ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Figure 1Loading Img

Improved Separation of Complex Polycyclic Aromatic Hydrocarbon Mixtures Using Novel Column Combinations in GC × GC/ToF-MS

View Author Information
Department of Chemistry, Oregon State University, Corvallis, Oregon
Graduate School of Public Health, San Diego State University, San Diego, California
§ Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon
*E-mail: [email protected], fax: 541-737-0497.
Cite this: Environ. Sci. Technol. 2012, 46, 14, 7677–7684
Publication Date (Web):July 6, 2012
https://doi.org/10.1021/es301790h
Copyright © 2012 American Chemical Society
Article Views
1921
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (3 MB)
Supporting Info (1)»

Abstract

Abstract Image

Complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are difficult to resolve because of the high degree of overlap in compound vapor pressures, boiling points, and mass spectral fragmentation patterns. The objective of this research was to improve the separation of complex PAH mixtures (including 97 different parent, alkyl-, nitro-, oxy-, thio-, chloro-, bromo-, and high molecular weight PAHs) using GC × GC/ToF-MS by maximizing the orthogonality of different GC column combinations and improving the separation of PAHs from the sample matrix interferences, including unresolved complex mixtures (UCM). Four different combinations of nonpolar, polar, liquid crystal, and nanostationary phase columns were tested. Each column combination was optimized and evaluated for orthogonality using a method based on conditional entropy that considers the quantitative peak distribution in the entire 2D space. Finally, an atmospheric particulate matter with diameter <2.5 μm (PM2.5) sample from Beijing, China, a soil sample from St. Maries Creosote Superfund Site, and a sediment sample from the Portland Harbor Superfund Site were analyzed for complex mixtures of PAHs. The highest chromatographic resolution, lowest synentropy, highest orthogonality, and lowest interference from UCM were achieved using a 10 m × 0.15 mm × 0.10 μm LC-50 liquid crystal column in the first dimension and a 1.2 m × 0.10 mm × 0.10 μm NSP-35 nanostationary phase column in the second dimension. In addition, the use of this column combination in GC × GC/ToF-MS resulted in significantly shorter analysis times (176 min) for complex PAH mixtures compared to 1D GC/MS (257 min), as well as potentially reduced sample preparation time.

Supporting Information

ARTICLE SECTIONS
Jump To

Numerous additional figures and tables. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 49 publications.

  1. Chi Xu, Lirong Gao, Minghui Zheng, Lin Qiao, Kunran Wang, Di Huang, Shuang Wang. Nontarget Screening of Polycyclic Aromatic Compounds in Atmospheric Particulate Matter Using Ultrahigh Resolution Mass Spectrometry and Comprehensive Two-Dimensional Gas Chromatography. Environmental Science & Technology 2021, 55 (1) , 109-119. https://doi.org/10.1021/acs.est.0c02290
  2. Ivan A. Titaley, Staci L. Massey Simonich, Maria Larsson. Recent Advances in the Study of the Remediation of Polycyclic Aromatic Compound (PAC)-Contaminated Soils: Transformation Products, Toxicity, and Bioavailability Analyses. Environmental Science & Technology Letters 2020, 7 (12) , 873-882. https://doi.org/10.1021/acs.estlett.0c00677
  3. Leah Chibwe, Carlos A. Manzano, Derek Muir, Beau Atkinson, Jane L. Kirk, Christopher H. Marvin, Xiaowa Wang, Camilla Teixeira, Dayue Shang, Tom Harner, Amila O. De Silva. Deposition and Source Identification of Nitrogen Heterocyclic Polycyclic Aromatic Compounds in Snow, Sediment, and Air Samples from the Athabasca Oil Sands Region. Environmental Science & Technology 2019, 53 (6) , 2981-2989. https://doi.org/10.1021/acs.est.8b06175
  4. David T. Bowman, Karl J. Jobst, Paul A. Helm, Sonya Kleywegt, Miriam L. Diamond. Characterization of Polycyclic Aromatic Compounds in Commercial Pavement Sealcoat Products for Enhanced Source Apportionment. Environmental Science & Technology 2019, 53 (6) , 3157-3165. https://doi.org/10.1021/acs.est.8b06779
  5. Ivan A. Titaley, Daniel M. Walden, Shelby E. Dorn, O. Maduka Ogba, Staci L. Massey Simonich, Paul Ha-Yeon Cheong. Evaluating Computational and Structural Approaches to Predict Transformation Products of Polycyclic Aromatic Hydrocarbons. Environmental Science & Technology 2019, 53 (3) , 1595-1607. https://doi.org/10.1021/acs.est.8b05198
  6. Carlos A. Manzano, Nathan G. Dodder, Eunha Hoh, Raul Morales. Patterns of Personal Exposure to Urban Pollutants Using Personal Passive Samplers and GC × GC/ToF–MS. Environmental Science & Technology 2019, 53 (2) , 614-624. https://doi.org/10.1021/acs.est.8b06220
  7. Eunju Cha, Eun Sook Jeong, Sang Beom Han, Sangwon Cha, Junghyun Son, Sunghwan Kim, Han Bin Oh, Jaeick Lee. Ionization of Gas-Phase Polycyclic Aromatic Hydrocarbons in Electrospray Ionization Coupled with Gas Chromatography. Analytical Chemistry 2018, 90 (6) , 4203-4211. https://doi.org/10.1021/acs.analchem.8b00401
  8. Sarah E. Prebihalo, Kelsey L. Berrier, Chris E. Freye, H. Daniel Bahaghighat, Nicholas R. Moore, David K. Pinkerton, and Robert E. Synovec . Multidimensional Gas Chromatography: Advances in Instrumentation, Chemometrics, and Applications. Analytical Chemistry 2018, 90 (1) , 505-532. https://doi.org/10.1021/acs.analchem.7b04226
  9. Carlos A. Manzano, Chris Marvin, Derek Muir, Tom Harner, Jonathan Martin, and Yifeng Zhang . Heterocyclic Aromatics in Petroleum Coke, Snow, Lake Sediments, and Air Samples from the Athabasca Oil Sands Region. Environmental Science & Technology 2017, 51 (10) , 5445-5453. https://doi.org/10.1021/acs.est.7b01345
  10. Leah Chibwe, Ivan A. Titaley, Eunha Hoh, and Staci L. Massey Simonich . Integrated Framework for Identifying Toxic Transformation Products in Complex Environmental Mixtures. Environmental Science & Technology Letters 2017, 4 (2) , 32-43. https://doi.org/10.1021/acs.estlett.6b00455
  11. Rahul A. Patil, Mohsen Talebi, Chengdong Xu, Sumit S. Bhawal, and Daniel W. Armstrong . Synthesis of Thermally Stable Geminal Dicationic Ionic Liquids and Related Ionic Compounds: An Examination of Physicochemical Properties by Structural Modification. Chemistry of Materials 2016, 28 (12) , 4315-4323. https://doi.org/10.1021/acs.chemmater.6b01247
  12. Leah Chibwe, Mitra C. Geier, Jun Nakamura, Robert L. Tanguay, Michael D. Aitken, and Staci L. Massey Simonich . Aerobic Bioremediation of PAH Contaminated Soil Results in Increased Genotoxicity and Developmental Toxicity. Environmental Science & Technology 2015, 49 (23) , 13889-13898. https://doi.org/10.1021/acs.est.5b00499
  13. Chelsea M. Rochman, Carlos Manzano, Brian T. Hentschel, Staci L. Massey Simonich, and Eunha Hoh . Polystyrene Plastic: A Source and Sink for Polycyclic Aromatic Hydrocarbons in the Marine Environment. Environmental Science & Technology 2013, 47 (24) , 13976-13984. https://doi.org/10.1021/es403605f
  14. John V. Seeley and Stacy K. Seeley . Multidimensional Gas Chromatography: Fundamental Advances and New Applications. Analytical Chemistry 2013, 85 (2) , 557-578. https://doi.org/10.1021/ac303195u
  15. Rong Jin, Guorui Liu, Xin Zhou, Zherui Zhang, Bingcheng Lin, Yahui Liu, Ziyuan Qi, Minghui Zheng. Analysis of polycyclic aromatic hydrocarbon derivatives in environment. TrAC Trends in Analytical Chemistry 2023, 160 , 116942. https://doi.org/10.1016/j.trac.2023.116942
  16. A. Bianco, I. Neefjes, D. Alfaouri, H. Vehkamäki, T. Kurtén, L. Ahonen, M. Passananti, J. Kangasluoma. Separation of isomers using a differential mobility analyser (DMA): Comparison of experimental vs modelled ion mobility. Talanta 2022, 243 , 123339. https://doi.org/10.1016/j.talanta.2022.123339
  17. Theodore P. Klupinski, Robert A. Moyer, Po-Hsu Allen Chen, Erich D. Strozier, Stephanie S. Buehler, David A. Friedenberg, Bartosz Koszowski. A procedure to detect and identify specific chemicals of potential inhalation toxicity concern in aerosols. Inhalation Toxicology 2022, 34 (5-6) , 120-134. https://doi.org/10.1080/08958378.2022.2051646
  18. Maria Elisabete Machado, Madson Moreira Nascimento, Pedro Victor Bomfim Bahia, Sabrina Teixeira Martinez, Jailson Bittencourt de Andrade. Analytical advances and challenges for the determination of heterocyclic aromatic compounds (NSO-HET) in sediment: A review. TrAC Trends in Analytical Chemistry 2022, 150 , 116586. https://doi.org/10.1016/j.trac.2022.116586
  19. Yan Zhang, Limin Yuan, Shuli He, Huilin Tao, Wenlian Xie, Xinyu Zhang, Xiaolu Ren, Tao Jiang, Lihong Li, Zhiqiang Zhu. Contemporary Research Progress on the Detection of Polycyclic Aromatic Hydrocarbons. International Journal of Environmental Research and Public Health 2022, 19 (5) , 2790. https://doi.org/10.3390/ijerph19052790
  20. Maria Elisabete Machado, Madson M. Nascimento, Pedro Victor Bomfim Bahia, Sabrina T. Martinez, Jailson Andrade. Analytical Advances and Challenges for the Determination of Heterocyclic Aromatic Compounds (NSO-HET) in Sediment: A Review. SSRN Electronic Journal 2022, 736 https://doi.org/10.2139/ssrn.4000397
  21. Jingqian Xie, Ling Tao, Qiang Wu, Shiming Lei, Tian Lin. Environmental profile, distributions and potential sources of halogenated polycyclic aromatic hydrocarbons. Journal of Hazardous Materials 2021, 419 , 126164. https://doi.org/10.1016/j.jhazmat.2021.126164
  22. Mathieu Galmiche, Olivier Delhomme, Yannis-Nicolas François, Maurice Millet. Environmental analysis of polar and non-polar Polycyclic Aromatic Compounds in airborne particulate matter, settled dust and soot: Part II: Instrumental analysis and occurrence. TrAC Trends in Analytical Chemistry 2021, 134 , 116146. https://doi.org/10.1016/j.trac.2020.116146
  23. P.V. Hodson, S.J. Wallace, S.R. de Solla, S.J. Head, S.L.J. Hepditch, J.L. Parrott, P.J. Thomas, A. Berthiaume, V.S. Langlois. Polycyclic aromatic compounds (PACs) in the Canadian environment: The challenges of ecological risk assessments. Environmental Pollution 2020, 266 , 115165. https://doi.org/10.1016/j.envpol.2020.115165
  24. Jian Tang, Shengtao Ma, Ranran Liu, Congcong Yue, Guiying Li, Yingxin Yu, Yan Yang, Taicheng An. The pollution profiles and human exposure risks of chlorinated and brominated PAHs in indoor dusts from e-waste dismantling workshops: Comparison of GC–MS, GC–MS/MS and GC × GC–MS/MS determination methods. Journal of Hazardous Materials 2020, 394 , 122573. https://doi.org/10.1016/j.jhazmat.2020.122573
  25. Sibel Büyüktiryaki, Rüstem Keçili, Chaudhery Mustansar Hussain. Modern age of analytical chemistry: nanomaterials. 2020, 29-40. https://doi.org/10.1016/B978-0-12-816699-4.00002-5
  26. Cátia Martins, Carina Pedrosa Costa, Sílvia M. Rocha. Multidimensional gas chromatography for environmental exposure measurement. 2020, 209-229. https://doi.org/10.1016/B978-0-12-818896-5.00008-9
  27. Rong Jin, Minghui Zheng, Gerhard Lammel, Benjamin A. Musa Bandowe, Guorui Liu. Chlorinated and brominated polycyclic aromatic hydrocarbons: Sources, formation mechanisms, and occurrence in the environment. Progress in Energy and Combustion Science 2020, 76 , 100803. https://doi.org/10.1016/j.pecs.2019.100803
  28. Andrea Mueller, Nadin Ulrich, Josef Hollmann, Carmen E. Zapata Sanchez, Ulrike E. Rolle-Kampczyk, Martin von Bergen. Characterization of a multianalyte GC-MS/MS procedure for detecting and quantifying polycyclic aromatic hydrocarbons (PAHs) and PAH derivatives from air particulate matter for an improved risk assessment. Environmental Pollution 2019, 255 , 112967. https://doi.org/10.1016/j.envpol.2019.112967
  29. Gabriel A. Odugbesi, He Nan, Mohammad Soltani, James H. Davis, Jared L. Anderson. Ultra-high thermal stability perarylated ionic liquids as gas chromatographic stationary phases for the selective separation of polyaromatic hydrocarbons and polychlorinated biphenyls. Journal of Chromatography A 2019, 1604 , 460466. https://doi.org/10.1016/j.chroma.2019.460466
  30. Jaroslava Jáčová, Alžběta Gardlo, Jean-Marie D. Dimandja, Tomáš Adam, David Friedecký. Impact of sample dimensionality on orthogonality metrics in comprehensive two-dimensional separations. Analytica Chimica Acta 2019, 1064 , 138-149. https://doi.org/10.1016/j.aca.2019.03.018
  31. Alina M. Muscalu, Tadeusz Górecki. Comprehensive two-dimensional gas chromatography in environmental analysis. TrAC Trends in Analytical Chemistry 2018, 106 , 225-245. https://doi.org/10.1016/j.trac.2018.07.001
  32. Ivan A. Titaley, O. Maduka Ogba, Leah Chibwe, Eunha Hoh, Paul H.-Y. Cheong, Staci L. Massey Simonich. Automating data analysis for two-dimensional gas chromatography/time-of-flight mass spectrometry non‐targeted analysis of comparative samples. Journal of Chromatography A 2018, 1541 , 57-62. https://doi.org/10.1016/j.chroma.2018.02.016
  33. Leah Chibwe, Cleo L. Davie-Martin, Michael D. Aitken, Eunha Hoh, Staci L. Massey Simonich. Identification of polar transformation products and high molecular weight polycyclic aromatic hydrocarbons (PAHs) in contaminated soil following bioremediation. Science of The Total Environment 2017, 599-600 , 1099-1107. https://doi.org/10.1016/j.scitotenv.2017.04.190
  34. Rahul A. Patil, Mohsen Talebi, Leonard M. Sidisky, Daniel W. Armstrong. Examination of Selectivities of Thermally Stable Geminal Dicationic Ionic Liquids by Structural Modification. Chromatographia 2017, 80 (10) , 1563-1574. https://doi.org/10.1007/s10337-017-3372-5
  35. Hwanmi Lim, Trifa M. Ahmed, Christoffer Bergvall, Roger Westerholm. Automated clean-up, separation and detection of polycyclic aromatic hydrocarbons in particulate matter extracts using a 2D-LC/2D-GC system: a method translation from two FIDs to two MS detectors. Analytical and Bioanalytical Chemistry 2017, 409 (24) , 5619-5629. https://doi.org/10.1007/s00216-017-0509-1
  36. Rong Jin, Guorui Liu, Minghui Zheng, Heidelore Fiedler, Xiaoxu Jiang, Lili Yang, Xiaolin Wu, Yang Xu. Congener-specific determination of ultratrace levels of chlorinated and brominated polycyclic aromatic hydrocarbons in atmosphere and industrial stack gas by isotopic dilution gas chromatography/high resolution mass spectrometry method. Journal of Chromatography A 2017, 1509 , 114-122. https://doi.org/10.1016/j.chroma.2017.06.022
  37. Shaojie Zhuo, Guofeng Shen, Ying Zhu, Wei Du, Xuelian Pan, Tongchao Li, Yang Han, Bengang Li, Junfeng Liu, Hefa Cheng, Baoshan Xing, Shu Tao. Source-oriented risk assessment of inhalation exposure to ambient polycyclic aromatic hydrocarbons and contributions of non-priority isomers in urban Nanjing, a megacity located in Yangtze River Delta, China. Environmental Pollution 2017, 224 , 796-809. https://doi.org/10.1016/j.envpol.2017.01.039
  38. Carlos Neira, Jennifer Cossaboon, Guillermo Mendoza, Eunha Hoh, Lisa A. Levin. Occurrence and distribution of polycyclic aromatic hydrocarbons in surface sediments of San Diego Bay marinas. Marine Pollution Bulletin 2017, 114 (1) , 466-479. https://doi.org/10.1016/j.marpolbul.2016.10.009
  39. Carlos A. Manzano, Derek Muir, Chris Marvin. Separation of thia-arenes and aza-arenes from polycyclic aromatics in snowpack samples from the Athabasca oil sands region by GC×GC/ToF-MS. International Journal of Environmental Analytical Chemistry 2016, 96 (10) , 905-920. https://doi.org/10.1080/03067319.2016.1220007
  40. Aldenor G. Santos, Ana Carla D. Regis, Gisele O. da Rocha, Marcos de A. Bezerra, Robson M. de Jesus, Jailson B. de Andrade.. A simple, comprehensive, and miniaturized solvent extraction method for determination of particulate-phase polycyclic aromatic compounds in air. Journal of Chromatography A 2016, 1435 , 6-17. https://doi.org/10.1016/j.chroma.2016.01.018
  41. Bin Cheng, Tieguan Wang, Haiping Huang, Guangli Wang, Bernd R.T. Simoneit. Ratios of low molecular weight alkylbenzenes (C0–C4) in Chinese crude oils as indicators of maturity and depositional environment. Organic Geochemistry 2015, 88 , 78-90. https://doi.org/10.1016/j.orggeochem.2015.08.008
  42. Stephen A. Wise, Lane C. Sander, Michele M. Schantz. Analytical Methods for Determination of Polycyclic Aromatic Hydrocarbons (PAHs) — A Historical Perspective on the 16 U.S. EPA Priority Pollutant PAHs. Polycyclic Aromatic Compounds 2015, 35 (2-4) , 187-247. https://doi.org/10.1080/10406638.2014.970291
  43. Pérola de Castro Vasconcellos, Gisele Olímpio da Rocha, Elina Bastos Caramão, Maria Elisabete Machado, Laiza Canielas Krause. Chromatographic Techniques for Organic Analytes. 2015, 267-309. https://doi.org/10.1016/bs.coac.2015.09.009
  44. Ying Wang, Xiaobin Xu, Liyuan Yin, Hongbing Cheng, Ting Mao, Kangping Zhang, Weili Lin, Zhaoyang Meng, John A. Palasota. Coupling of comprehensive two-dimensional gas chromatography with quadrupole mass spectrometry: Application to the identification of atmospheric volatile organic compounds. Journal of Chromatography A 2014, 1361 , 229-239. https://doi.org/10.1016/j.chroma.2014.08.006
  45. S. Lundstedt, B.A.M. Bandowe, W. Wilcke, E. Boll, J.H. Christensen, J. Vila, M. Grifoll, P. Faure, C. Biache, C. Lorgeoux, M. Larsson, K. Frech Irgum, P. Ivarsson, M. Ricci. First intercomparison study on the analysis of oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) and nitrogen heterocyclic polycyclic aromatic compounds (N-PACs) in contaminated soil. TrAC Trends in Analytical Chemistry 2014, 57 , 83-92. https://doi.org/10.1016/j.trac.2014.01.007
  46. Yasuyuki Zushi, Shunji Hashimoto, Masafumi Tamada, Shigeki Masunaga, Yutaka Kanai, Kiyoshi Tanabe. Retrospective analysis by data processing tools for comprehensive two-dimensional gas chromatography coupled to high resolution time-of-flight mass spectrometry: A challenge for matrix-rich sediment core sample from Tokyo Bay. Journal of Chromatography A 2014, 1338 , 117-126. https://doi.org/10.1016/j.chroma.2014.02.015
  47. Suyin Gan, Hoon Kiat Ng. Current best practices for organic analysis. 2014, 50-64. https://doi.org/10.4155/ebo.13.491
  48. Steven G. O’Connell, Theodore Haigh, Glenn Wilson, Kim A. Anderson. An analytical investigation of 24 oxygenated-PAHs (OPAHs) using liquid and gas chromatography–mass spectrometry. Analytical and Bioanalytical Chemistry 2013, 405 (27) , 8885-8896. https://doi.org/10.1007/s00216-013-7319-x
  49. Carlos Manzano, Eunha Hoh, Staci L. Massey Simonich. Quantification of complex polycyclic aromatic hydrocarbon mixtures in standard reference materials using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. Journal of Chromatography A 2013, 1307 , 172-179. https://doi.org/10.1016/j.chroma.2013.07.093

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE