ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Subsurface Transport Potential of Perfluoroalkyl Acids at Aqueous Film-Forming Foam (AFFF)-Impacted Sites

View Author Information
Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
Cite this: Environ. Sci. Technol. 2013, 47, 9, 4164–4171
Publication Date (Web):April 8, 2013
https://doi.org/10.1021/es3048043
Copyright © 2013 American Chemical Society

Article Views

4960

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)
Supporting Info (1)»

Abstract

Abstract Image

Subsurface transport potential of a suite of perfluoroalkyl acids (PFAAs) was studied in batch sorption experiments with various soils and in the presence of co-contaminants relevant to aqueous film-forming foam (AFFF)-impacted sites. Specifically, PFAA sorption to multiple soils in the presence of nonaqueous phase liquid (NAPL) and nonfluorinated AFFF surfactants was examined. This study is the first to report on sorption of perfluorobutanoate (PFBA) and perfluoropentanoate (PFPeA) (log Koc = 1.88 and 1.37, respectively) and found that sorption of these compounds does not follow the chain-length dependent trend observed for longer chain-length PFAAs. Sorption of PFBA was similar to that of perfluorooctanoate (PFOA, log Koc = 1.89). NAPL and nonfluorinated AFFF surfactants all had varying impacts on sorption of longer chain (>6 CF2 groups) PFAAs. The primary impact of NAPL was observed in low foc soil (soil A) where Freundlich n-values increased when NAPL was present. Impacts of nonfluorinated AFFF surfactants varied with surfactant and soil. The anionic surfactant sodium decyl sulfate (SDS) illicited PFAA chain-length dependent impacts in two negatively charged soils with varying foc. In soil A, Kd values for perfluoroheptanoate (PFHpA) increased 91% with SDS, whereas values for perfluorodecanoate (PFDA) increased only 28%. An amphoteric surfactant, n,n-dimethyldodecylamine n-oxide (AO), had the most notable impact on PFAA sorption to a positively charged soil (soil C). In this soil, AO oxide significantly increased sorption for the longer chain PFAAs (i.e., 528% increase in Kd for PFDA). Changes in sorption caused by SDS and AO may be due to mixed hemimicelle formation, competitive sorption, or changes to PFAA solubility. Short-chain PFAA behavior in the presence of NAPL, SDS, and AO was again notable. Co-contaminants generally increased the sorption of these compounds to all soils. Log Kd values of PFBA in soil A increased 85%, 372%, and 32% in the presence of NAPL, SDS, and AO, respectively. Use of Kd values to calculate retardation factors (Rf) of PFAAs demonstrates the variability of co-contaminant impacts on PFAA transport. Whereas NAPL and nonfluorinated surfactants decreased the sorption of perfluorooctanesulfonate (PFOS) at lower PFOS concentrations (1 μg/L), they led to increases in sorption at higher PFOS concentrations (500 μg/L). These results demonstrate that PFAA groundwater transport will depend on the solid phase characteristics as well as PFAA concentration and chain length. Detailed site-specific information will likely be needed to accurately predict PFAA transport at AFFF-impacted sites.

Supporting Information

ARTICLE SECTIONS
Jump To

Additional details are available regarding the sample analysis, analytical methods, quality assurance/quality control measures, mass balance results, sorption isotherm parameters, sorption of short-chain PFAAs, sorption to NAPL, sorption and aqueous PFAA concentrations in the presence of SDS and AO, and sorption of SDS. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 248 publications.

  1. Jonathan Zweigle, Boris Bugsel, Klaus Röhler, Alexander Arthur Haluska, Christian Zwiener. PFAS-Contaminated Soil Site in Germany: Nontarget Screening before and after Direct TOP Assay by Kendrick Mass Defect and FindPFΔS. Environmental Science & Technology 2023, 57 (16) , 6647-6655. https://doi.org/10.1021/acs.est.2c07969
  2. Larry B. Barber, Heidi M. Pickard, David A. Alvarez, Jitka Becanova, Steffanie H. Keefe, Denis R. LeBlanc, Rainer Lohmann, Jeffery A. Steevens, Alan M. Vajda. Uptake of Per- and Polyfluoroalkyl Substances by Fish, Mussel, and Passive Samplers in Mobile-Laboratory Exposures Using Groundwater from a Contamination Plume at a Historical Fire Training Area, Cape Cod, Massachusetts. Environmental Science & Technology 2023, 57 (14) , 5544-5557. https://doi.org/10.1021/acs.est.2c06500
  3. Thomas Wanzek, John F. Stults, Mark G. Johnson, Jennifer A. Field, Markus Kleber. Role of Mineral–Organic Interactions in PFAS Retention by AFFF-Impacted Soil. Environmental Science & Technology 2023, 57 (13) , 5231-5242. https://doi.org/10.1021/acs.est.2c08806
  4. Shenhua Qian, Hongying Lu, Tiantian Xiong, Yue Zhi, Gabriel Munoz, Chuhui Zhang, Zhengwei Li, Caihong Liu, Wei Li, Xiaoming Wang, Qiang He. Bioaccumulation of Per- and Polyfluoroalkyl Substances (PFAS) in Ferns: Effect of PFAS Molecular Structure and Plant Root Characteristics. Environmental Science & Technology 2023, 57 (11) , 4443-4453. https://doi.org/10.1021/acs.est.2c06883
  5. Emerson C. Christie, Trever Schwichtenberg, Christopher Schmokel, Mitchell L. Kim-Fu, Ansel R. Moll, Ivan A. Titaley, Konstantinos Kostarelos, William H. DiGuiseppi, Jennifer A. Field. Per- and Polyfluoroalkyl Substances in Field-Collected Light Non-Aqueous Phase Liquids. ACS ES&T Water 2023, 3 (3) , 885-891. https://doi.org/10.1021/acsestwater.2c00652
  6. Jose Caleb Quezada Davalos, Michael A. Michaud, Luis E. Lowe, Emily N. Hanson, Janel E. Owens. Per- and Polyfluoroalkyl Substances (PFASs) in the Fountain Creek Watershed, Colorado Springs, CO, USA: A Yearlong Investigation of PFAS Levels in Water, Soils, and Sediments. ACS ES&T Water 2023, 3 (1) , 96-105. https://doi.org/10.1021/acsestwater.2c00440
  7. William R. Gnesda, Elliot F. Draxler, James Tinjum, Christopher Zahasky. Adsorption of PFAAs in the Vadose Zone and Implications for Long-Term Groundwater Contamination. Environmental Science & Technology 2022, 56 (23) , 16748-16758. https://doi.org/10.1021/acs.est.2c03962
  8. Justine E. F. Abraham, Kevin G. Mumford, David J. Patch, Kela P. Weber. Retention of PFOS and PFOA Mixtures by Trapped Gas Bubbles in Porous Media. Environmental Science & Technology 2022, 56 (22) , 15489-15498. https://doi.org/10.1021/acs.est.2c00882
  9. Marzieh Shojaei, Naveen Kumar, Jennifer L. Guelfo. An Integrated Approach for Determination of Total Per- and Polyfluoroalkyl Substances (PFAS). Environmental Science & Technology 2022, 56 (20) , 14517-14527. https://doi.org/10.1021/acs.est.2c05143
  10. Thi Minh Hong Nguyen, Jennifer Bräunig, Rai S. Kookana, Sarit L. Kaserzon, Emma R. Knight, Hoang Nhat Phong Vo, Shervin Kabiri, Divina A. Navarro, Charles Grimison, Nicole Riddell, Christopher P. Higgins, Michael J. McLaughlin, Jochen F. Mueller. Assessment of Mobilization Potential of Per- and Polyfluoroalkyl Substances for Soil Remediation. Environmental Science & Technology 2022, 56 (14) , 10030-10041. https://doi.org/10.1021/acs.est.2c00401
  11. Yue Zhi, Hongying Lu, Khara D. Grieger, Gabriel Munoz, Wei Li, Xiaoming Wang, Qiang He, Shenhua Qian. Bioaccumulation and Translocation of 6:2 Fluorotelomer Sulfonate, GenX, and Perfluoroalkyl Acids by Urban Spontaneous Plants. ACS ES&T Engineering 2022, 2 (7) , 1169-1178. https://doi.org/10.1021/acsestengg.1c00423
  12. Shuchi Liao, Masoud Arshadi, Matthew J. Woodcock, Zachary S. S. L. Saleeba, Dorothea Pinchbeck, Chen Liu, Natalie L. Cápiro, Linda M. Abriola, Kurt D. Pennell. Influence of Residual Nonaqueous-Phase Liquids (NAPLs) on the Transport and Retention of Perfluoroalkyl Substances. Environmental Science & Technology 2022, 56 (12) , 7976-7985. https://doi.org/10.1021/acs.est.2c00858
  13. Shilai Hao, Youn Jeong Choi, Rula A. Deeb, Timothy J. Strathmann, Christopher P. Higgins. Application of Hydrothermal Alkaline Treatment for Destruction of Per- and Polyfluoroalkyl Substances in Contaminated Groundwater and Soil. Environmental Science & Technology 2022, 56 (10) , 6647-6657. https://doi.org/10.1021/acs.est.2c00654
  14. Sarah Balgooyen, Christina K. Remucal. Tributary Loading and Sediment Desorption as Sources of PFAS to Receiving Waters. ACS ES&T Water 2022, 2 (3) , 436-445. https://doi.org/10.1021/acsestwater.1c00348
  15. Shervin Kabiri, William Tucker, Divina A. Navarro, Jennifer Bräunig, Kristie Thompson, Emma R. Knight, Thi Minh Hong Nguyen, Charles Grimison, Craig M. Barnes, Christopher P. Higgins, Jochen F. Mueller, Rai S. Kookana, Michael J. McLaughlin. Comparing the Leaching Behavior of Per- and Polyfluoroalkyl Substances from Contaminated Soils Using Static and Column Leaching Tests. Environmental Science & Technology 2022, 56 (1) , 368-378. https://doi.org/10.1021/acs.est.1c06604
  16. Andrew C. Maizel, Stefanie Shea, Anastasia Nickerson, Charles Schaefer, Christopher P. Higgins. Release of Per- and Polyfluoroalkyl Substances from Aqueous Film-Forming Foam Impacted Soils. Environmental Science & Technology 2021, 55 (21) , 14617-14627. https://doi.org/10.1021/acs.est.1c02871
  17. Yifan Ji, Ni Yan, Mark L. Brusseau, Bo Guo, Xilai Zheng, Mengfan Dai, Hejie Liu, Xin Li. Impact of a Hydrocarbon Surfactant on the Retention and Transport of Perfluorooctanoic Acid in Saturated and Unsaturated Porous Media. Environmental Science & Technology 2021, 55 (15) , 10480-10490. https://doi.org/10.1021/acs.est.1c01919
  18. Marzieh Shojaei, Naveen Kumar, Suparada Chaobol, Ke Wu, Michelle Crimi, Jennifer Guelfo. Enhanced Recovery of Per- and Polyfluoroalkyl Substances (PFASs) from Impacted Soils Using Heat Activated Persulfate. Environmental Science & Technology 2021, 55 (14) , 9805-9816. https://doi.org/10.1021/acs.est.0c08069
  19. Xindi C. Hu, Beverly Ge, Bridger J. Ruyle, Jennifer Sun, Elsie M. Sunderland. A Statistical Approach for Identifying Private Wells Susceptible to Perfluoroalkyl Substances (PFAS) Contamination. Environmental Science & Technology Letters 2021, 8 (7) , 596-602. https://doi.org/10.1021/acs.estlett.1c00264
  20. Joseph A. Charbonnet, Alix E. Rodowa, Nayantara T. Joseph, Jennifer L. Guelfo, Jennifer A. Field, Gerrad D. Jones, Christopher P. Higgins, Damian E. Helbling, Erika F. Houtz. Environmental Source Tracking of Per- and Polyfluoroalkyl Substances within a Forensic Context: Current and Future Techniques. Environmental Science & Technology 2021, 55 (11) , 7237-7245. https://doi.org/10.1021/acs.est.0c08506
  21. Richard H. Anderson. The Case for Direct Measures of Soil-to-Groundwater Contaminant Mass Discharge at AFFF-Impacted Sites. Environmental Science & Technology 2021, 55 (10) , 6580-6583. https://doi.org/10.1021/acs.est.1c01543
  22. Yida Fang, Anderson Ellis, Youn Jeong Choi, Treavor H. Boyer, Christopher P. Higgins, Charles E. Schaefer, Timothy J. Strathmann. Removal of Per- and Polyfluoroalkyl Substances (PFASs) in Aqueous Film-Forming Foam (AFFF) Using Ion-Exchange and Nonionic Resins. Environmental Science & Technology 2021, 55 (8) , 5001-5011. https://doi.org/10.1021/acs.est.1c00769
  23. Bridger J. Ruyle, Heidi M. Pickard, Denis R. LeBlanc, Andrea K. Tokranov, Colin P. Thackray, Xindi C. Hu, Chad D. Vecitis, Elsie M. Sunderland. Isolating the AFFF Signature in Coastal Watersheds Using Oxidizable PFAS Precursors and Unexplained Organofluorine. Environmental Science & Technology 2021, 55 (6) , 3686-3695. https://doi.org/10.1021/acs.est.0c07296
  24. Sarah Van Glubt, Mark L. Brusseau. Contribution of Nonaqueous-Phase Liquids to the Retention and Transport of Per and Polyfluoroalkyl Substances (PFAS) in Porous Media. Environmental Science & Technology 2021, 55 (6) , 3706-3715. https://doi.org/10.1021/acs.est.0c07355
  25. Shilai Hao, Youn-Jeong Choi, Boran Wu, Christopher P. Higgins, Rula Deeb, Timothy J. Strathmann. Hydrothermal Alkaline Treatment for Destruction of Per- and Polyfluoroalkyl Substances in Aqueous Film-Forming Foam. Environmental Science & Technology 2021, 55 (5) , 3283-3295. https://doi.org/10.1021/acs.est.0c06906
  26. Anthony C. Umeh, Ravi Naidu, Sonia Shilpi, Emmanuel B. Boateng, Aminur Rahman, Ian T. Cousins, Sreenivasulu Chadalavada, Dane Lamb, Mark Bowman. Sorption of PFOS in 114 Well-Characterized Tropical and Temperate Soils: Application of Multivariate and Artificial Neural Network Analyses. Environmental Science & Technology 2021, 55 (3) , 1779-1789. https://doi.org/10.1021/acs.est.0c07202
  27. Hugo Campos-Pereira, Dan B. Kleja, Carin Sjöstedt, Lutz Ahrens, Wantana Klysubun, Jon Petter Gustafsson. The Adsorption of Per- and Polyfluoroalkyl Substances (PFASs) onto Ferrihydrite Is Governed by Surface Charge. Environmental Science & Technology 2020, 54 (24) , 15722-15730. https://doi.org/10.1021/acs.est.0c01646
  28. David T. Adamson, Anastasia Nickerson, Poonam R. Kulkarni, Christopher P. Higgins, Jovan Popovic, Jennifer Field, Alix Rodowa, Charles Newell, Phil DeBlanc, John J. Kornuc. Mass-Based, Field-Scale Demonstration of PFAS Retention within AFFF-Associated Source Areas. Environmental Science & Technology 2020, 54 (24) , 15768-15777. https://doi.org/10.1021/acs.est.0c04472
  29. Thi Minh Hong Nguyen, Jennifer Bräunig, Kristie Thompson, Jack Thompson, Shervin Kabiri, Divina A. Navarro, Rai S. Kookana, Charles Grimison, Craig M. Barnes, Christopher P. Higgins, Michael J. McLaughlin, Jochen F. Mueller. Influences of Chemical Properties, Soil Properties, and Solution pH on Soil–Water Partitioning Coefficients of Per- and Polyfluoroalkyl Substances (PFASs). Environmental Science & Technology 2020, 54 (24) , 15883-15892. https://doi.org/10.1021/acs.est.0c05705
  30. Jed Costanza, Linda M. Abriola, Kurt D. Pennell. Aqueous Film-Forming Foams Exhibit Greater Interfacial Activity than PFOA, PFOS, or FOSA. Environmental Science & Technology 2020, 54 (21) , 13590-13597. https://doi.org/10.1021/acs.est.0c03117
  31. Sarah B. Gewurtz, Paula Guerra, Min Gu Kim, Frankie Jones, Jane Challen Urbanic, Steven Teslic, Shirley Anne Smyth. Wastewater Treatment Lagoons: Local Pathways of Perfluoroalkyl Acids and Brominated Flame Retardants to the Arctic Environment. Environmental Science & Technology 2020, 54 (10) , 6053-6062. https://doi.org/10.1021/acs.est.9b06902
  32. Hanna Holmquist, Peter Fantke, Ian T. Cousins, Mikołaj Owsianiak, Ioannis Liagkouridis, Gregory M. Peters. An (Eco)Toxicity Life Cycle Impact Assessment Framework for Per- And Polyfluoroalkyl Substances. Environmental Science & Technology 2020, 54 (10) , 6224-6234. https://doi.org/10.1021/acs.est.9b07774
  33. Sandra Mejia-Avendaño, Yue Zhi, Bei Yan, Jinxia Liu. Sorption of Polyfluoroalkyl Surfactants on Surface Soils: Effect of Molecular Structures, Soil Properties, and Solution Chemistry. Environmental Science & Technology 2020, 54 (3) , 1513-1521. https://doi.org/10.1021/acs.est.9b04989
  34. Mark L. Brusseau, Naima Khan, Yake Wang, Ni Yan, Sarah Van Glubt, Kenneth C. Carroll. Nonideal Transport and Extended Elution Tailing of PFOS in Soil. Environmental Science & Technology 2019, 53 (18) , 10654-10664. https://doi.org/10.1021/acs.est.9b02343
  35. Raymmah Aleyda García, Aurea C. Chiaia-Hernández, Pablo A. Lara-Martin, Martin Loos, Juliane Hollender, Karl Oetjen, Christopher P. Higgins, Jennifer A. Field. Suspect Screening of Hydrocarbon Surfactants in AFFFs and AFFF-Contaminated Groundwater by High-Resolution Mass Spectrometry. Environmental Science & Technology 2019, 53 (14) , 8068-8077. https://doi.org/10.1021/acs.est.9b01895
  36. Erika Houtz, Miaomiao Wang, June-Soo Park. Identification and Fate of Aqueous Film Forming Foam Derived Per- and Polyfluoroalkyl Substances in a Wastewater Treatment Plant. Environmental Science & Technology 2018, 52 (22) , 13212-13221. https://doi.org/10.1021/acs.est.8b04028
  37. Hao Chen, Yiming Yao, Zhen Zhao, Yu Wang, Qi Wang, Chao Ren, Bin Wang, Hongwen Sun, Alfredo C. Alder, Kurunthachalam Kannan. Multimedia Distribution and Transfer of Per- and Polyfluoroalkyl Substances (PFASs) Surrounding Two Fluorochemical Manufacturing Facilities in Fuxin, China. Environmental Science & Technology 2018, 52 (15) , 8263-8271. https://doi.org/10.1021/acs.est.8b00544
  38. Ying Lyu, Mark L. Brusseau, Wei Chen, Ni Yan, Xiaori Fu, Xueyu Lin. Adsorption of PFOA at the Air–Water Interface during Transport in Unsaturated Porous Media. Environmental Science & Technology 2018, 52 (14) , 7745-7753. https://doi.org/10.1021/acs.est.8b02348
  39. Yanyan Zhang, Yue Zhi, Jinxia Liu, Subhasis Ghoshal. Sorption of Perfluoroalkyl Acids to Fresh and Aged Nanoscale Zerovalent Iron Particles. Environmental Science & Technology 2018, 52 (11) , 6300-6308. https://doi.org/10.1021/acs.est.8b00487
  40. Saerom Park, Chloe de Perre, and Linda S. Lee . Alternate Reductants with VB12 to Transform C8 and C6 Perfluoroalkyl Sulfonates: Limitations and Insights into Isomer-Specific Transformation Rates, Products and Pathways. Environmental Science & Technology 2017, 51 (23) , 13869-13877. https://doi.org/10.1021/acs.est.7b03744
  41. Thomas A. Bruton and David L. Sedlak . Treatment of Aqueous Film-Forming Foam by Heat-Activated Persulfate Under Conditions Representative of In Situ Chemical Oxidation. Environmental Science & Technology 2017, 51 (23) , 13878-13885. https://doi.org/10.1021/acs.est.7b03969
  42. Lisa A. D’Agostino and Scott A. Mabury . Certain Perfluoroalkyl and Polyfluoroalkyl Substances Associated with Aqueous Film Forming Foam Are Widespread in Canadian Surface Waters. Environmental Science & Technology 2017, 51 (23) , 13603-13613. https://doi.org/10.1021/acs.est.7b03994
  43. Krista A. Barzen-Hanson, Shannon E. Davis, Markus Kleber, and Jennifer A. Field . Sorption of Fluorotelomer Sulfonates, Fluorotelomer Sulfonamido Betaines, and a Fluorotelomer Sulfonamido Amine in National Foam Aqueous Film-Forming Foam to Soil. Environmental Science & Technology 2017, 51 (21) , 12394-12404. https://doi.org/10.1021/acs.est.7b03452
  44. Gabriel Munoz, Hélène Budzinski, and Pierre Labadie . Influence of Environmental Factors on the Fate of Legacy and Emerging Per- and Polyfluoroalkyl Substances along the Salinity/Turbidity Gradient of a Macrotidal Estuary. Environmental Science & Technology 2017, 51 (21) , 12347-12357. https://doi.org/10.1021/acs.est.7b03626
  45. Sandra Mejia-Avendaño, Gabriel Munoz, Sung Vo Duy, Mélanie Desrosiers, Paul Benoı̂t, Sébastien Sauvé, and Jinxia Liu . Novel Fluoroalkylated Surfactants in Soils Following Firefighting Foam Deployment During the Lac-Mégantic Railway Accident. Environmental Science & Technology 2017, 51 (15) , 8313-8323. https://doi.org/10.1021/acs.est.7b02028
  46. Xin Xiao, Bridget A. Ulrich, Baoliang Chen, and Christopher P. Higgins . Sorption of Poly- and Perfluoroalkyl Substances (PFASs) Relevant to Aqueous Film-Forming Foam (AFFF)-Impacted Groundwater by Biochars and Activated Carbon. Environmental Science & Technology 2017, 51 (11) , 6342-6351. https://doi.org/10.1021/acs.est.7b00970
  47. Dylan Eberle, Raymond Ball, and Thomas B. Boving . Impact of ISCO Treatment on PFAA Co-Contaminants at a Former Fire Training Area. Environmental Science & Technology 2017, 51 (9) , 5127-5136. https://doi.org/10.1021/acs.est.6b06591
  48. Andrea K. Weber, Larry B. Barber, Denis R. LeBlanc, Elsie M. Sunderland, and Chad D. Vecitis . Geochemical and Hydrologic Factors Controlling Subsurface Transport of Poly- and Perfluoroalkyl Substances, Cape Cod, Massachusetts. Environmental Science & Technology 2017, 51 (8) , 4269-4279. https://doi.org/10.1021/acs.est.6b05573
  49. Holly Lee and Scott A. Mabury . Sorption of Perfluoroalkyl Phosphonates and Perfluoroalkyl Phosphinates in Soils. Environmental Science & Technology 2017, 51 (6) , 3197-3205. https://doi.org/10.1021/acs.est.6b04395
  50. Gunnar R. Stratton, Fei Dai, Christopher L. Bellona, Thomas M. Holsen, Eric R. V. Dickenson, and Selma Mededovic Thagard . Plasma-Based Water Treatment: Efficient Transformation of Perfluoroalkyl Substances in Prepared Solutions and Contaminated Groundwater. Environmental Science & Technology 2017, 51 (3) , 1643-1648. https://doi.org/10.1021/acs.est.6b04215
  51. Gabriel Munoz, Mélanie Desrosiers, Sung Vo Duy, Pierre Labadie, Hélène Budzinski, Jinxia Liu, and Sébastien Sauvé . Environmental Occurrence of Perfluoroalkyl Acids and Novel Fluorotelomer Surfactants in the Freshwater Fish Catostomus commersonii and Sediments Following Firefighting Foam Deployment at the Lac-Mégantic Railway Accident. Environmental Science & Technology 2017, 51 (3) , 1231-1240. https://doi.org/10.1021/acs.est.6b05432
  52. Tess S. Weathers, Katie Harding-Marjanovic, Christopher P. Higgins, Lisa Alvarez-Cohen, and Jonathan O. Sharp . Perfluoroalkyl Acids Inhibit Reductive Dechlorination of Trichloroethene by Repressing Dehalococcoides. Environmental Science & Technology 2016, 50 (1) , 240-248. https://doi.org/10.1021/acs.est.5b04854
  53. Katie C. Harding-Marjanovic, Erika F. Houtz, Shan Yi, Jennifer A. Field, David L. Sedlak, and Lisa Alvarez-Cohen . Aerobic Biotransformation of Fluorotelomer Thioether Amido Sulfonate (Lodyne) in AFFF-Amended Microcosms. Environmental Science & Technology 2015, 49 (13) , 7666-7674. https://doi.org/10.1021/acs.est.5b01219
  54. Tess S. Weathers, Christopher P. Higgins, and Jonathan O. Sharp . Enhanced Biofilm Production by a Toluene-Degrading Rhodococcus Observed after Exposure to Perfluoroalkyl Acids. Environmental Science & Technology 2015, 49 (9) , 5458-5466. https://doi.org/10.1021/es5060034
  55. Erica R. McKenzie, Robert L. Siegrist, John E. McCray, and Christopher P. Higgins . Effects of Chemical Oxidants on Perfluoroalkyl Acid Transport in One-Dimensional Porous Media Columns. Environmental Science & Technology 2015, 49 (3) , 1681-1689. https://doi.org/10.1021/es503676p
  56. Courtney D. Rich, Andrea C. Blaine, Lakhwinder Hundal, and Christopher P. Higgins . Bioaccumulation of Perfluoroalkyl Acids by Earthworms (Eisenia fetida) Exposed to Contaminated Soils. Environmental Science & Technology 2015, 49 (2) , 881-888. https://doi.org/10.1021/es504152d
  57. Andrea C. Blaine, Courtney D. Rich, Erin M. Sedlacko, Katherine C. Hyland, Cecil Stushnoff, Eric R. V. Dickenson, and Christopher P. Higgins . Perfluoroalkyl Acid Uptake in Lettuce (Lactuca sativa) and Strawberry (Fragaria ananassa) Irrigated with Reclaimed Water. Environmental Science & Technology 2014, 48 (24) , 14361-14368. https://doi.org/10.1021/es504150h
  58. Andrea C. Blaine, Courtney D. Rich, Erin M. Sedlacko, Lakhwinder S. Hundal, Kuldip Kumar, Christopher Lau, Marc A. Mills, Kimberly M. Harris, and Christopher P. Higgins . Perfluoroalkyl Acid Distribution in Various Plant Compartments of Edible Crops Grown in Biosolids-Amended soils. Environmental Science & Technology 2014, 48 (14) , 7858-7865. https://doi.org/10.1021/es500016s
  59. Meghan E. McGuire, Charles Schaefer, Trenton Richards, Will J. Backe, Jennifer A. Field, Erika Houtz, David L. Sedlak, Jennifer L. Guelfo, Assaf Wunsch, and Christopher P. Higgins . Evidence of Remediation-Induced Alteration of Subsurface Poly- and Perfluoroalkyl Substance Distribution at a Former Firefighter Training Area. Environmental Science & Technology 2014, 48 (12) , 6644-6652. https://doi.org/10.1021/es5006187
  60. Andrea C. Blaine, Courtney D. Rich, Lakhwinder S. Hundal, Christopher Lau, Marc A. Mills, Kimberly M. Harris, and Christopher P. Higgins . Uptake of Perfluoroalkyl Acids into Edible Crops via Land Applied Biosolids: Field and Greenhouse Studies. Environmental Science & Technology 2013, 47 (24) , 14062-14069. https://doi.org/10.1021/es403094q
  61. Juan Li, Shaobin Wang, Zhimin Ao. Environmental surfaces and interfaces: A forward position to the future of environmental research. Environmental Surfaces and Interfaces 2023, 1 , 1-2. https://doi.org/10.1016/j.esi.2023.04.001
  62. Linyang Lv, Baolin Liu, Bimi Zhang, Yong Yu, Lei Gao, Lingjie Ding. A systematic review on distribution, sources and sorption of perfluoroalkyl acids (PFAAs) in soil and their plant uptake. Environmental Research 2023, 231 , 116156. https://doi.org/10.1016/j.envres.2023.116156
  63. Takshak Shende, Gangadhar Andaluri, Rominder Suri. Chain-length dependent ultrasonic degradation of perfluoroalkyl substances. Chemical Engineering Journal Advances 2023, 15 , 100509. https://doi.org/10.1016/j.ceja.2023.100509
  64. Asa J. Lewis, Xiaoyan Yun, Max G. Lewis, Erica R. McKenzie, Daniel E. Spooner, Marie J. Kurz, Rominder Suri, Christopher M. Sales. Impacts of divalent cations (Mg2+ and Ca2+) on PFAS bioaccumulation in freshwater macroinvertebrates representing different foraging modes. Environmental Pollution 2023, 331 , 121938. https://doi.org/10.1016/j.envpol.2023.121938
  65. G.B. Douglas, J.L. Vanderzalm, M. Williams, J.K. Kirby, R.S. Kookana, T.P. Bastow, M. Bauer, K.C. Bowles, D. Skuse, G.B. Davis. PFAS contaminated asphalt and concrete - Knowledge gaps for future research and management. Science of The Total Environment 2023, 887 , 164025. https://doi.org/10.1016/j.scitotenv.2023.164025
  66. Tashfia M. Mohona, Zhijiang Ye, Ning Dai, Prathima C. Nalam. Adsorption behavior of long-chain perfluoroalkyl substances on hydrophobic surface: A combined molecular characterization and simulation study. Water Research 2023, 239 , 120074. https://doi.org/10.1016/j.watres.2023.120074
  67. Fang Zhang, Runlei Ge, Ziren Wan, Guanghe Li, Lifeng Cao. Dual effects of PFOA or PFOS on reductive dechlorination of trichloroethylene (TCE). Water Research 2023, 240 , 120093. https://doi.org/10.1016/j.watres.2023.120093
  68. Thomas Bierbaum, Norbert Klaas, Jürgen Braun, Gudrun Nürenberg, Frank Thomas Lange, Claus Haslauer. Immobilization of per- and polyfluoroalkyl substances (PFAS): Comparison of leaching behavior by three different leaching tests. Science of The Total Environment 2023, 876 , 162588. https://doi.org/10.1016/j.scitotenv.2023.162588
  69. Thimo Groffen, Sevgi Oden, Naomi Claeijs, Tim Willems, Sébastjen Schoenaers, Kris Vissenberg, Lieven Bervoets, Marcel Eens, Els Prinsen. Accumulation and effects of perfluoroalkyl substances in Arabidopsis thaliana in a temperature-dependent manner: an in vitro study. Environmental Science and Pollution Research 2023, 30 (26) , 68732-68742. https://doi.org/10.1007/s11356-023-27237-1
  70. Jeffery Tyler McGarr, Eric Gentil Mbonimpa, Drew Clifton McAvoy, Mohamad Reza Soltanian. Fate and Transport of Per- and Polyfluoroalkyl Substances (PFAS) at Aqueous Film Forming Foam (AFFF) Discharge Sites: A Review. Soil Systems 2023, 7 (2) , 53. https://doi.org/10.3390/soilsystems7020053
  71. Hui Li, Pulane Koosaletse-Mswela. Occurrence, Fate and Remediation of Per- and Polyfluoroalkyl Substances in Soils: A Review. Current Opinion in Environmental Science & Health 2023, 129 , 100487. https://doi.org/10.1016/j.coesh.2023.100487
  72. Seyfollah Gilak Hakimabadi, Alannah Taylor, Anh Le-Tuan Pham. Factors Affecting the Adsorption of Per- and Polyfluoroalkyl Substances (PFAS) by Colloidal Activated Carbon. Water Research 2023, 7 , 120212. https://doi.org/10.1016/j.watres.2023.120212
  73. Mike Williams, Grant Douglas, Jun Du, Jason Kirby, Rai Kookana, John Pengelly, Garth Watson, Karl Bowles, Greg Davis. Quantification of the variability and penetration of per- and poly-fluoroalkyl substances through a concrete pad. Chemosphere 2023, 55 , 138903. https://doi.org/10.1016/j.chemosphere.2023.138903
  74. Kalle L. Jahn, Sara A. Lincoln, Katherine H. Freeman, Demian M. Saffer. Preferential Retention and Transport of Perfluorooctanesulfonic Acid in a Dolomite Aquifer. Groundwater 2023, 61 (3) , 318-329. https://doi.org/10.1111/gwat.13255
  75. Sara Ghorbani Gorji, Darryl W. Hawker, Rachel Mackie, Christopher P. Higgins, Karl Bowles, Yan Li, Sarit Kaserzon. Sorption affinity and mechanisms of per-and polyfluoroalkyl substances (PFASs) with commercial sorbents: Implications for passive sampling. Journal of Hazardous Materials 2023, 51 , 131688. https://doi.org/10.1016/j.jhazmat.2023.131688
  76. Hugo Campos-Pereira, Dan B. Kleja, Lutz Ahrens, Anja Enell, Johannes Kikuchi, Michael Pettersson, Jon Petter Gustafsson. Effect of pH, surface charge and soil properties on the solid–solution partitioning of perfluoroalkyl substances (PFASs) in a wide range of temperate soils. Chemosphere 2023, 321 , 138133. https://doi.org/10.1016/j.chemosphere.2023.138133
  77. Asa J. Lewis, Farshad Ebrahimi, Erica R. McKenzie, Rominder Suri, Christopher M. Sales. Influence of microbial weathering on the partitioning of per- and polyfluoroalkyl substances (PFAS) in biosolids. Environmental Science: Processes & Impacts 2023, 25 (3) , 415-431. https://doi.org/10.1039/D2EM00350C
  78. Ali Can Ozelcaglayan, Wayne J. Parker, Anh Le-Tuan Pham. The analysis of per- and polyfluoroalkyl substances in wastewater sludges and biosolids: which adsorbents should be used for the cleanup of extracts?. Environmental Science: Water Research & Technology 2023, 9 (3) , 794-805. https://doi.org/10.1039/D2EW00617K
  79. Xiaoyan Yun, Asa J. Lewis, Galen Stevens-King, Christopher M. Sales, Daniel E. Spooner, Marie J. Kurz, Rominder Suri, Erica R. McKenzie. Bioaccumulation of per- and polyfluoroalkyl substances by freshwater benthic macroinvertebrates: Impact of species and sediment organic carbon content. Science of The Total Environment 2023, 866 , 161208. https://doi.org/10.1016/j.scitotenv.2022.161208
  80. Georgios Niarchos, Lutz Ahrens, Dan Berggren Kleja, Gareth Leonard, Jim Forde, Jonny Bergman, Erik Ribeli, Matilda Schütz, Fritjof Fagerlund. In‐situ application of colloidal activated carbon for PFAS‐contaminated soil and groundwater: A Swedish case study. Remediation Journal 2023, 33 (2) , 101-110. https://doi.org/10.1002/rem.21746
  81. Yu Chen, Lijia Wei, Wei Luo, Ning Jiang, Yali Shi, Pin Zhao, Bila Ga, Zhiguo Pei, Yingming Li, Ruiqiang Yang, Qinghua Zhang. Occurrence, spatial distribution, and sources of PFASs in the water and sediment from lakes in the Tibetan Plateau. Journal of Hazardous Materials 2023, 443 , 130170. https://doi.org/10.1016/j.jhazmat.2022.130170
  82. K. Sivagami, Pranshu Sharma, Ansaf V. Karim, Gunda Mohanakrishna, S. Karthika, G. Divyapriya, R. Saravanathamizhan, A. Naresh Kumar. Electrochemical-based approaches for the treatment of forever chemicals: Removal of perfluoroalkyl and polyfluoroalkyl substances (PFAS) from wastewater. Science of The Total Environment 2023, 861 , 160440. https://doi.org/10.1016/j.scitotenv.2022.160440
  83. Brian R. Pinkard, Conrad Austin, Anmol L. Purohit, Jianna Li, Igor V. Novosselov. Destruction of PFAS in AFFF-impacted fire training pit water, with a continuous hydrothermal alkaline treatment reactor. Chemosphere 2023, 314 , 137681. https://doi.org/10.1016/j.chemosphere.2022.137681
  84. Huiyong Niu, Qingqing Sun, Yunchuan Bu, Yanxiao Yang, Siwei Sun, Shuopeng Li, Meng Tao, Zihao Mao. Review and prospects of research on materials to prevent and extinguish mine fires. Fire and Materials 2023, 29 https://doi.org/10.1002/fam.3127
  85. Zu-lin Hua, Chang Gao, Jian-yun Zhang, Xiao-qing Li. Perfluoroalkyl acids in the aquatic environment of a fluorine industry-impacted region: Spatiotemporal distribution, partition behavior, source, and risk assessment. Science of The Total Environment 2023, 857 , 159452. https://doi.org/10.1016/j.scitotenv.2022.159452
  86. Teklit Gebregiorgis Ambaye, Shiv Prasad, Muhammad Zia Ur Rehman. Application of nanomaterials for the removal of poly- and perfluoroalkyl substances. 2023, 197-211. https://doi.org/10.1016/B978-0-443-18746-9.00007-8
  87. Minh A. Nguyen, Karin Norström, Karin Wiberg, Jakob Gustavsson, Sarah Josefsson, Lutz Ahrens. Seasonal trends of per- and polyfluoroalkyl substances in river water affected by fire training sites and wastewater treatment plants. Chemosphere 2022, 308 , 136467. https://doi.org/10.1016/j.chemosphere.2022.136467
  88. Charbel Abou-Khalil, Dibyendu Sarkar, Pamela Braykaa, Michel C. Boufadel. Mobilization of Per- and Polyfluoroalkyl Substances (PFAS) in Soils: A Review. Current Pollution Reports 2022, 8 (4) , 422-444. https://doi.org/10.1007/s40726-022-00241-8
  89. Jeff A.K. Silva, Jennifer L. Guelfo, Jiří Šimůnek, John E. McCray. Simulated leaching of PFAS from land-applied municipal biosolids at agricultural sites. Journal of Contaminant Hydrology 2022, 251 , 104089. https://doi.org/10.1016/j.jconhyd.2022.104089
  90. Wejdan Alghamdi, Jaye Marchiandi, Drew Szabo, Subharthe Samandra, Bradley O. Clarke. Release of per- and polyfluoroalkyl substances (PFAS) from a waste management facility fire to an urban creek. Journal of Hazardous Materials Advances 2022, 8 , 100167. https://doi.org/10.1016/j.hazadv.2022.100167
  91. Steven Lasee, Kaylin McDermett, Naveen Kumar, Jennifer Guelfo, Paxton Payton, Zhao Yang, Todd A. Anderson. Targeted analysis and Total Oxidizable Precursor assay of several insecticides for PFAS. Journal of Hazardous Materials Letters 2022, 3 , 100067. https://doi.org/10.1016/j.hazl.2022.100067
  92. Mattias Sörengård, Sofia Bergström, Philip McCleaf, Karin Wiberg, Lutz Ahrens. Long-distance transport of per- and polyfluoroalkyl substances (PFAS) in a Swedish drinking water aquifer. Environmental Pollution 2022, 311 , 119981. https://doi.org/10.1016/j.envpol.2022.119981
  93. Pei-Yao Chen, Bin Wang, Wei-Guang Chen, Shuang Zhuang, Yu Chen, Hua-Ji Liu. Carbon-dot-modified polyacrylonitrile fiber as recyclable adsorbent for removing anionic, cationic, and zwitterionic perfluorooctane sulfonates from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 651 , 129763. https://doi.org/10.1016/j.colsurfa.2022.129763
  94. Ilka Wallis, John Hutson, Greg Davis, Rai Kookana, John Rayner, Henning Prommer. Model-based identification of vadose zone controls on PFAS mobility under semi-arid climate conditions. Water Research 2022, 225 , 119096. https://doi.org/10.1016/j.watres.2022.119096
  95. Felicia Fredriksson, Anna Kärrman, Ulrika Eriksson, Leo WY. Yeung. Analysis and characterization of novel fluorinated compounds used in surface treatments products. Chemosphere 2022, 302 , 134720. https://doi.org/10.1016/j.chemosphere.2022.134720
  96. Lan Jiang, Yue Xu, Xiaoyu Zhang, Bingfeng Xu, Ximeng Xu, Yixing Ma. Developing a QSPR Model of Organic Carbon Normalized Sorption Coefficients of Perfluorinated and Polyfluoroalkyl Substances. Molecules 2022, 27 (17) , 5610. https://doi.org/10.3390/molecules27175610
  97. Xueyan Lyu, Feng Xiao, Chongyang Shen, Jingjing Chen, Chang Min Park, Yuanyuan Sun, Markus Flury, Dengjun Wang. Per‐ and Polyfluoroalkyl Substances (PFAS) in Subsurface Environments: Occurrence, Fate, Transport, and Research Prospect. Reviews of Geophysics 2022, 60 (3) https://doi.org/10.1029/2021RG000765
  98. Manish Kumar, Nanthi Bolan, Tahereh Jasemizad, Lokesh P. Padhye, Srinidhi Sridharan, Lal Singh, Shiv Bolan, James O'Connor, Haochen Zhao, Sabry M. Shaheen, Hocheol Song, Kadambot H.M. Siddique, Hailong Wang, M.B. Kirkham, Jörg Rinklebe. Mobilization of contaminants: Potential for soil remediation and unintended consequences. Science of The Total Environment 2022, 839 , 156373. https://doi.org/10.1016/j.scitotenv.2022.156373
  99. Lin Qi, Runwei Li, Yudi Wu, Xinsong Lin, Gang Chen. Effect of solution chemistry on the transport of short-chain and long-chain perfluoroalkyl carboxylic acids (PFCAs) in saturated porous media. Chemosphere 2022, 303 , 135160. https://doi.org/10.1016/j.chemosphere.2022.135160
  100. Weilan Zhang, Yanna Liang. Changing bioavailability of per- and polyfluoroalkyl substances (PFAS) to plant in biosolids amended soil through stabilization or mobilization. Environmental Pollution 2022, 308 , 119724. https://doi.org/10.1016/j.envpol.2022.119724
Load more citations

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect