ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Observational Insights into Aerosol Formation from Isoprene

View Author Information
Department of Environmental Science, Policy and Management, Department of Chemistry, University of California, Berkeley, California 94720, United States
Aerosol Dynamics Inc., Berkeley, California 94710, United States
§ Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
⊥ ○ Cooperative Institute for Research in the Environmental Sciences, Department of Biochemistry and Chemistry, University of Colorado, Boulder, Colorado 80309, United States
# NOAA Earth System Research Laboratory, Boulder, Colorado 80305, United States
Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
California Institute of Technology, Pasadena, California 91125, United States
Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92037, United States
Department of Chemistry, University of Aarhus, Aarhus, DK-8000, Denmark
Department of Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey 08544, United States
Geophysical Fluid Dynamics Laboratory, NOAA, Princeton, New Jersey 08540, United States
Air Resources Laboratory, NOAA, College Park, Maryland 20740, United States
Department of Meteorology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
Departments of Environmental Science and Engineering and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
$ Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
% Now at Atmospheric Earth and Energy Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
Now at Department of Atmospheric Environmental Sciences, Pusan National University, Busan, South Korea
Now at Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado 80309, United States
Now at National Exposure Research Laboratory, Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
° Now at Joint Center for Earth Systems Technology, University of Maryland and NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
Now at Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
Now at ToFWerk AG, Thun, CH-3600, Switzerland
Now at Environmental Alion Science and Technology, EPA Office of Research and Development, EPA Research and Development, Research Triangle Park, North Carolina 27703, United States
+ Now at Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
*E-mail: [email protected], Tel. +1-510-643-6449, Fax. +1-510-643-5098.
Cite this: Environ. Sci. Technol. 2013, 47, 20, 11403–11413
Publication Date (Web):September 4, 2013
https://doi.org/10.1021/es4011064
Copyright © 2013 American Chemical Society

    Article Views

    2368

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (1 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Atmospheric photooxidation of isoprene is an important source of secondary organic aerosol (SOA) and there is increasing evidence that anthropogenic oxidant emissions can enhance this SOA formation. In this work, we use ambient observations of organosulfates formed from isoprene epoxydiols (IEPOX) and methacrylic acid epoxide (MAE) and a broad suite of chemical measurements to investigate the relative importance of nitrogen oxide (NO/NO2) and hydroperoxyl (HO2) SOA formation pathways from isoprene at a forested site in California. In contrast to IEPOX, the calculated production rate of MAE was observed to be independent of temperature. This is the result of the very fast thermolysis of MPAN at high temperatures that affects the distribution of the MPAN reservoir (MPAN / MPA radical) reducing the fraction that can react with OH to form MAE and subsequently SOA (FMAE formation). The strong temperature dependence of FMAE formation helps to explain our observations of similar concentrations of IEPOX-derived organosulfates (IEPOX-OS; ∼1 ng m–3) and MAE-derived organosulfates (MAE-OS; ∼1 ng m–3) under cooler conditions (lower isoprene concentrations) and much higher IEPOX-OS (∼20 ng m–3) relative to MAE-OS (<0.0005 ng m–3) at higher temperatures (higher isoprene concentrations). A kinetic model of IEPOX and MAE loss showed that MAE forms 10−100 times more ring-opening products than IEPOX and that both are strongly dependent on aerosol water content when aerosol pH is constant. However, the higher fraction of MAE ring opening products does not compensate for the lower MAE production under warmer conditions (higher isoprene concentrations) resulting in lower formation of MAE-derived products relative to IEPOX at the surface. In regions of high NOx, high isoprene emissions and strong vertical mixing the slower MPAN thermolysis rate aloft could increase the fraction of MPAN that forms MAE resulting in a vertically varying isoprene SOA source.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Experimental methods and additional figures. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 95 publications.

    1. Tucker W. R. Lewis, Bryan A. Long, Nicole Eyet, Nicholas S. Shuman, Shaun G. Ard, Albert A. Viggiano. Kinetics for the Reactions of Ar+, O2+, and NO+ with Isoprene (2-Methyl-1,3-butadiene) as a Function of Temperature (300–500 K). The Journal of Physical Chemistry A 2023, 127 (34) , 7221-7227. https://doi.org/10.1021/acs.jpca.3c03914
    2. Yujue Wang, Yanjing Zhang, Wenshuai Li, Guanru Wu, Yuxuan Qi, Shubin Li, Wenqing Zhu, Jian Zhen Yu, Xu Yu, Hong-Hai Zhang, Jun Sun, Wencai Wang, Lifang Sheng, Xiaohong Yao, Huiwang Gao, Cheng Huang, Yingge Ma, Yang Zhou. Important Roles and Formation of Atmospheric Organosulfates in Marine Organic Aerosols: Influence of Phytoplankton Emissions and Anthropogenic Pollutants. Environmental Science & Technology 2023, 57 (28) , 10284-10294. https://doi.org/10.1021/acs.est.3c01422
    3. Jacob T. Stewart, Lauren Hino, Carter Pavlonnis, Katarina R. Reyna, Binh L. N. Vo. Rotationally Resolved Infrared Spectroscopy of Supersonic Jet-Cooled Isoprene. The Journal of Physical Chemistry A 2023, 127 (22) , 4873-4879. https://doi.org/10.1021/acs.jpca.3c02272
    4. Bryan A. Long, Nicole Eyet, John Williamson, Nicholas S. Shuman, Shaun G. Ard, Albert A. Viggiano. Kinetics for the Reactions of H3O+(H2O)n=0–3 with Isoprene (2-Methyl-1,3-butadiene) as a Function of Temperature (300–500 K). The Journal of Physical Chemistry A 2022, 126 (40) , 7202-7209. https://doi.org/10.1021/acs.jpca.2c05287
    5. Yu-Qing Zhang, Xiang Ding, Quan-Fu He, Tian-Xue Wen, Jun-Qi Wang, Kong Yang, Hao Jiang, Qian Cheng, Ping Liu, Zi-Rui Wang, Yun-Feng He, Wei-Wei Hu, Qiao-Yun Wang, Jin-Yuan Xin, Yue-Si Wang, Xin-Ming Wang. Observational Insights into Isoprene Secondary Organic Aerosol Formation through the Epoxide Pathway at Three Urban Sites from Northern to Southern China. Environmental Science & Technology 2022, 56 (8) , 4795-4805. https://doi.org/10.1021/acs.est.1c06974
    6. Daniel J. Bryant, Atallah Elzein, Mike Newland, Erin White, Stefan Swift, Amy Watkins, Wei Deng, Wei Song, Sainan Wang, Yanli Zhang, Xinming Wang, Andrew R. Rickard, Jacqueline F. Hamilton. Importance of Oxidants and Temperature in the Formation of Biogenic Organosulfates and Nitrooxy Organosulfates. ACS Earth and Space Chemistry 2021, 5 (9) , 2291-2306. https://doi.org/10.1021/acsearthspacechem.1c00204
    7. Yujue Wang, Min Hu, Yu-Chen Wang, Xiao Li, Xin Fang, Rongzhi Tang, Sihua Lu, Yusheng Wu, Song Guo, Zhijun Wu, Mattias Hallquist, Jian Zhen Yu. Comparative Study of Particulate Organosulfates in Contrasting Atmospheric Environments: Field Evidence for the Significant Influence of Anthropogenic Sulfate and NOx. Environmental Science & Technology Letters 2020, 7 (11) , 787-794. https://doi.org/10.1021/acs.estlett.0c00550
    8. Ting Fang, Pascale S. J. Lakey, Jean C. Rivera-Rios, Frank N. Keutsch, Manabu Shiraiwa. Aqueous-Phase Decomposition of Isoprene Hydroxy Hydroperoxide and Hydroxyl Radical Formation by Fenton-like Reactions with Iron Ions. The Journal of Physical Chemistry A 2020, 124 (25) , 5230-5236. https://doi.org/10.1021/acs.jpca.0c02094
    9. Lindsay D. Yee, Gabriel Isaacman-VanWertz, Rebecca A. Wernis, Nathan M. Kreisberg, Marianne Glasius, Matthieu Riva, Jason D. Surratt, Suzane S. de Sá, Scot T. Martin, M. Lizabeth Alexander, Brett. B. Palm, Weiwei Hu, Pedro Campuzano-Jost, Douglas A. Day, Jose L. Jimenez, Yingjun Liu, Pawel K. Misztal, Paulo Artaxo, Juarez Viegas, Antonio Manzi, Rodrigo A. F. de Souza, Eric S. Edgerton, Karsten Baumann, Allen H. Goldstein. Natural and Anthropogenically Influenced Isoprene Oxidation in Southeastern United States and Central Amazon. Environmental Science & Technology 2020, 54 (10) , 5980-5991. https://doi.org/10.1021/acs.est.0c00805
    10. Martin Brüggemann, Rongshuang Xu, Andreas Tilgner, Kai Chung Kwong, Anke Mutzel, Hon Yin Poon, Tobias Otto, Thomas Schaefer, Laurent Poulain, Man Nin Chan, Hartmut Herrmann. Organosulfates in Ambient Aerosol: State of Knowledge and Future Research Directions on Formation, Abundance, Fate, and Importance. Environmental Science & Technology 2020, 54 (7) , 3767-3782. https://doi.org/10.1021/acs.est.9b06751
    11. Kristian H. Møller, Theo Kurtén, Kelvin H. Bates, Joel A. Thornton, Henrik G. Kjaergaard. Thermalized Epoxide Formation in the Atmosphere. The Journal of Physical Chemistry A 2019, 123 (49) , 10620-10630. https://doi.org/10.1021/acs.jpca.9b09364
    12. Barbara Ervens . Progress and Problems in Modeling Chemical Processing in Cloud Droplets and Wet Aerosol Particles. 2018, 327-345. https://doi.org/10.1021/bk-2018-1299.ch016
    13. Tobias Otto, Bastian Stieger, Peter Mettke, Hartmut Herrmann. Tropospheric Aqueous-Phase Oxidation of Isoprene-Derived Dihydroxycarbonyl Compounds. The Journal of Physical Chemistry A 2017, 121 (34) , 6460-6470. https://doi.org/10.1021/acs.jpca.7b05879
    14. Pingqing Fu, Kimitaka Kawamura, Osamu Seki, Yusuke Izawa, Takayuki Shiraiwa, and Kirsti Ashworth . Historical Trends of Biogenic SOA Tracers in an Ice Core from Kamchatka Peninsula. Environmental Science & Technology Letters 2016, 3 (10) , 351-358. https://doi.org/10.1021/acs.estlett.6b00275
    15. Marianne Glasius and Allen H. Goldstein . Recent Discoveries and Future Challenges in Atmospheric Organic Chemistry. Environmental Science & Technology 2016, 50 (6) , 2754-2764. https://doi.org/10.1021/acs.est.5b05105
    16. Jason M. St. Clair, Jean C. Rivera-Rios, John D. Crounse, Hasse C. Knap, Kelvin H. Bates, Alex P. Teng, Solvejg Jørgensen, Henrik G. Kjaergaard, Frank N. Keutsch, and Paul O. Wennberg . Kinetics and Products of the Reaction of the First-Generation Isoprene Hydroxy Hydroperoxide (ISOPOOH) with OH. The Journal of Physical Chemistry A 2016, 120 (9) , 1441-1451. https://doi.org/10.1021/acs.jpca.5b06532
    17. Kelvin H. Bates, Tran B. Nguyen, Alex P. Teng, John D. Crounse, Henrik G. Kjaergaard, Brian M. Stoltz, John H. Seinfeld, and Paul O. Wennberg . Production and Fate of C4 Dihydroxycarbonyl Compounds from Isoprene Oxidation. The Journal of Physical Chemistry A 2016, 120 (1) , 106-117. https://doi.org/10.1021/acs.jpca.5b10335
    18. Jenny P. S. Wong, Alex K. Y. Lee, and Jonathan P. D. Abbatt . Impacts of Sulfate Seed Acidity and Water Content on Isoprene Secondary Organic Aerosol Formation. Environmental Science & Technology 2015, 49 (22) , 13215-13221. https://doi.org/10.1021/acs.est.5b02686
    19. Santino J. Stropoli and Matthew J. Elrod . Assessing the Potential for the Reactions of Epoxides with Amines on Secondary Organic Aerosol Particles. The Journal of Physical Chemistry A 2015, 119 (40) , 10181-10189. https://doi.org/10.1021/acs.jpca.5b07852
    20. Silvano Fares, Elena Paoletti, Francesco Loreto, and Federico Brilli . Bidirectional Flux of Methyl Vinyl Ketone and Methacrolein in Trees with Different Isoprenoid Emission under Realistic Ambient Concentrations. Environmental Science & Technology 2015, 49 (13) , 7735-7742. https://doi.org/10.1021/acs.est.5b00673
    21. Hartmut Herrmann, Thomas Schaefer, Andreas Tilgner, Sarah A. Styler, Christian Weller, Monique Teich, and Tobias Otto . Tropospheric Aqueous-Phase Chemistry: Kinetics, Mechanisms, and Its Coupling to a Changing Gas Phase. Chemical Reviews 2015, 115 (10) , 4259-4334. https://doi.org/10.1021/cr500447k
    22. A. Mellouki , T. J. Wallington , J. Chen . Atmospheric Chemistry of Oxygenated Volatile Organic Compounds: Impacts on Air Quality and Climate. Chemical Reviews 2015, 115 (10) , 3984-4014. https://doi.org/10.1021/cr500549n
    23. Cassandra J. Gaston, Theran P. Riedel, Zhenfa Zhang, Avram Gold, Jason D. Surratt, and Joel A. Thornton . Reactive Uptake of an Isoprene-Derived Epoxydiol to Submicron Aerosol Particles. Environmental Science & Technology 2014, 48 (19) , 11178-11186. https://doi.org/10.1021/es5034266
    24. Quan-Fu He, Xiang Ding, Xin-Ming Wang, Jian-Zhen Yu, Xiao-Xin Fu, Teng-Yu Liu, Zhou Zhang, Jian Xue, Duo-Hong Chen, Liu-Ju Zhong, and Neil M. Donahue . Organosulfates from Pinene and Isoprene over the Pearl River Delta, South China: Seasonal Variation and Implication in Formation Mechanisms. Environmental Science & Technology 2014, 48 (16) , 9236-9245. https://doi.org/10.1021/es501299v
    25. Hyeon-Yeong Park, Sung-Chul Hong, Jae-Bum Lee, Seog-Yeon Cho. Modeling of Organic Aerosol in Seoul Using CMAQ with AERO7. Atmosphere 2023, 14 (5) , 874. https://doi.org/10.3390/atmos14050874
    26. Mary Alice Upshur, Ariana Gray Bé, Jingyi Luo, Jonathan G. Varelas, Franz M. Geiger, Regan J. Thomson. Organic synthesis in the study of terpene-derived oxidation products in the atmosphere. Natural Product Reports 2023, 40 (4) , 890-921. https://doi.org/10.1039/D2NP00064D
    27. Zhe Bai, Wen Wen, Wei Zhang, Ling Li, Lina Wang, Jianmin Chen. The light absorbing and molecule characteristic of PM2.5 brown carbon observed in urban Shanghai. Environmental Pollution 2023, 318 , 120874. https://doi.org/10.1016/j.envpol.2022.120874
    28. Jayant Nirmalkar, Ramya Sunder Raman, Dhananjay K. Deshmukh, MD. Mozammel Haque. PM2.5-bound biogenic secondary organic aerosol tracers over a regionally representative site in central India: Characteristics and sources. Atmospheric Environment 2023, 294 , 119516. https://doi.org/10.1016/j.atmosenv.2022.119516
    29. Guanyi Chen, Weimeng Ding, Zhanjun Cheng, Jinglan Wang, Lili Xing, Wang Li, Yunrui He, Fawei Lin, Jiuzhong Yang, Long Zhao, Beibei Yan. Experimental and kinetic modeling studies of isoprene pyrolysis at low and atmospheric pressures. Combustion and Flame 2022, 246 , 112445. https://doi.org/10.1016/j.combustflame.2022.112445
    30. Yi Chen, Yan Tan, Penggang Zheng, Zhe Wang, Zhouxing Zou, Kin-Fai Ho, Shuncheng Lee, Tao Wang. Effect of NO2 on nocturnal chemistry of isoprene: Gaseous oxygenated products and secondary organic aerosol formation. Science of The Total Environment 2022, 842 , 156908. https://doi.org/10.1016/j.scitotenv.2022.156908
    31. E. Grajales-González, Goutham Kukkadapu, Shashank S. Nagaraja, Can Shao, M. Monge-Palacios, Javier E. Chavarrio, Scott W. Wagnon, Henry J. Curran, William J. Pitz, S. Mani Sarathy. An experimental and kinetic modeling study of the pyrolysis of isoprene, a significant biogenic hydrocarbon in naturally occurring vegetation fires. Combustion and Flame 2022, 242 , 112206. https://doi.org/10.1016/j.combustflame.2022.112206
    32. Wulve Fan, Ting Chen, Zhiliang Zhu, Hua Zhang, Yanling Qiu, Daqiang Yin. A review of secondary organic aerosols formation focusing on organosulfates and organic nitrates. Journal of Hazardous Materials 2022, 430 , 128406. https://doi.org/10.1016/j.jhazmat.2022.128406
    33. B. Langford, E. House, A. Valach, C. N. Hewitt, P. Artaxo, M. P. Barkley, J. Brito, E. Carnell, B. Davison, A. R. MacKenzie, E. A. Marais, M. J. Newland, A. R. Rickard, M. D. Shaw, A. M. Yáñez-Serrano, E. Nemitz. Seasonality of isoprene emissions and oxidation products above the remote Amazon. Environmental Science: Atmospheres 2022, 2 (2) , 230-240. https://doi.org/10.1039/D1EA00057H
    34. Marianne Glasius, Ditte Thomsen, Kai Wang, Louise Skov Iversen, Jing Duan, Ru-Jin Huang. Chemical characteristics and sources of organosulfates, organosulfonates, and carboxylic acids in aerosols in urban Xi'an, Northwest China. Science of The Total Environment 2022, 810 , 151187. https://doi.org/10.1016/j.scitotenv.2021.151187
    35. Linlin Liang, Guenter Engling, Wanyun Xu, Qianli Ma, Weili Lin, Xuyan Liu, Chang Liu, Gen Zhang. Observational insights into the compound environmental effect for 2-methyltetrols formation under humid ambient conditions. Chemosphere 2022, 289 , 133153. https://doi.org/10.1016/j.chemosphere.2021.133153
    36. Dalrin Ampritta Amaladhasan, Claudia Heyn, Christopher R. Hoyle, Imad El Haddad, Miriam Elser, Simone M. Pieber, Jay G. Slowik, Antonio Amorim, Jonathan Duplissy, Sebastian Ehrhart, Vladimir Makhmutov, Ugo Molteni, Matti Rissanen, Yuri Stozhkov, Robert Wagner, Armin Hansel, Jasper Kirkby, Neil M. Donahue, Rainer Volkamer, Urs Baltensperger, Martin Gysel-Beer, Andreas Zuend. Modelling the gas–particle partitioning and water uptake of isoprene-derived secondary organic aerosol at high and low relative humidity. Atmospheric Chemistry and Physics 2022, 22 (1) , 215-244. https://doi.org/10.5194/acp-22-215-2022
    37. Hongxing Jiang, Jun Li, Jiao Tang, Min Cui, Shizhen Zhao, Yangzhi Mo, Chongguo Tian, Xiangyun Zhang, Bin Jiang, Yuhong Liao, Yingjun Chen, Gan Zhang. Molecular characteristics, sources, and formation pathways of organosulfur compounds in ambient aerosol in Guangzhou, South China. Atmospheric Chemistry and Physics 2022, 22 (10) , 6919-6935. https://doi.org/10.5194/acp-22-6919-2022
    38. Li Xu, Lin Du, Narcisse T. Tsona, Maofa Ge. Anthropogenic Effects on Biogenic Secondary Organic Aerosol Formation. Advances in Atmospheric Sciences 2021, 38 (7) , 1053-1084. https://doi.org/10.1007/s00376-020-0284-3
    39. Yujue Wang, Min Hu, Wei Hu, Jing Zheng, Hongya Niu, Xin Fang, Nan Xu, Zhijun Wu, Song Guo, Yusheng Wu, Wentai Chen, Sihua Lu, Min Shao, Shaodong Xie, Bin Luo, Yuanhang Zhang. Secondary Formation of Aerosols Under Typical High‐Humidity Conditions in Wintertime Sichuan Basin, China: A Contrast to the North China Plain. Journal of Geophysical Research: Atmospheres 2021, 126 (10) https://doi.org/10.1029/2021JD034560
    40. Carmen M. Tovar, Alexander Haack, Ian Barnes, Iustinian Gabriel Bejan, Peter Wiesen. Experimental and theoretical study of the reactivity of a series of epoxides with chlorine atoms at 298 K. Physical Chemistry Chemical Physics 2021, 23 (9) , 5176-5186. https://doi.org/10.1039/D0CP06033J
    41. Yao Wang, Yue Zhao, Yuchen Wang, Jian-Zhen Yu, Jingyuan Shao, Ping Liu, Wenfei Zhu, Zhen Cheng, Ziyue Li, Naiqiang Yan, Huayun Xiao. Organosulfates in atmospheric aerosols in Shanghai, China: seasonal and interannual variability, origin, and formation mechanisms. Atmospheric Chemistry and Physics 2021, 21 (4) , 2959-2980. https://doi.org/10.5194/acp-21-2959-2021
    42. Eleni Dovrou, Kelvin H. Bates, Jean C. Rivera-Rios, Joshua L. Cox, Joshua D. Shutter, Frank N. Keutsch. Towards a chemical mechanism of the oxidation of aqueous sulfur dioxide via isoprene hydroxyl hydroperoxides (ISOPOOH). Atmospheric Chemistry and Physics 2021, 21 (11) , 8999-9008. https://doi.org/10.5194/acp-21-8999-2021
    43. Yubo Cheng, Yiqiu Ma, Di Hu. Tracer-based source apportioning of atmospheric organic carbon and the influence of anthropogenic emissions on secondary organic aerosol formation in Hong Kong. Atmospheric Chemistry and Physics 2021, 21 (13) , 10589-10608. https://doi.org/10.5194/acp-21-10589-2021
    44. Jacob T. Stewart, Jacob Beloin, Melanie Fournier, Grace Kovic. Sensitive infrared spectroscopy of isoprene at the part per billion level using a quantum cascade laser spectrometer. Applied Physics B 2020, 126 (11) https://doi.org/10.1007/s00340-020-07532-2
    45. Dongmei Cai, Xinke Wang, Jianmin Chen, Xiang Li. Molecular Characterization of Organosulfates in Highly Polluted Atmosphere Using Ultra‐High‐Resolution Mass Spectrometry. Journal of Geophysical Research: Atmospheres 2020, 125 (8) https://doi.org/10.1029/2019JD032253
    46. Luyao Xu, Guochun Lv, Wen Liu, Xiaomin Sun, Chenxi Zhang, Zhiqiang Li. The oxidation mechanism of 3,4-dihydroxy-2-butanone in the aqueous phase for secondary organic aerosols formation. Atmospheric Environment 2020, 221 , 117110. https://doi.org/10.1016/j.atmosenv.2019.117110
    47. Yiqi Zheng, Joel A. Thornton, Nga Lee Ng, Hansen Cao, Daven K. Henze, Erin E. McDuffie, Weiwei Hu, Jose L. Jimenez, Eloise A. Marais, Eric Edgerton, Jingqiu Mao. Long-term observational constraints of organic aerosol dependence on inorganic species in the southeast US. Atmospheric Chemistry and Physics 2020, 20 (21) , 13091-13107. https://doi.org/10.5194/acp-20-13091-2020
    48. Theodora Nah, Lu Xu, Kymberlee A. Osborne-Benthaus, S. Meghan White, Stefan France, Nga Lee Ng. Mixing order of sulfate aerosols and isoprene epoxydiols affects secondary organic aerosol formation in chamber experiments. Atmospheric Environment 2019, 217 , 116953. https://doi.org/10.1016/j.atmosenv.2019.116953
    49. Yu-Qing Zhang, Duo-Hong Chen, Xiang Ding, Jun Li, Tao Zhang, Jun-Qi Wang, Qian Cheng, Hao Jiang, Wei Song, Yu-Bo Ou, Peng-Lin Ye, Gan Zhang, Xin-Ming Wang. Impact of anthropogenic emissions on biogenic secondary organic aerosol: observation in the Pearl River Delta, southern China. Atmospheric Chemistry and Physics 2019, 19 (22) , 14403-14415. https://doi.org/10.5194/acp-19-14403-2019
    50. Shino Toma, Steve Bertman, Christopher Groff, Fulizi Xiong, Paul B. Shepson, Paul Romer, Kaitlin Duffey, Paul Wooldridge, Ronald Cohen, Karsten Baumann, Eric Edgerton, Abigail R. Koss, Joost de Gouw, Allen Goldstein, Weiwei Hu, Jose L. Jimenez. Importance of biogenic volatile organic compounds to acyl peroxy nitrates (APN) production in the southeastern US during SOAS 2013. Atmospheric Chemistry and Physics 2019, 19 (3) , 1867-1880. https://doi.org/10.5194/acp-19-1867-2019
    51. Jin Liao, Thomas F. Hanisco, Glenn M. Wolfe, Jason St. Clair, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Alan Fried, Eloise A. Marais, Gonzalo Gonzalez Abad, Kelly Chance, Hiren T. Jethva, Thomas B. Ryerson, Carsten Warneke, Armin Wisthaler. Towards a satellite formaldehyde – in situ hybrid estimate for organic aerosol abundance. Atmospheric Chemistry and Physics 2019, 19 (5) , 2765-2785. https://doi.org/10.5194/acp-19-2765-2019
    52. Marianne Glasius, Mads S. Bering, Lindsay D. Yee, Suzane S. de Sá, Gabriel Isaacman-VanWertz, Rebecca A. Wernis, Henrique M. J. Barbosa, M. Lizabeth Alexander, Brett B. Palm, Weiwei Hu, Pedro Campuzano-Jost, Douglas A. Day, Jose L. Jimenez, Manish Shrivastava, Scot T. Martin, Allen H. Goldstein. Organosulfates in aerosols downwind of an urban region in central Amazon. Environmental Science: Processes & Impacts 2018, 20 (11) , 1546-1558. https://doi.org/10.1039/C8EM00413G
    53. Marcus V. Pinto Pereira, Tyler P. Hoadley, Michael C. Iranpour, Minh N. Tran, Jacob T. Stewart. High-resolution infrared spectroscopy of the ν26 band of isoprene. Journal of Molecular Spectroscopy 2018, 350 , 37-42. https://doi.org/10.1016/j.jms.2018.05.008
    54. Fengxia Li, Jürgen Schnelle-Kreis, Josef Cyrys, Kathrin Wolf, Erwin Karg, Jianwei Gu, Jürgen Orasche, Gülcin Abbaszade, Annette Peters, Ralf Zimmermann. Spatial and temporal variation of sources contributing to quasi-ultrafine particulate matter PM0.36 in Augsburg, Germany. Science of The Total Environment 2018, 631-632 , 191-200. https://doi.org/10.1016/j.scitotenv.2018.03.041
    55. Quan‐Fu He, Xiang Ding, Xiao‐Xin Fu, Yu‐Qing Zhang, Jun‐Qi Wang, Ye‐Xin Liu, Ming‐Jin Tang, Xin‐Ming Wang, Yinon Rudich. Secondary Organic Aerosol Formation From Isoprene Epoxides in the Pearl River Delta, South China: IEPOX‐ and HMML‐Derived Tracers. Journal of Geophysical Research: Atmospheres 2018, 123 (13) , 6999-7012. https://doi.org/10.1029/2017JD028242
    56. Momei Qin, Yongtao Hu, Xuesong Wang, Petros Vasilakos, Christopher M. Boyd, Lu Xu, Yu Song, Nga Lee Ng, Athanasios Nenes, Armistead G. Russell. Modeling biogenic secondary organic aerosol (BSOA) formation from monoterpene reactions with NO3: A case study of the SOAS campaign using CMAQ. Atmospheric Environment 2018, 184 , 146-155. https://doi.org/10.1016/j.atmosenv.2018.03.042
    57. Fumiyuki Ito. Infrared spectroscopy of isoprene in noble gas matrices. Journal of Molecular Spectroscopy 2018, 348 , 117-123. https://doi.org/10.1016/j.jms.2017.02.010
    58. Matthew J. Gunsch, Stephanie A. Schmidt, Daniel J. Gardner, Amy L. Bondy, Nathaniel W. May, Steven B. Bertman, Kerri A. Pratt, Andrew P. Ault. Particle growth in an isoprene-rich forest: Influences of urban, wildfire, and biogenic air masses. Atmospheric Environment 2018, 178 , 255-264. https://doi.org/10.1016/j.atmosenv.2018.01.058
    59. Qing Ye, Mary Alice Upshur, Ellis S. Robinson, Franz M. Geiger, Ryan C. Sullivan, Regan J. Thomson, Neil M. Donahue. Following Particle-Particle Mixing in Atmospheric Secondary Organic Aerosols by Using Isotopically Labeled Terpenes. Chem 2018, 4 (2) , 318-333. https://doi.org/10.1016/j.chempr.2017.12.008
    60. Yujue Wang, Min Hu, Song Guo, Yuchen Wang, Jing Zheng, Yudong Yang, Wenfei Zhu, Rongzhi Tang, Xiao Li, Ying Liu, Michael Le Breton, Zhuofei Du, Dongjie Shang, Yusheng Wu, Zhijun Wu, Yu Song, Shengrong Lou, Mattias Hallquist, Jianzhen Yu. The secondary formation of organosulfates under interactions between biogenic emissions and anthropogenic pollutants in summer in Beijing. Atmospheric Chemistry and Physics 2018, 18 (14) , 10693-10713. https://doi.org/10.5194/acp-18-10693-2018
    61. Juliane L. Fry, Steven S. Brown, Ann M. Middlebrook, Peter M. Edwards, Pedro Campuzano-Jost, Douglas A. Day, José L. Jimenez, Hannah M. Allen, Thomas B. Ryerson, Ilana Pollack, Martin Graus, Carsten Warneke, Joost A. de Gouw, Charles A. Brock, Jessica Gilman, Brian M. Lerner, William P. Dubé, Jin Liao, André Welti. Secondary organic aerosol (SOA) yields from NO3 radical + isoprene based on nighttime aircraft power plant plume transects. Atmospheric Chemistry and Physics 2018, 18 (16) , 11663-11682. https://doi.org/10.5194/acp-18-11663-2018
    62. Suzane S. de Sá, Brett B. Palm, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Gabriel Isaacman-VanWertz, Lindsay D. Yee, Joel Brito, Samara Carbone, Igor O. Ribeiro, Glauber G. Cirino, Yingjun Liu, Ryan Thalman, Arthur Sedlacek, Aaron Funk, Courtney Schumacher, John E. Shilling, Johannes Schneider, Paulo Artaxo, Allen H. Goldstein, Rodrigo A. F. Souza, Jian Wang, Karena A. McKinney, Henrique Barbosa, M. Lizabeth Alexander, Jose L. Jimenez, Scot T. Martin. Urban influence on the concentration and composition of submicron particulate matter in central Amazonia. Atmospheric Chemistry and Physics 2018, 18 (16) , 12185-12206. https://doi.org/10.5194/acp-18-12185-2018
    63. Christiane Schulz, Johannes Schneider, Bruna Amorim Holanda, Oliver Appel, Anja Costa, Suzane S. de Sá, Volker Dreiling, Daniel Fütterer, Tina Jurkat-Witschas, Thomas Klimach, Christoph Knote, Martina Krämer, Scot T. Martin, Stephan Mertes, Mira L. Pöhlker, Daniel Sauer, Christiane Voigt, Adrian Walser, Bernadett Weinzierl, Helmut Ziereis, Martin Zöger, Meinrat O. Andreae, Paulo Artaxo, Luiz A. T. Machado, Ulrich Pöschl, Manfred Wendisch, Stephan Borrmann. Aircraft-based observations of isoprene-epoxydiol-derived secondary organic aerosol (IEPOX-SOA) in the tropical upper troposphere over the Amazon region. Atmospheric Chemistry and Physics 2018, 18 (20) , 14979-15001. https://doi.org/10.5194/acp-18-14979-2018
    64. Xi Chen, Mingjie Xie, Michael D. Hays, Eric Edgerton, Donna Schwede, John T. Walker. Characterization of organic nitrogen in aerosols at a forest site in the southern Appalachian Mountains. Atmospheric Chemistry and Physics 2018, 18 (9) , 6829-6846. https://doi.org/10.5194/acp-18-6829-2018
    65. Shuangshuang Ge, Yongfu Xu, Long Jia. Effects of inorganic seeds on secondary organic aerosol formation from photochemical oxidation of acetone in a chamber. Atmospheric Environment 2017, 170 , 205-215. https://doi.org/10.1016/j.atmosenv.2017.09.036
    66. Mingai Li, Jia Xu, Alberto Algarra Alarcon, Silvia Carlin, Enrico Barbaro, Luca Cappellin, Violeta Velikova, Urska Vrhovsek, Francesco Loreto, Claudio Varotto. In Planta Recapitulation of Isoprene Synthase Evolution from Ocimene Synthases. Molecular Biology and Evolution 2017, 34 (10) , 2583-2599. https://doi.org/10.1093/molbev/msx178
    67. J. Liu, L. M. Russell, A. K. Y. Lee, K. A. McKinney, J. D. Surratt, P. J. Ziemann. Observational evidence for pollution‐influenced selective uptake contributing to biogenic secondary organic aerosols in the southeastern U.S.. Geophysical Research Letters 2017, 44 (15) , 8056-8064. https://doi.org/10.1002/2017GL074665
    68. David R. Worton, Monika Decker, Gabriel Isaacman-VanWertz, Arthur W. H. Chan, Kevin R. Wilson, Allen H. Goldstein. Improved molecular level identification of organic compounds using comprehensive two-dimensional chromatography, dual ionization energies and high resolution mass spectrometry. The Analyst 2017, 142 (13) , 2395-2403. https://doi.org/10.1039/C7AN00625J
    69. Suzane S. de Sá, Brett B. Palm, Pedro Campuzano-Jost, Douglas A. Day, Matthew K. Newburn, Weiwei Hu, Gabriel Isaacman-VanWertz, Lindsay D. Yee, Ryan Thalman, Joel Brito, Samara Carbone, Paulo Artaxo, Allen H. Goldstein, Antonio O. Manzi, Rodrigo A. F. Souza, Fan Mei, John E. Shilling, Stephen R. Springston, Jian Wang, Jason D. Surratt, M. Lizabeth Alexander, Jose L. Jimenez, Scot T. Martin. Influence of urban pollution on the production of organic particulate matter from isoprene epoxydiols in central Amazonia. Atmospheric Chemistry and Physics 2017, 17 (11) , 6611-6629. https://doi.org/10.5194/acp-17-6611-2017
    70. James W. Grayson, Erin Evoy, Mijung Song, Yangxi Chu, Adrian Maclean, Allena Nguyen, Mary Alice Upshur, Marzieh Ebrahimi, Chak K. Chan, Franz M. Geiger, Regan J. Thomson, Allan K. Bertram. The effect of hydroxyl functional groups and molar mass on the viscosity of non-crystalline organic and organic–water particles. Atmospheric Chemistry and Physics 2017, 17 (13) , 8509-8524. https://doi.org/10.5194/acp-17-8509-2017
    71. Lu Xu, Ann M. Middlebrook, Jin Liao, Joost A. de Gouw, Hongyu Guo, Rodney J. Weber, Athanasios Nenes, Felipe D. Lopez‐Hilfiker, Ben H. Lee, Joel A. Thornton, Charles A. Brock, J. Andrew Neuman, John B. Nowak, Ilana B. Pollack, Andre Welti, Martin Graus, Carsten Warneke, Nga Lee Ng. Enhanced formation of isoprene‐derived organic aerosol in sulfur‐rich power plant plumes during Southeast Nexus. Journal of Geophysical Research: Atmospheres 2016, 121 (18) https://doi.org/10.1002/2016JD025156
    72. Yingjun Liu, Joel Brito, Matthew R. Dorris, Jean C. Rivera-Rios, Roger Seco, Kelvin H. Bates, Paulo Artaxo, Sergio Duvoisin, Frank N. Keutsch, Saewung Kim, Allen H. Goldstein, Alex B. Guenther, Antonio O. Manzi, Rodrigo A. F. Souza, Stephen R. Springston, Thomas B. Watson, Karena A. McKinney, Scot T. Martin. Isoprene photochemistry over the Amazon rainforest. Proceedings of the National Academy of Sciences 2016, 113 (22) , 6125-6130. https://doi.org/10.1073/pnas.1524136113
    73. Chunmao Zhu, Kimitaka Kawamura, Pingqing Fu. Seasonal variations of biogenic secondary organic aerosol tracers in Cape Hedo, Okinawa. Atmospheric Environment 2016, 130 , 113-119. https://doi.org/10.1016/j.atmosenv.2015.08.069
    74. Rafal Szmigielski. Evidence for C5 organosulfur secondary organic aerosol components from in-cloud processing of isoprene: Role of reactive SO4 and SO3 radicals. Atmospheric Environment 2016, 130 , 14-22. https://doi.org/10.1016/j.atmosenv.2015.10.072
    75. Kasper Kristensen, Merete Bilde, Pasi P. Aalto, Tuukka Petäjä, Marianne Glasius. Denuder/filter sampling of organic acids and organosulfates at urban and boreal forest sites: Gas/particle distribution and possible sampling artifacts. Atmospheric Environment 2016, 130 , 36-53. https://doi.org/10.1016/j.atmosenv.2015.10.046
    76. Xin Ke Wang, Stéphanie Rossignol, Ye Ma, Lei Yao, Ming Yi Wang, Jian Min Chen, Christian George, Lin Wang. Molecular characterization of atmospheric particulate organosulfates in three megacities at the middle and lower reaches of the Yangtze River. Atmospheric Chemistry and Physics 2016, 16 (4) , 2285-2298. https://doi.org/10.5194/acp-16-2285-2016
    77. Christopher D. Cappa, Shantanu H. Jathar, Michael J. Kleeman, Kenneth S. Docherty, Jose L. Jimenez, John H. Seinfeld, Anthony S. Wexler. Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 2: Assessing the influence of vapor wall losses. Atmospheric Chemistry and Physics 2016, 16 (5) , 3041-3059. https://doi.org/10.5194/acp-16-3041-2016
    78. Sri Hapsari Budisulistiorini, Karsten Baumann, Eric S. Edgerton, Solomon T. Bairai, Stephen Mueller, Stephanie L. Shaw, Eladio M. Knipping, Avram Gold, Jason D. Surratt. Seasonal characterization of submicron aerosol chemical composition and organic aerosol sources in the southeastern United States: Atlanta, Georgia,and Look Rock, Tennessee. Atmospheric Chemistry and Physics 2016, 16 (8) , 5171-5189. https://doi.org/10.5194/acp-16-5171-2016
    79. Pawel K. Misztal, Jeremy C. Avise, Thomas Karl, Klaus Scott, Haflidi H. Jonsson, Alex B. Guenther, Allen H. Goldstein. Evaluation of regional isoprene emission factors and modeled fluxes in California. Atmospheric Chemistry and Physics 2016, 16 (15) , 9611-9628. https://doi.org/10.5194/acp-16-9611-2016
    80. Jesse O. Bash, Kirk R. Baker, Melinda R. Beaver. Evaluation of improved land use and canopy representation in BEIS v3.61 with biogenic VOC measurements in California. Geoscientific Model Development 2016, 9 (6) , 2191-2207. https://doi.org/10.5194/gmd-9-2191-2016
    81. Armin Sorooshian, Ewan Crosbie, Lindsay C. Maudlin, Jong‐Sang Youn, Zhen Wang, Taylor Shingler, Amber M. Ortega, Scott Hersey, Roy K. Woods. Surface and airborne measurements of organosulfur and methanesulfonate over the western United States and coastal areas. Journal of Geophysical Research: Atmospheres 2015, 120 (16) , 8535-8548. https://doi.org/10.1002/2015JD023822
    82. Jin Liao, Karl D. Froyd, Daniel M. Murphy, Frank N. Keutsch, Ge Yu, Paul O. Wennberg, Jason M. St. Clair, John D. Crounse, Armin Wisthaler, Tomas Mikoviny, Jose L. Jimenez, Pedro Campuzano‐Jost, Douglas A. Day, Weiwei Hu, Thomas B. Ryerson, Ilana B. Pollack, Jeff Peischl, Bruce E. Anderson, Luke D. Ziemba, Donald R. Blake, Simone Meinardi, Glenn Diskin. Airborne measurements of organosulfates over the continental U.S.. Journal of Geophysical Research: Atmospheres 2015, 120 (7) , 2990-3005. https://doi.org/10.1002/2014JD022378
    83. Lu Xu, Hongyu Guo, Christopher M. Boyd, Mitchel Klein, Aikaterini Bougiatioti, Kate M. Cerully, James R. Hite, Gabriel Isaacman-VanWertz, Nathan M. Kreisberg, Christoph Knote, Kevin Olson, Abigail Koss, Allen H. Goldstein, Susanne V. Hering, Joost de Gouw, Karsten Baumann, Shan-Hu Lee, Athanasios Nenes, Rodney J. Weber, Nga Lee Ng. Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States. Proceedings of the National Academy of Sciences 2015, 112 (1) , 37-42. https://doi.org/10.1073/pnas.1417609112
    84. Tran B. Nguyen, Kelvin H. Bates, John D. Crounse, Rebecca H. Schwantes, Xuan Zhang, Henrik G. Kjaergaard, Jason D. Surratt, Peng Lin, Alexander Laskin, John H. Seinfeld, Paul O. Wennberg. Mechanism of the hydroxyl radical oxidation of methacryloyl peroxynitrate (MPAN) and its pathway toward secondary organic aerosol formation in the atmosphere. Physical Chemistry Chemical Physics 2015, 17 (27) , 17914-17926. https://doi.org/10.1039/C5CP02001H
    85. W. W. Hu, P. Campuzano-Jost, B. B. Palm, D. A. Day, A. M. Ortega, P. L. Hayes, J. E. Krechmer, Q. Chen, M. Kuwata, Y. J. Liu, S. S. de Sá, K. McKinney, S. T. Martin, M. Hu, S. H. Budisulistiorini, M. Riva, J. D. Surratt, J. M. St. Clair, G. Isaacman-Van Wertz, L. D. Yee, A. H. Goldstein, S. Carbone, J. Brito, P. Artaxo, J. A. de Gouw, A. Koss, A. Wisthaler, T. Mikoviny, T. Karl, L. Kaser, W. Jud, A. Hansel, K. S. Docherty, M. L. Alexander, N. H. Robinson, H. Coe, J. D. Allan, M. R. Canagaratna, F. Paulot, J. L. Jimenez. Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements. Atmospheric Chemistry and Physics 2015, 15 (20) , 11807-11833. https://doi.org/10.5194/acp-15-11807-2015
    86. K. P. Wyche, P. S. Monks, K. L. Smallbone, J. F. Hamilton, M. R. Alfarra, A. R. Rickard, G. B. McFiggans, M. E. Jenkin, W. J. Bloss, A. C. Ryan, C. N. Hewitt, A. R. MacKenzie. Mapping gas-phase organic reactivity and concomitant secondary organic aerosol formation: chemometric dimension reduction techniques for the deconvolution of complex atmospheric data sets. Atmospheric Chemistry and Physics 2015, 15 (14) , 8077-8100. https://doi.org/10.5194/acp-15-8077-2015
    87. S. H. Budisulistiorini, X. Li, S. T. Bairai, J. Renfro, Y. Liu, Y. J. Liu, K. A. McKinney, S. T. Martin, V. F. McNeill, H. O. T. Pye, A. Nenes, M. E. Neff, E. A. Stone, S. Mueller, C. Knote, S. L. Shaw, Z. Zhang, A. Gold, J. D. Surratt. Examining the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol formation during the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee ground site. Atmospheric Chemistry and Physics 2015, 15 (15) , 8871-8888. https://doi.org/10.5194/acp-15-8871-2015
    88. L. Lee, P. J. Wooldridge, J. deGouw, S. S. Brown, T. S. Bates, P. K. Quinn, R. C. Cohen. Particulate organic nitrates observed in an oil and natural gas production region during wintertime. Atmospheric Chemistry and Physics 2015, 15 (16) , 9313-9325. https://doi.org/10.5194/acp-15-9313-2015
    89. J. C. Rivera‐Rios, T. B. Nguyen, J. D. Crounse, W. Jud, J. M. St. Clair, T. Mikoviny, J. B. Gilman, B. M. Lerner, J. B. Kaiser, J. de Gouw, A. Wisthaler, A. Hansel, P. O. Wennberg, J. H. Seinfeld, F. N. Keutsch. Conversion of hydroperoxides to carbonyls in field and laboratory instrumentation: Observational bias in diagnosing pristine versus anthropogenically controlled atmospheric chemistry. Geophysical Research Letters 2014, 41 (23) , 8645-8651. https://doi.org/10.1002/2014GL061919
    90. Xiang Ding, Quan-Fu He, Ru-Qin Shen, Qing-Qing Yu, Xin-Ming Wang. Spatial distributions of secondary organic aerosols from isoprene, monoterpenes, β -caryophyllene, and aromatics over China during summer. Journal of Geophysical Research: Atmospheres 2014, 119 (20) , 11,877-11,891. https://doi.org/10.1002/2014JD021748
    91. Ye Ma, Xinkai Xu, Weihua Song, Fuhai Geng, Lin Wang. Seasonal and diurnal variations of particulate organosulfates in urban Shanghai, China. Atmospheric Environment 2014, 85 , 152-160. https://doi.org/10.1016/j.atmosenv.2013.12.017
    92. M. A. Upshur, B. F. Strick, V. F. McNeill, R. J. Thomson, F. M. Geiger. Climate-relevant physical properties of molecular constituents for isoprene-derived secondary organic aerosol material. Atmospheric Chemistry and Physics 2014, 14 (19) , 10731-10740. https://doi.org/10.5194/acp-14-10731-2014
    93. T. B. Nguyen, J. D. Crounse, R. H. Schwantes, A. P. Teng, K. H. Bates, X. Zhang, J. M. St. Clair, W. H. Brune, G. S. Tyndall, F. N. Keutsch, J. H. Seinfeld, P. O. Wennberg. Overview of the Focused Isoprene eXperiment at the California Institute of Technology (FIXCIT): mechanistic chamber studies on the oxidation of biogenic compounds. Atmospheric Chemistry and Physics 2014, 14 (24) , 13531-13549. https://doi.org/10.5194/acp-14-13531-2014
    94. Q. T. Nguyen, M. K. Christensen, F. Cozzi, A. Zare, A. M. K. Hansen, K. Kristensen, T. E. Tulinius, H. H. Madsen, J. H. Christensen, J. Brandt, A. Massling, J. K. Nøjgaard, M. Glasius. Understanding the anthropogenic influence on formation of biogenic secondary organic aerosols in Denmark via analysis of organosulfates and related oxidation products. Atmospheric Chemistry and Physics 2014, 14 (17) , 8961-8981. https://doi.org/10.5194/acp-14-8961-2014
    95. K. Kristensen, K. L. Enggrob, S. M. King, D. R. Worton, S. M. Platt, R. Mortensen, T. Rosenoern, J. D. Surratt, M. Bilde, A. H. Goldstein, M. Glasius. Formation and occurrence of dimer esters of pinene oxidation products in atmospheric aerosols. Atmospheric Chemistry and Physics 2013, 13 (7) , 3763-3776. https://doi.org/10.5194/acp-13-3763-2013

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect