantsev. Simulation of Oil Spill Trajectory and Fate at the Southern Entrance of the Suez Canal, Red Sea, Egypt. Fundamental and Applied Hydrophysics 2023, 16 (1) , 63-79. https://doi.org/10.59887/fpg/hg4a-1ht8-db7d
    12. Matthieu Le Hénaff, Vassiliki H. Kourafalou, Yannis Androulidakis, Nektaria Ntaganou, HeeSook Kang. Influence of the Caribbean Sea eddy field on Loop Current predictions. Frontiers in Marine Science 2023, 10 https://doi.org/10.3389/fmars.2023.1129402
    13. Witold Podlejski, Léo Berline, David Nerini, Andrea Doglioli, Christophe Lett. A new Sargassum drift model derived from features tracking in MODIS images. Marine Pollution Bulletin 2023, 188 , 114629. https://doi.org/10.1016/j.marpolbul.2023.114629
    14. Ita Wulandari, Samuel Katz, Roger Patrick Kelly, Rebecca S. Robinson, Rainer Lohmann. Sedimentary Accumulation of Black Carbon on the East Coast of The United States. Geophysical Research Letters 2023, 50 (1) https://doi.org/10.1029/2022GL101509
    15. Michel C. Boufadel, Tamay Özgökmen, Scott A. Socolofsky, Vassiliki H. Kourafalou, Ruixue Liu, Kenneth Lee. Oil Transport Following the Deepwater Horizon Blowout. Annual Review of Marine Science 2023, 15 (1) , 67-93. https://doi.org/10.1146/annurev-marine-040821-104411
    16. Larissa Montas, Alesia C. Ferguson, Kristina D. Mena, Helena M. Solo-Gabriele, Claire B. Paris. PAH depletion in weathered oil slicks estimated from modeled age-at-sea during the Deepwater Horizon oil spill. Journal of Hazardous Materials 2022, 440 , 129767. https://doi.org/10.1016/j.jhazmat.2022.129767
    17. Robert H. Weisberg, Yonggang Liu. Local And Deep-Ocean Forcing Effects on the West Florida Continental Shelf Circulation and Ecology. Frontiers in Marine Science 2022, 9 https://doi.org/10.3389/fmars.2022.863227
    18. Markus Huettel. Oil pollution of beaches. Current Opinion in Chemical Engineering 2022, 36 , 100803. https://doi.org/10.1016/j.coche.2022.100803
    19. Dubravko Justić, Villy Kourafalou, Giulio Mariotti, Songjie He, Robert Weisberg, Yannis Androulidakis, Christopher Barker, Annalisa Bracco, Brian Dzwonkowski, Chuanmin Hu, Haosheng Huang, Gregg Jacobs, Matthieu Le Hénaff, Yonggang Liu, Steven Morey, Jeffrey Nittrouer, Edward Overton, Claire B. Paris, Brian J. Roberts, Kenneth Rose, Arnoldo Valle-Levinson, Jerry Wiggert. Transport Processes in the Gulf of Mexico Along the River-Estuary-Shelf-Ocean Continuum: a Review of Research from the Gulf of Mexico Research Initiative. Estuaries and Coasts 2022, 45 (3) , 621-657. https://doi.org/10.1007/s12237-021-01005-1
    20. Daoxun Sun, Annalisa Bracco, Guangpeng Liu. The Role of Freshwater Forcing on Surface Predictability in the Gulf of Mexico. Journal of Geophysical Research: Oceans 2022, 127 (5) https://doi.org/10.1029/2021JC018098
    21. Bérangère Péquin, Qinhong Cai, Kenneth Lee, Charles W. Greer. Natural attenuation of oil in marine environments: A review. Marine Pollution Bulletin 2022, 176 , 113464. https://doi.org/10.1016/j.marpolbul.2022.113464
    22. Thomas Dobbelaere, Milan Curcic, Matthieu Le Hénaff, Emmanuel Hanert. Impacts of Hurricane Irma (2017) on wave-induced ocean transport processes. Ocean Modelling 2022, 171 , 101947. https://doi.org/10.1016/j.ocemod.2022.101947
    23. Pengfei Wu, Hongna Zhang, Narendra Singh, Yuanyuan Tang, Zongwei Cai. Intertidal zone effects on Occurrence, fate and potential risks of microplastics with perspectives under COVID-19 pandemic. Chemical Engineering Journal 2022, 429 , 132351. https://doi.org/10.1016/j.cej.2021.132351
    24. Larissa Montas, Alesia C. Ferguson, Kristina D. Mena, Helena Solo-Gabriele, Claire B. Paris. Pah Depletion in Weathered Oil Slicks Estimated from Modeled Age-at-Sea During the Deepwater Horizon Oil Spill. SSRN Electronic Journal 2022, 46 https://doi.org/10.2139/ssrn.4128773
    25. H. V. R. Mittal, Sabique Langodan, Peng Zhan, Shihan Li, Omar Knio, Ibrahim Hoteit. Hazard assessment of oil spills along the main shipping lane in the Red Sea. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-96572-5
    26. Deborah P. French-McCay, Katherine Jayko, Zhengkai Li, Malcolm L. Spaulding, Deborah Crowley, Daniel Mendelsohn, Matthew Horn, Tatsusaburo Isaji, Yong Hoon Kim, Jeremy Fontenault, Jill J. Rowe. Oil fate and mass balance for the Deepwater Horizon oil spill. Marine Pollution Bulletin 2021, 171 , 112681. https://doi.org/10.1016/j.marpolbul.2021.112681
    27. C.H. Ainsworth, E.P. Chassignet, D. French-McCay, C.J. Beegle-Krause, I. Berenshtein, J. Englehardt, T. Fiddaman, H. Huang, M. Huettel, D. Justic, V.H. Kourafalou, Y. Liu, C. Mauritzen, S. Murawski, S. Morey, T. Özgökmen, C.B. Paris, J. Ruzicka, S. Saul, J. Shepherd, S. Socolofsky, H. Solo Gabriele, T. Sutton, R.H. Weisberg, C. Wilson, L. Zheng, Y. Zheng. Ten years of modeling the Deepwater Horizon oil spill. Environmental Modelling & Software 2021, 142 , 105070. https://doi.org/10.1016/j.envsoft.2021.105070
    28. Sravanthi Nukapothula, Jie Wu, Chuqun Chen, Yunus Ali P. Potential impact of the extensive oil spill on primary productivity in the Red Sea waters. Continental Shelf Research 2021, 222 , 104437. https://doi.org/10.1016/j.csr.2021.104437
    29. Lars Robert Hole, Victor de Aguiar, Knut-Frode Dagestad, Vassiliki H. Kourafalou, Yannis Androulidakis, Heesook Kang, Matthieu Le Hénaff, Amilcar Calzada. Long term simulations of potential oil spills around Cuba. Marine Pollution Bulletin 2021, 167 , 112285. https://doi.org/10.1016/j.marpolbul.2021.112285
    30. Fangda Cui, Cosan Daskiran, Kenneth Lee, Michel C. Boufadel. Transport and Formation of OPAs in Rivers. Journal of Environmental Engineering 2021, 147 (5) https://doi.org/10.1061/(ASCE)EE.1943-7870.0001875
    31. Debra Simecek-Beatty, William J. Lehr. Oil spill forecast assessment using Fractions Skill Score. Marine Pollution Bulletin 2021, 164 , 112041. https://doi.org/10.1016/j.marpolbul.2021.112041
    32. Fangda Cui, Hamed Behzad, Xiaolong Geng, Lin Zhao, Kenneth Lee, Michel C. Boufadel. Dispersion of Oil Droplets in Rivers. Journal of Hydraulic Engineering 2021, 147 (3) https://doi.org/10.1061/(ASCE)HY.1943-7900.0001858
    33. Deborah P. French-McCay, Malcolm L. Spaulding, Deborah Crowley, Daniel Mendelsohn, Jeremy Fontenault, Matthew Horn. Validation of Oil Trajectory and Fate Modeling of the Deepwater Horizon Oil Spill. Frontiers in Marine Science 2021, 8 https://doi.org/10.3389/fmars.2021.618463
    34. Ana C. Vaz, Robin Faillettaz, Claire B. Paris. A Coupled Lagrangian-Earth System Model for Predicting Oil Photooxidation. Frontiers in Marine Science 2021, 8 https://doi.org/10.3389/fmars.2021.576747
    35. Robin Faillettaz, Claire B. Paris, Ana C. Vaz, Natalie Perlin, Zachary M. Aman, Michael Schlüter, Steven A. Murawski. The choice of droplet size probability distribution function for oil spill modeling is not trivial. Marine Pollution Bulletin 2021, 163 , 111920. https://doi.org/10.1016/j.marpolbul.2020.111920
    36. Yannis Androulidakis, Vassiliki Kourafalou, Matthieu Le Hénaff, HeeSook Kang, Nektaria Ntaganou. The Role of Mesoscale Dynamics over Northwestern Cuba in the Loop Current Evolution in 2010, during the Deepwater Horizon Incident. Journal of Marine Science and Engineering 2021, 9 (2) , 188. https://doi.org/10.3390/jmse9020188
    37. Uta Passow, Edward B. Overton. The Complexity of Spills: The Fate of the Deepwater Horizon Oil. Annual Review of Marine Science 2021, 13 (1) , 109-136. https://doi.org/10.1146/annurev-marine-032320-095153
    38. Rodrigo Duran, Tor Nordam, Mattia Serra, Christopher H. Barker. Horizontal transport in oil-spill modeling. 2021, 59-96. https://doi.org/10.1016/B978-0-12-819354-9.00004-1
    39. Alexander Wineteer, Hector S. Torres, Ernesto Rodriguez. On the Surface Current Measurement Capabilities of Spaceborne Doppler Scatterometry. Geophysical Research Letters 2020, 47 (21) https://doi.org/10.1029/2020GL090116
    40. Melissa Rohal, Cameron Ainsworth, Brach Lupher, Paul A. Montagna, Claire B. Paris, Natalie Perlin, Paul Mark Suprenand, David Yoskowitz. The effect of the Deepwater Horizon oil spill on two ecosystem services in the Northern Gulf of Mexico. Environmental Modelling & Software 2020, 133 , 104793. https://doi.org/10.1016/j.envsoft.2020.104793
    41. Fangjie Yu, Zhiyuan Fan, Huimin Hu, Yang Zhao, Junwu Tang, Ge Chen. A regional parameterisation method for oil spill susceptibility assessment in Beibu Gulf. Ocean Engineering 2020, 215 , 107776. https://doi.org/10.1016/j.oceaneng.2020.107776
    42. Annalisa Bracco, Claire B. Paris, Andrew J. Esbaugh, Kaitlin Frasier, Samantha B. Joye, Guangpeng Liu, Kurt L. Polzin, Ana Carolina Vaz. Transport, Fate and Impacts of the Deep Plume of Petroleum Hydrocarbons Formed During the Macondo Blowout. Frontiers in Marine Science 2020, 7 https://doi.org/10.3389/fmars.2020.542147
    43. Christopher H. Barker, Vassiliki H. Kourafalou, CJ Beegle-Krause, Michel Boufadel, Mark A. Bourassa, Steve G. Buschang, Yannis Androulidakis, Eric P. Chassignet, Knut-Frode Dagestad, Donald G. Danmeier, Anusha L. Dissanayake, Jerry A. Galt, Gregg Jacobs, Guillaume Marcotte, Tamay Özgökmen, Nadia Pinardi, Rafael V. Schiller, Scott A. Socolofsky, Dalina Thrift-Viveros, Brian Zelenke, Aijun Zhang, Yangxing Zheng. Progress in Operational Modeling in Support of Oil Spill Response. Journal of Marine Science and Engineering 2020, 8 (9) , 668. https://doi.org/10.3390/jmse8090668
    44. Ernesto Rodríguez, Alexander Wineteer, Dragana Perkovic-Martin, Tamás Gál, Steven Anderson, Seth Zuckerman, James Stear, Xiufeng Yang. Ka-Band Doppler Scatterometry over a Loop Current Eddy. Remote Sensing 2020, 12 (15) , 2388. https://doi.org/10.3390/rs12152388
    45. Yannis Androulidakis, Vassiliki Kourafalou, Lars Robert Hole, Matthieu Le Hénaff, HeeSook Kang. Pathways of Oil Spills from Potential Cuban Offshore Exploration: Influence of Ocean Circulation. Journal of Marine Science and Engineering 2020, 8 (7) , 535. https://doi.org/10.3390/jmse8070535
    46. Charles Frys, Antoine Saint-Amand, Matthieu Le Hénaff, Joana Figueiredo, Alyson Kuba, Brian Walker, Jonathan Lambrechts, Valentin Vallaeys, David Vincent, Emmanuel Hanert. Fine-Scale Coral Connectivity Pathways in the Florida Reef Tract: Implications for Conservation and Restoration. Frontiers in Marine Science 2020, 7 https://doi.org/10.3389/fmars.2020.00312
    47. Mirjam van der Mheen, Charitha Pattiaratchi, Simone Cosoli, Moritz Wandres. Depth-Dependent Correction for Wind-Driven Drift Current in Particle Tracking Applications. Frontiers in Marine Science 2020, 7 https://doi.org/10.3389/fmars.2020.00305
    48. Junfei Xia, Wei Zhang, Alesia C. Ferguson, Kristina D. Mena, Tamay M. Özgökmen, Helena M. Solo-Gabriele. Use of chemical concentration changes in coastal sediments to compute oil exposure dates. Environmental Pollution 2020, 259 , 113858. https://doi.org/10.1016/j.envpol.2019.113858
    49. Nathan J. M. Laxague, Christopher J. Zappa. Observations of mean and wave orbital flows in the ocean’s upper centimetres. Journal of Fluid Mechanics 2020, 887 https://doi.org/10.1017/jfm.2019.1019
    50. Igal Berenshtein, Claire B. Paris, Natalie Perlin, Matthew M. Alloy, Samantha B. Joye, Steve Murawski. Invisible oil beyond the Deepwater Horizon satellite footprint. Science Advances 2020, 6 (7) https://doi.org/10.1126/sciadv.aaw8863
    51. B. Lund, B. K. Haus, H. C. Graber, J. Horstmann, R. Carrasco, G. Novelli, C. M. Guigand, S. Mehta, N. J. M. Laxague, T. M. Özgökmen. Marine X‐Band Radar Currents and Bathymetry: An Argument for a Wave Number‐Dependent Retrieval Method. Journal of Geophysical Research: Oceans 2020, 125 (2) https://doi.org/10.1029/2019JC015618
    52. Natalie Perlin, Claire B. Paris, Igal Berenshtein, Ana C. Vaz, Robin Faillettaz, Zachary M. Aman, Patrick T. Schwing, Isabel C. Romero, Michael Schlüter, Andreas Liese, Nuttapol Noirungsee, Steffen Hackbusch. Far-Field Modeling of a Deep-Sea Blowout: Sensitivity Studies of Initial Conditions, Biodegradation, Sedimentation, and Subsurface Dispersant Injection on Surface Slicks and Oil Plume Concentrations. 2020, 170-192. https://doi.org/10.1007/978-3-030-11605-7_11
    53. Ana C. Vaz, Claire B. Paris, Anusha L. Dissanayake, Scott A. Socolofsky, Jonas Gros, Michel C. Boufadel. Dynamic Coupling of Near-Field and Far-Field Models. 2020, 139-154. https://doi.org/10.1007/978-3-030-11605-7_9
    54. Igal Berenshtein, Natalie Perlin, Cameron H. Ainsworth, Joel G. Ortega-Ortiz, Ana C. Vaz, Claire B. Paris. Comparison of the Spatial Extent, Impacts to Shorelines, and Ecosystem and Four-Dimensional Characteristics of Simulated Oil Spills. 2020, 340-354. https://doi.org/10.1007/978-3-030-12963-7_20
    55. Igal Berenshtein, Natalie Perlin, Steven A. Murawski, Samatha B. Joye, Claire B. Paris. Evaluating the Effectiveness of Fishery Closures for Deep Oil Spills Using a Four-Dimensional Model. 2020, 390-402. https://doi.org/10.1007/978-3-030-12963-7_23
    56. Larissa Montas, Alesia C. Ferguson, Kristina D. Mena, Helena M. Solo-Gabriele. Categorization of nearshore sampling data using oil slick trajectory predictions. Marine Pollution Bulletin 2020, 150 , 110577. https://doi.org/10.1016/j.marpolbul.2019.110577
    57. Oscar Garcia-Pineda, Yannis Androulidakis, Matthieu Le Hénaff, Villy Kourafalou, Lars R. Hole, HeeSook Kang, Gordon Staples, Ellen Ramirez, Lisa DiPinto. Measuring oil residence time with GPS-drifters, satellites, and Unmanned Aerial Systems (UAS). Marine Pollution Bulletin 2020, 150 , 110644. https://doi.org/10.1016/j.marpolbul.2019.110644
    58. Guillaume Novelli, Cédric M. Guigand, Michel C. Boufadel, Tamay M. Özgökmen. On the transport and landfall of marine oil spills, laboratory and field observations. Marine Pollution Bulletin 2020, 150 , 110805. https://doi.org/10.1016/j.marpolbul.2019.110805
    59. Kristen M. Thyng. Deepwater Horizon Oil could have naturally reached Texas beaches. Marine Pollution Bulletin 2019, 149 , 110527. https://doi.org/10.1016/j.marpolbul.2019.110527
    60. Lars Robert Hole, Knut-Frode Dagestad, Johannes Röhrs, Cecilie Wettre, Vassiliki H. Kourafalou, Yannis Androulidakis, Heesook Kang, Matthieu Le Hénaff, Oscar Garcia-Pineda. The DeepWater Horizon Oil Slick: Simulations of River Front Effects and Oil Droplet Size Distribution. Journal of Marine Science and Engineering 2019, 7 (10) , 329. https://doi.org/10.3390/jmse7100329
    61. Olaf Duteil, Pierre Damien, Julio Sheinbaum, Marlene Spinner. Ocean currents and coastal exposure to offshore releases of passively transported material in the Gulf of Mexico. Environmental Research Communications 2019, 1 (8) , 081006. https://doi.org/10.1088/2515-7620/ab3aad
    62. A. C. Haza, N. Paldor, T. M. Özgökmen, M. Curcic, S. S. Chen, G. Jacobs. Wind‐Based Estimations of Ocean Surface Currents From Massive Clusters of Drifters in the Gulf of Mexico. Journal of Geophysical Research: Oceans 2019, 124 (8) , 5844-5869. https://doi.org/10.1029/2018JC014813
    63. Xiaoxu Sun, Joel E. Kostka, . Hydrocarbon-Degrading Microbial Communities Are Site Specific, and Their Activity Is Limited by Synergies in Temperature and Nutrient Availability in Surface Ocean Waters. Applied and Environmental Microbiology 2019, 85 (15) https://doi.org/10.1128/AEM.00443-19
    64. Igal Berenshtein, Shay O’Farrell, Natalie Perlin, James N Sanchirico, Steven A Murawski, Larry Perruso, Claire B Paris, . Predicting the impact of future oil-spill closures on fishery-dependent communities—a spatially explicit approach. ICES Journal of Marine Science 2019, 136 https://doi.org/10.1093/icesjms/fsz138
    65. Matthew W. Johnston, Rosanna J. Milligan, Cole G. Easson, Sergio deRada, David C. English, Bradley Penta, Tracey T. Sutton. An empirically validated method for characterizing pelagic habitats in the Gulf of Mexico using ocean model data. Limnology and Oceanography: Methods 2019, 17 (6) , 362-375. https://doi.org/10.1002/lom3.10319
    66. Daniel Otis, Matthieu Le Hénaff, Vassiliki Kourafalou, Lucas McEachron, Frank Muller-Karger. Mississippi River and Campeche Bank (Gulf of Mexico) Episodes of Cross-Shelf Export of Coastal Waters Observed with Satellites. Remote Sensing 2019, 11 (6) , 723. https://doi.org/10.3390/rs11060723
    67. Danling Tang, Jing Sun, Li Zhou, Sufen Wang, Ramesh P. Singh, Gang Pan. Ecological response of phytoplankton to the oil spills in the oceans. Geomatics, Natural Hazards and Risk 2019, 10 (1) , 853-872. https://doi.org/10.1080/19475705.2018.1549110
    68. Hui Shen, William Perrie, Yongsheng Wu. Wind drag in oil spilled ocean surface and its impact on wind-driven circulation. Anthropocene Coasts 2019, 2 (1) , 244-260. https://doi.org/10.1139/anc-2018-0019
    69. John Lodise, Tamay Özgökmen, Annalisa Griffa, Maristella Berta. Vertical structure of ocean surface currents under high winds from massive arrays of drifters. Ocean Science 2019, 15 (6) , 1627-1651. https://doi.org/10.5194/os-15-1627-2019
    70. R. Duran, F. J. Beron-Vera, M. J. Olascoaga. Extracting quasi-steady Lagrangian transport patterns from the ocean circulation: An application to the Gulf of Mexico. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-23121-y
    71. Shaojie Sun, Chuanmin Hu, Oscar Garcia-Pineda, Vassiliki Kourafalou, Matthieu Le Hénaff, Yannis Androulidakis. Remote sensing assessment of oil spills near a damaged platform in the Gulf of Mexico. Marine Pollution Bulletin 2018, 136 , 141-151. https://doi.org/10.1016/j.marpolbul.2018.09.004
    72. Shitao Wang, Guotu Li, Mohamed Iskandarani, Matthieu Le Hénaff, Omar M. Knio. Verifying and assessing the performance of the perturbation strategy in polynomial chaos ensemble forecasts of the circulation in the Gulf of Mexico. Ocean Modelling 2018, 131 , 59-70. https://doi.org/10.1016/j.ocemod.2018.09.002
    73. Weijun Guo, Meirong Jiang, Xueyan Li, Bing Ren. Using a genetic algorithm to improve oil spill prediction. Marine Pollution Bulletin 2018, 135 , 386-396. https://doi.org/10.1016/j.marpolbul.2018.07.026
    74. Rodrigo Duran, Lucy Romeo, Jonathan Whiting, Jason Vielma, Kelly Rose, Amoret Bunn, Jennifer Bauer. Simulation of the 2003 Foss Barge - Point Wells Oil Spill: A Comparison between BLOSOM and GNOME Oil Spill Models. Journal of Marine Science and Engineering 2018, 6 (3) , 104. https://doi.org/10.3390/jmse6030104
    75. Bicheng Chen, Di Yang, Charles Meneveau, Marcelo Chamecki. Numerical study of the effects of chemical dispersant on oil transport from an idealized underwater blowout. Physical Review Fluids 2018, 3 (8) https://doi.org/10.1103/PhysRevFluids.3.083801
    76. Yannis Androulidakis, Vassiliki Kourafalou, Tamay Özgökmen, Oscar Garcia‐Pineda, Björn Lund, Matthieu Le Hénaff, Chuanmin Hu, Brian K. Haus, Guillaume Novelli, Cedric Guigand, HeeSook Kang, Lars Hole, Jochen Horstmann. Influence of River‐Induced Fronts on Hydrocarbon Transport: A Multiplatform Observational Study. Journal of Geophysical Research: Oceans 2018, 123 (5) , 3259-3285. https://doi.org/10.1029/2017JC013514
    77. Cameron H. Ainsworth, Claire B. Paris, Natalie Perlin, Lindsey N. Dornberger, William F. Patterson, Emily Chancellor, Steve Murawski, David Hollander, Kendra Daly, Isabel C. Romero, Felicia Coleman, Holly Perryman, . Impacts of the Deepwater Horizon oil spill evaluated using an end-to-end ecosystem model. PLOS ONE 2018, 13 (1) , e0190840. https://doi.org/10.1371/journal.pone.0190840
    78. Nathan J. M. Laxague, Tamay M. Özgökmen, Brian K. Haus, Guillaume Novelli, Andrey Shcherbina, Peter Sutherland, Cédric M. Guigand, Björn Lund, Sanchit Mehta, Matias Alday, Jeroen Molemaker. Observations of Near‐Surface Current Shear Help Describe Oceanic Oil and Plastic Transport. Geophysical Research Letters 2018, 45 (1) , 245-249. https://doi.org/10.1002/2017GL075891
    79. Konstantin A. Korotenko. Effects of mesoscale eddies on behavior of an oil spill resulting from an accidental deepwater blowout in the Black Sea: an assessment of the environmental impacts. PeerJ 2018, 6 , e5448. https://doi.org/10.7717/peerj.5448
    80. Vassiliki Kourafalou, Yannis Androulidakis, Matthieu Le Hénaff, HeeSook Kang. The Dynamics of Cuba Anticyclones (CubANs) and Interaction With the Loop Current/Florida Current System. Journal of Geophysical Research: Oceans 2017, 122 (10) , 7897-7923. https://doi.org/10.1002/2017JC012928
    81. Marieke Zeinstra‐Helfrich, Wierd Koops, Albertinka J. Murk. Predicting the consequence of natural and chemical dispersion for oil slick size over time. Journal of Geophysical Research: Oceans 2017, 122 (9) , 7312-7324. https://doi.org/10.1002/2017JC012789
    82. Vikram Khade, Jaison Kurian, Ping Chang, Istvan Szunyogh, Kristen Thyng, Raffaele Montuoro. Oceanic ensemble forecasting in the Gulf of Mexico: An application to the case of the Deep Water Horizon oil spill. Ocean Modelling 2017, 113 , 171-184. https://doi.org/10.1016/j.ocemod.2017.04.004
    83. Nathan K. Truelove, Andrew S. Kough, Donald C. Behringer, Claire B. Paris, Stephen J. Box, Richard F. Preziosi, Mark J. Butler. Biophysical connectivity explains population genetic structure in a highly dispersive marine species. Coral Reefs 2017, 36 (1) , 233-244. https://doi.org/10.1007/s00338-016-1516-y
    84. Robert H. Weisberg, Zheng Lianyuan, Yonggang Liu. On the movement of Deepwater Horizon Oil to northern Gulf beaches. Ocean Modelling 2017, 111 , 81-97. https://doi.org/10.1016/j.ocemod.2017.02.002
    85. Cheston T. Peterson, R. Dean Grubbs, Alejandra Mickle. An Investigation of Effects of the Deepwater Horizon Oil Spill on Coastal Fishes in the Florida Big Bend Using Fishery-Independent Surveys and Stable Isotope Analysis. Southeastern Naturalist 2017, 16 (1) , G93-G108. https://doi.org/10.1656/058.016.0101
    86. Guotu Li, Mohamed Iskandarani, Matthieu Le Hénaff, Justin Winokur, Olivier P. Le Maître, Omar M. Knio. Quantifying initial and wind forcing uncertainties in the Gulf of Mexico. Computational Geosciences 2016, 20 (5) , 1133-1153. https://doi.org/10.1007/s10596-016-9581-4
    87. F J Hernandez, J E Filbrun, J Fang, J T Ransom. Condition of larval red snapper ( Lutjanus campechanus ) relative to environmental variability and the Deepwater Horizon oil spill. Environmental Research Letters 2016, 11 (9) , 094019. https://doi.org/10.1088/1748-9326/11/9/094019
    88. Uta Passow, Robert Hetland. What Happened to All of the Oil?. Oceanography 2016, 29 (3) , 88-95. https://doi.org/10.5670/oceanog.2016.73
    89. Tamay Özgökmen, Eric Chassignet, Clint Dawson, Dmitry Dukhovskoy, Gregg Jacobs, James Ledwell, Oscar Garcia-Pineda, Ian MadDonald, Steven Morey, Maria Olascoaga, Andrew Poje, Mark Reed, Jorgen Skancke. Over What Area Did the Oil and Gas Spread During the 2010 Deepwater Horizon Oil Spill?. Oceanography 2016, 29 (3) , 96-107. https://doi.org/10.5670/oceanog.2016.74
    90. Mohamed Iskandarani, Matthieu Le Hénaff, William Carlisle Thacker, Ashwanth Srinivasan, Omar M. Knio. Quantifying uncertainty in Gulf of Mexico forecasts stemming from uncertain initial conditions. Journal of Geophysical Research: Oceans 2016, 121 (7) , 4819-4832. https://doi.org/10.1002/2015JC011573
    91. Yuley Cardona, Annalisa Bracco. Predictability of mesoscale circulation throughout the water column in the Gulf of Mexico. Deep Sea Research Part II: Topical Studies in Oceanography 2016, 129 , 332-349. https://doi.org/10.1016/j.dsr2.2014.01.008
    92. D. Lindo-Atichati, C.B. Paris, M. Le Hénaff, M. Schedler, A.G. Valladares Juárez, R. Müller. Simulating the effects of droplet size, high-pressure biodegradation, and variable flow rate on the subsea evolution of deep plumes from the Macondo blowout. Deep Sea Research Part II: Topical Studies in Oceanography 2016, 129 , 301-310. https://doi.org/10.1016/j.dsr2.2014.01.011
    93. Zhou Hui, Chen Peng. Oil Spills Identification in SAR Image Using Optimized RBF Network Model. 2016, 497-501. https://doi.org/10.1109/ICISCE.2016.113
    94. AS Kough, R Claro, KC Lindeman, CB Paris. Decadal analysis of larval connectivity from Cuban snapper (Lutjanidae) spawning aggregations based on biophysical modeling. Marine Ecology Progress Series 2016, 550 , 175-190. https://doi.org/10.3354/meps11714
    95. Bicheng Chen, Di Yang, Charles Meneveau, Marcelo Chamecki. Effects of swell on transport and dispersion of oil plumes within the ocean mixed layer. Journal of Geophysical Research: Oceans 2016, 121 (5) , 3564-3578. https://doi.org/10.1002/2015JC011380
    96. Bicheng Chen, Di Yang, Charles Meneveau, Marcelo Chamecki. ENDLESS: An extended nonperiodic domain large-eddy simulation approach for scalar plumes. Ocean Modelling 2016, 101 , 121-132. https://doi.org/10.1016/j.ocemod.2016.04.003
    97. Rafael C. Gonçalves, Mohamed Iskandarani, Ashwanth Srinivasan, W. Carlisle Thacker, Eric Chassignet, Omar M. Knio. A framework to quantify uncertainty in simulations of oil transport in the ocean. Journal of Geophysical Research: Oceans 2016, 121 (4) , 2058-2077. https://doi.org/10.1002/2015JC011311
    98. Matthieu Le Hénaff, Vassiliki H. Kourafalou. Mississippi waters reaching South Florida reefs under no flood conditions: synthesis of observing and modeling system findings. Ocean Dynamics 2016, 66 (3) , 435-459. https://doi.org/10.1007/s10236-016-0932-4
    99. Kendra L. Daly, Uta Passow, Jeffrey Chanton, David Hollander. Assessing the impacts of oil-associated marine snow formation and sedimentation during and after the Deepwater Horizon oil spill. Anthropocene 2016, 13 , 18-33. https://doi.org/10.1016/j.ancene.2016.01.006
    100. Kay Critchell, Jonathan Lambrechts. Modelling accumulation of marine plastics in the coastal zone; what are the dominant physical processes?. Estuarine, Coastal and Shelf Science 2016, 171 , 111-122. https://doi.org/10.1016/j.ecss.2016.01.036
    Load all citations

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2012, 46, 13, 7267–7273
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es301570w
    Published May 31, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    1739

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.