ACS Publications. Most Trusted. Most Cited. Most Read
Electron Transfer between Iron Minerals and Quinones: Estimating the Reduction Potential of the Fe(II)-Goethite Surface from AQDS Speciation
My Activity

Figure 1Loading Img
    Article

    Electron Transfer between Iron Minerals and Quinones: Estimating the Reduction Potential of the Fe(II)-Goethite Surface from AQDS Speciation
    Click to copy article linkArticle link copied!

    View Author Information
    Eberhard Karls Universität Tübingen, Center for Applied Geosciences (ZAG), Hölderlinstrasse 12, 72074 Tübingen, Germany
    *Tel.: 0049 (0)7071 2973135. Fax: +49 7071 295059. E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2013, 47, 24, 14161–14168
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es403658g
    Published November 15, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Redox reactions at iron mineral surfaces play an important role in controlling biogeochemical processes of natural porous media such as sediments, soils and aquifers, especially in the presence of recurrent variations in redox conditions. Ferrous iron associated with iron mineral phases forms highly reactive species and is regarded as a key factor in determining pathways, rates, and extent of chemically and microbially driven electron transfer processes across the iron mineral–water interface. Due to their transient nature and heterogeneity a detailed characterization of such surface bound Fe(II) species in terms of redox potential is still missing. To this end, we used the nonsorbing anthraquinone-2,6-disulfonate (AQDS) as a redox probe and studied the thermodynamics of its redox reactions in heterogeneous iron systems, namely goethite-Fe(II). Our results provide a thermodynamic basis for and are consistent with earlier observations on the ability of AQDS to “shuttle” electrons between microbes and iron oxide minerals. On the basis of equilibrium AQDS speciation we reported for the first time robust reduction potential measurements of reactive iron species present at goethite in aqueous systems (EH,Fe-GT ≈ −170 mV). Due to the high redox buffer intensity of heterogeneous mixed valent iron systems, this value might be characteristic for many iron-reducing environments in the subsurface at circumneutral pH. Our results corroborate the picture of a dynamic remodelling of Fe(II)/Fe(III) surface sites at goethite in response to oxidation/reduction events. As quinones play an essential role in the electron transport systems of microbes, the proposed method can be considered as a biomimetic approach to determine “effective” biogeochemical reduction potentials in heterogeneous iron systems.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Detailed descriptions of the procedure for determining sorbed Fe(II) and analysis of AQDS interferences (Figure SI1 and Figure SI2); cyclic voltammetry of AQDS in phosphate buffer pH 7 (Figure SI3); spectra of AQDS in experiment iii; Pt ring electrode readings of a control batch consisting of GT-Fe(II) in the absence of AQDS. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 110 publications.

    1. Junye Ma, Xiaoshan Zheng, Wanchao Yu, Binbin Wu, Jingyi Wang, Baoliang Chen, Chiheng Chu. Visualizing Electron Transfer through Silver Nanoparticle Formation and Photothermal Imaging: A Case Study of Nanoscale Zerovalent Iron. Environmental Science & Technology 2025, 59 (2) , 1457-1466. https://doi.org/10.1021/acs.est.4c11435
    2. Peijie Yang, Ying Wang, Xiangwei Tian, Yifan Cui, Tao Jiang, Guangliang Liu, Yanwei Liu, Yingying Guo, Ligang Hu, Jianbo Shi, Qinghua Zhang, Yongguang Yin, Yong Cai, Guibin Jiang. Heating-Induced Redox Property Dynamics of Peat Soil Dissolved Organic Matter in a Simulated Peat Fire: Electron Exchange Capacity and Molecular Characteristics. Environmental Science & Technology 2025, 59 (1) , 489-500. https://doi.org/10.1021/acs.est.4c09174
    3. Wei Cheng, Jiabin Li, Jie Sun, Tao Luo, Rémi Marsac, Jean-François Boily, Khalil Hanna. Nalidixic Acid and Fe(II)/Cu(II) Coadsorption at Goethite and Akaganéite Surfaces. Environmental Science & Technology 2023, 57 (41) , 15680-15692. https://doi.org/10.1021/acs.est.3c05727
    4. Srinidhi Lokesh, Myron L. Lard, Robert L. Cook, Yu Yang. Critical Role of Semiquinones in Reductive Dehalogenation. Environmental Science & Technology 2023, 57 (38) , 14218-14225. https://doi.org/10.1021/acs.est.3c03981
    5. Pengshuai Zhang, Tengyu Zhang, Jiaqi Chen, Jingxin Zhang, Yiliang He. Novel Role of Hematite in Anaerobic Digestion: Manipulating Membrane-Bound Electron Transport Chain by the Construction of Biological Capacitors with Humic Acid. Environmental Science & Technology 2023, 57 (29) , 10828-10837. https://doi.org/10.1021/acs.est.3c01867
    6. Guoqiang Zhao, Mengxi Tan, Binbin Wu, Xiaoshan Zheng, Ruoxuan Xiong, Baoliang Chen, Andreas Kappler, Chiheng Chu. Redox Oscillations Activate Thermodynamically Stable Iron Minerals for Enhanced Reactive Oxygen Species Production. Environmental Science & Technology 2023, 57 (23) , 8628-8637. https://doi.org/10.1021/acs.est.3c02302
    7. Xueji You, Shuguang Liu, Erin C. Berns-Herrboldt, Chaomeng Dai, Charles J. Werth. Kinetics of Hydroxyl Radical Production from Oxygenation of Reduced Iron Minerals and Their Reactivity with Trichloroethene: Effects of Iron Amounts, Iron Species, and Sulfate Reducing Bacteria. Environmental Science & Technology 2023, 57 (12) , 4892-4904. https://doi.org/10.1021/acs.est.3c00122
    8. Thomas C. Robinson, Drew E. Latta, Johna Leddy, Michelle M. Scherer. Redox Potentials of Magnetite Suspensions under Reducing Conditions. Environmental Science & Technology 2022, 56 (23) , 17454-17461. https://doi.org/10.1021/acs.est.2c05196
    9. Xue-Meng Wang, Li Wang, Lin Chen, Li-Jiao Tian, Ting-Ting Zhu, Qi-Zhong Wu, Yi-Rong Hu, Li-Rong Zheng, Wen-Wei Li. AQDS Activates Extracellular Synergistic Biodetoxification of Copper and Selenite via Altering the Coordination Environment of Outer-Membrane Proteins. Environmental Science & Technology 2022, 56 (19) , 13786-13797. https://doi.org/10.1021/acs.est.2c04130
    10. Jianzhi Huang, Adele Jones, T. David Waite, Yiling Chen, Xiaopeng Huang, Kevin M. Rosso, Andreas Kappler, Muammar Mansor, Paul G. Tratnyek, Huichun Zhang. Fe(II) Redox Chemistry in the Environment. Chemical Reviews 2021, 121 (13) , 8161-8233. https://doi.org/10.1021/acs.chemrev.0c01286
    11. Peng Zhang, Philippe Van Cappellen, Kunfu Pi, Songhu Yuan. Oxidation of Fe(II) by Flavins under Anoxic Conditions. Environmental Science & Technology 2020, 54 (18) , 11622-11630. https://doi.org/10.1021/acs.est.0c02916
    12. Yuge Bai, Tianran Sun, Largus T. Angenent, Stefan B. Haderlein, Andreas Kappler. Electron Hopping Enables Rapid Electron Transfer between Quinone-/Hydroquinone-Containing Organic Molecules in Microbial Iron(III) Mineral Reduction. Environmental Science & Technology 2020, 54 (17) , 10646-10653. https://doi.org/10.1021/acs.est.0c02521
    13. Yiran Dong, Robert A. Sanford, Maxim I. Boyanov, Theodore M. Flynn, Edward J. O’Loughlin, Kenneth M. Kemner, Samantha George, Kaitlyn E. Fouke, Shuyi Li, Dongmei Huang, Shuzhen Li, Bruce W. Fouke. Controls on Iron Reduction and Biomineralization over Broad Environmental Conditions as Suggested by the Firmicutes Orenia metallireducens Strain Z6. Environmental Science & Technology 2020, 54 (16) , 10128-10140. https://doi.org/10.1021/acs.est.0c03853
    14. Yuge Bai, Adrian Mellage, Olaf A. Cirpka, Tianran Sun, Largus T. Angenent, Stefan B. Haderlein, Andreas Kappler. AQDS and Redox-Active NOM Enables Microbial Fe(III)-Mineral Reduction at cm-Scales. Environmental Science & Technology 2020, 54 (7) , 4131-4139. https://doi.org/10.1021/acs.est.9b07134
    15. Chris M. D. Kocur, Dimin Fan, Paul G. Tratnyek, Richard L. Johnson. Predicting Abiotic Reduction Rates Using Cryogenically Collected Soil Cores and Mediated Reduction Potential Measurements. Environmental Science & Technology Letters 2020, 7 (1) , 20-26. https://doi.org/10.1021/acs.estlett.9b00665
    16. Edisson Subdiaga, Silvia Orsetti, Stefan B. Haderlein. Effects of Sorption on Redox Properties of Natural Organic Matter. Environmental Science & Technology 2019, 53 (24) , 14319-14328. https://doi.org/10.1021/acs.est.9b04684
    17. Jianzhi Huang, Qihuang Wang, Zimeng Wang, Huichun Zhang. Interactions and Reductive Reactivity in Ternary Mixtures of Fe(II), Goethite, and Phthalic Acid Based on a Combined Experimental and Modeling Approach. Langmuir 2019, 35 (25) , 8220-8227. https://doi.org/10.1021/acs.langmuir.9b00538
    18. Xiaomin Li, Liang Liu, Yundang Wu, Tongxu Liu. Determination of the Redox Potentials of Solution and Solid Surface of Fe(II) Associated with Iron Oxyhydroxides. ACS Earth and Space Chemistry 2019, 3 (5) , 711-717. https://doi.org/10.1021/acsearthspacechem.9b00001
    19. Huichun Zhang, Kowsalya Devi Rasamani, Shifa Zhong, Saru Taujale, Laura R. Baratta, Zijie Yang. Dissolution, Adsorption, and Redox Reaction in Ternary Mixtures of Goethite, Aluminum Oxides, and Hydroquinone. The Journal of Physical Chemistry C 2019, 123 (7) , 4371-4379. https://doi.org/10.1021/acs.jpcc.8b12217
    20. Huan Peng, Carolyn I. Pearce, Alpha T. N’Diaye, Zhenli Zhu, Jinren Ni, Kevin M. Rosso, Juan Liu. Redistribution of Electron Equivalents between Magnetite and Aqueous Fe2+ Induced by a Model Quinone Compound AQDS. Environmental Science & Technology 2019, 53 (4) , 1863-1873. https://doi.org/10.1021/acs.est.8b05098
    21. Sungjun Bae, Richard N. Collins, T. David Waite, Khalil Hanna. Advances in Surface Passivation of Nanoscale Zerovalent Iron: A Critical Review. Environmental Science & Technology 2018, 52 (21) , 12010-12025. https://doi.org/10.1021/acs.est.8b01734
    22. Sydney M. Stewart, Thomas B. Hofstetter, Prachi Joshi, Christopher A. Gorski. Linking Thermodynamics to Pollutant Reduction Kinetics by Fe2+ Bound to Iron Oxides. Environmental Science & Technology 2018, 52 (10) , 5600-5609. https://doi.org/10.1021/acs.est.8b00481
    23. M. Usman, J. M. Byrne, A. Chaudhary, S. Orsetti, K. Hanna, C. Ruby, A. Kappler, S. B. Haderlein. Magnetite and Green Rust: Synthesis, Properties, and Environmental Applications of Mixed-Valent Iron Minerals. Chemical Reviews 2018, 118 (7) , 3251-3304. https://doi.org/10.1021/acs.chemrev.7b00224
    24. Adele M. Jones, Cassandra A. Murphy, T. David Waite, and Richard N. Collins . Fe(II) Interactions with Smectites: Temporal Changes in Redox Reactivity and the Formation of Green Rust. Environmental Science & Technology 2017, 51 (21) , 12573-12582. https://doi.org/10.1021/acs.est.7b01793
    25. Christopher A. Gorski, Rebecca Edwards, Michael Sander, Thomas B. Hofstetter, and Sydney M. Stewart . Thermodynamic Characterization of Iron Oxide–Aqueous Fe2+ Redox Couples. Environmental Science & Technology 2016, 50 (16) , 8538-8547. https://doi.org/10.1021/acs.est.6b02661
    26. Dimin Fan, Miranda J. Bradley, Adrian W. Hinkle, Richard L. Johnson, and Paul G. Tratnyek . Chemical Reactivity Probes for Assessing Abiotic Natural Attenuation by Reducing Iron Minerals. Environmental Science & Technology 2016, 50 (4) , 1868-1876. https://doi.org/10.1021/acs.est.5b05800
    27. Dimin Fan, Shengwen Chen, Richard L. Johnson, and Paul G. Tratnyek . Field Deployable Chemical Redox Probe for Quantitative Characterization of Carboxymethylcellulose Modified Nano Zerovalent Iron. Environmental Science & Technology 2015, 49 (17) , 10589-10597. https://doi.org/10.1021/acs.est.5b02804
    28. Andrew J. Frierdich, Maria Helgeson, Chengshuai Liu, Chongmin Wang, Kevin M. Rosso, and Michelle M. Scherer . Iron Atom Exchange between Hematite and Aqueous Fe(II). Environmental Science & Technology 2015, 49 (14) , 8479-8486. https://doi.org/10.1021/acs.est.5b01276
    29. Michael Sander, Thomas B. Hofstetter, and Christopher A. Gorski . Electrochemical Analyses of Redox-Active Iron Minerals: A Review of Nonmediated and Mediated Approaches. Environmental Science & Technology 2015, 49 (10) , 5862-5878. https://doi.org/10.1021/acs.est.5b00006
    30. Piotr Zarzycki, Sebastien Kerisit, and Kevin M. Rosso . Molecular Dynamics Study of Fe(II) Adsorption, Electron Exchange, and Mobility at Goethite (α-FeOOH) Surfaces. The Journal of Physical Chemistry C 2015, 119 (6) , 3111-3123. https://doi.org/10.1021/jp511086r
    31. Annaleise R. Klein, Ewen Silvester, and Conor F. Hogan . Mediated Electron Transfer between FeII Adsorbed onto Hydrous Ferric Oxide and a Working Electrode. Environmental Science & Technology 2014, 48 (18) , 10835-10842. https://doi.org/10.1021/es501561d
    32. Ellen J. Robertson, Andrew P. Carpenter, Courtney M. Olson, Regina K. Ciszewski, and Geraldine L. Richmond . Metal Ion Induced Adsorption and Ordering of Charged Macromolecules at the Aqueous/Hydrophobic Liquid Interface. The Journal of Physical Chemistry C 2014, 118 (28) , 15260-15273. https://doi.org/10.1021/jp503051w
    33. Junye Ma, Wanchao Yu, Xuan Li, Shuxuan Chen, Binbin Wu, Jingyi Wang, Baoliang Chen, Chiheng Chu. Quinones stimulate reactive oxygen species production from zero-valent iron over centimeter distances. Water Research 2025, 274 , 123141. https://doi.org/10.1016/j.watres.2025.123141
    34. Jia Wang, Mengna Chen, Yalong Li, Yang Yang, Zuoming Xie. Extracellular electron shuttles induced transformation and mobilization of Fe/As with the occurrence of biogenic vivianite. Ecotoxicology and Environmental Safety 2025, 290 , 117779. https://doi.org/10.1016/j.ecoenv.2025.117779
    35. Huahua Li, Hua Chen, Xinyuan He, Yi Lu, Haichun Gao, Hao Song, Shaoan Cheng. Enhancing the nitrogen removal of anammox sludge by setting up novel redox mediators-mediated anammox process. Chemosphere 2024, 365 , 143360. https://doi.org/10.1016/j.chemosphere.2024.143360
    36. Jiajia Li, Mengzhen Zhu, Manhua Chen, Qiong Mei, Wenzhuo Chen, Yuping Tang, Qizhao Wang. Natural redox mediator anthraquinone aloe-emodin facilitated the in-situ mineralized γ-FeO(OH) membrane for the removal of tannic acid through photocatalytic-PMS activation. Journal of Hazardous Materials 2024, 478 , 135464. https://doi.org/10.1016/j.jhazmat.2024.135464
    37. Yangmei Fei, Baogang Zhang, Qinghao Zhang, Dandan Chen, Wengeng Cao, Alistair G.L. Borthwick. Multiple pathways of vanadate reduction and denitrification mediated by denitrifying bacterium Acidovorax sp. strain BoFeN1. Water Research 2024, 257 , 121747. https://doi.org/10.1016/j.watres.2024.121747
    38. Yanping Ji, Jiang Xu, Lizhong Zhu. Redox potential model for guiding moderate oxidation of polycyclic aromatic hydrocarbons in soils. Journal of Hazardous Materials 2024, 471 , 134443. https://doi.org/10.1016/j.jhazmat.2024.134443
    39. Longyi Lv, Bingbing Yin, Shiyang Zhang, Weiguang Li, Wenfang Gao, Pengfei Wang, Xiaoyang Liu, Li Sun, Jinsong Liang, Guangming Zhang, Zhijun Ren. Review on intensified treatment of refractory wastewater in anaerobic digestion based on extracellular electron transfer: Mechanisms, strategies, and applications. Chemical Engineering Journal 2024, 489 , 151456. https://doi.org/10.1016/j.cej.2024.151456
    40. Huan Peng, Zhenli Zhu, Carolyn I. Pearce, Anxu Sheng, Mingjun Nie, Alpha T. N'Diaye, Xin Zhang, Kevin M. Rosso, Juan Liu. Effects of particle size and AQDS on the flow of electron equivalents between magnetite and aqueous Fe2+. Geochimica et Cosmochimica Acta 2024, 373 , 271-281. https://doi.org/10.1016/j.gca.2024.04.010
    41. Ethan Howley, Anna Mangus, Dewight Williams, César I. Torres. Intracytoplasmic membranes develop in Geobacter sulfurreducens under thermodynamically limiting conditions. npj Biofilms and Microbiomes 2023, 9 (1) https://doi.org/10.1038/s41522-023-00384-6
    42. Adewale Johnson Folayan, Adewale Dosunmu, Boniface Oriji. Aerobic and anaerobic biodegradation of synthetic drilling fluids in marine deep-water offshore environments: Process variables and empirical investigations. Energy Reports 2023, 9 , 2153-2168. https://doi.org/10.1016/j.egyr.2023.01.034
    43. Mengmeng Tang, Chaoyong Wang, Zaitian Dong, Qianjin Che, Zetang Wang, Yuxuan Zhu. The Effects of Aniline-Promoted Electron Shuttle-Mediated Goethite Reduction by Shewanella oneidensis MR-1 and theDegradation of Aniline. Water 2023, 15 (20) , 3686. https://doi.org/10.3390/w15203686
    44. Yanping Ji, Jiang Xu, Lizhong Zhu. Predicting laterite redox potential with iron activity and electron transfer term. Chemosphere 2023, 328 , 138519. https://doi.org/10.1016/j.chemosphere.2023.138519
    45. Huajun Feng, Wanyue Yang, Yifeng Zhang, Yangcheng Ding, Long Chen, Ying Kang, Huan Huang, Ruya Chen. Electroactive microorganism-assisted remediation of groundwater contamination: Advances and challenges. Bioresource Technology 2023, 377 , 128916. https://doi.org/10.1016/j.biortech.2023.128916
    46. Hanyue Zhang, Lirong Zheng, Yang Yang, Wenjing Zhou, Xinyue Shen, Shiwen Hu, Chongxuan Liu. Insight into the model quinone compound AQDS mediated the Mn(II) abiotic oxidation and mineral mineralization on hematite surface under oxic and neutral conditions. Applied Geochemistry 2023, 152 , 105658. https://doi.org/10.1016/j.apgeochem.2023.105658
    47. Wei Wang, Youyou Hu, Xin Qi, Yanqing He, Yuecheng She, Zhengkui Li. Endogenous mechanism of microbial functional gene and exogenous nitrogen removal factors driven by sustainable iron-nitrogen cycling. Journal of Cleaner Production 2023, 391 , 136043. https://doi.org/10.1016/j.jclepro.2023.136043
    48. Yaning Wang, Shuang Ren, Peng Wang, Bo Wang, Kaiyao Hu, Jie Li, Yae Wang, Zongxing Li, Sumei Li, Wang Li, Yuzhuo Peng. Autotrophic denitrification using Fe(II) as an electron donor: A novel prospective denitrification process. Science of The Total Environment 2023, 858 , 159721. https://doi.org/10.1016/j.scitotenv.2022.159721
    49. Ying Liu, Qian Zhao, Chengmei Liao, Lili Tian, Xuejun Yan, Nan Li, Xin Wang. Anaerobic bioreduction of elemental sulfur improves bioavailability of Fe (III) oxides for bioremediation. Science of The Total Environment 2023, 858 , 159794. https://doi.org/10.1016/j.scitotenv.2022.159794
    50. Chunlei Liu, Gong Zhang, Wei Zhang, Zhenao Gu, Guibing Zhu. Specifically adsorbed ferrous ions modulate interfacial affinity for high-rate ammonia electrosynthesis from nitrate in neutral media. Proceedings of the National Academy of Sciences 2023, 120 (3) https://doi.org/10.1073/pnas.2209979120
    51. Dongyu Cui, Wenbing Tan, Dongbei Yue, Hong Yu, Qiuling Dang, Beidou Xi. Reduction capacity of humic acid and its association with the evolution of redox structures during composting. Waste Management 2022, 153 , 188-196. https://doi.org/10.1016/j.wasman.2022.09.003
    52. Yingbin Hu, Ning Li, Jin Jiang, Yanbin Xu, Xiaonan Luo, Jie Cao. Simultaneous Feammox and anammox process facilitated by activated carbon as an electron shuttle for autotrophic biological nitrogen removal. Frontiers of Environmental Science & Engineering 2022, 16 (7) https://doi.org/10.1007/s11783-021-1498-z
    53. Nana O.-A. Osafo, Jiří Jan, Astolfo Valero, Petr Porcal, Daniel A. Petrash, Jakub Borovec. Organic matter character as a critical factor determining the fate and stability of its association with iron in sediments. Journal of Soils and Sediments 2022, 22 (6) , 1865-1875. https://doi.org/10.1007/s11368-022-03207-x
    54. Mingwei Wang, Zhiqiang Zhao, Yang Li, Song Liang, Yutong Meng, Tengfei Ren, Xiaoyuan Zhang, Yaobin Zhang. Control the greenhouse gas emission via mediating the dissimilatory iron reduction: Fulvic acid inhibit secondary mineralization of ferrihydrite. Water Research 2022, 218 , 118501. https://doi.org/10.1016/j.watres.2022.118501
    55. Shaojian Zhang, Stefan Peiffer, Xiaoting Liao, Zhengheng Yang, Xiaoming Ma, Di He. Sulfidation of ferric (hydr)oxides and its implication on contaminants transformation: a review. Science of The Total Environment 2022, 816 , 151574. https://doi.org/10.1016/j.scitotenv.2021.151574
    56. Muhammad Farhan Hil Me, Mohd Nur Ikhmal Salehmin, Swee Su Lim, Hau Seung Jeremy Wong. Principle and Working Mechanism of Microbial Fuel Cell. 2022, 13-23. https://doi.org/10.1007/978-981-19-2681-5_2
    57. Nahid Chaudhary, Manika Khanuja. Electrochemistry—Concepts and methodologies. 2022, 31-50. https://doi.org/10.1016/B978-0-12-823148-7.00002-7
    58. Ning Li, Jin Jiang, Yanbin Xu, Hanping Pan, Xiaonan Luo, Yingbin Hu, Jie Cao. Insoluble carbonaceous materials as electron shuttles enhance the anaerobic/anoxic bioremediation of redox pollutants: Recent advances. Chinese Chemical Letters 2022, 33 (1) , 71-79. https://doi.org/10.1016/j.cclet.2021.06.064
    59. Tianran Sun, Juan J. L. Guzman, James D. Seward, Akio Enders, Joseph B. Yavitt, Johannes Lehmann, Largus T. Angenent. Suppressing peatland methane production by electron snorkeling through pyrogenic carbon in controlled laboratory incubations. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-24350-y
    60. Yong Guo, Tomo Aoyagi, Tomoyuki Hori. Comparative insights into genome signatures of ferric iron oxide- and anode-stimulated Desulfuromonas spp. strains. BMC Genomics 2021, 22 (1) https://doi.org/10.1186/s12864-021-07809-6
    61. Na Zhang, Man Tong, Songhu Yuan. Redox transformation of structural iron in nontronite induced by quinones under anoxic conditions. Science of The Total Environment 2021, 801 , 149637. https://doi.org/10.1016/j.scitotenv.2021.149637
    62. Luis Cáceres, Yohana Frez, Felipe Galleguillos, Alvaro Soliz, Benito Gómez-Silva, Jorge Borquez. Aqueous Dried Extract of Skytanthus acutus Meyen as Corrosion Inhibitor of Carbon Steel in Neutral Chloride Solutions. Metals 2021, 11 (12) , 1992. https://doi.org/10.3390/met11121992
    63. S. Peiffer, A. Kappler, S. B. Haderlein, C. Schmidt, J. M. Byrne, S. Kleindienst, C. Vogt, H. H. Richnow, M. Obst, L. T. Angenent, C. Bryce, C. McCammon, B. Planer-Friedrich. A biogeochemical–hydrological framework for the role of redox-active compounds in aquatic systems. Nature Geoscience 2021, 14 (5) , 264-272. https://doi.org/10.1038/s41561-021-00742-z
    64. Cristian S. Portilla-Delgado, Ana M. García-Mora, Frederic Dappozze, Chantal Guillard, Luis A. Galeano. Visible-Light Enhanced Catalytic Wet Peroxide Oxidation of Natural Organic Matter in the Presence of Al/Fe-Pillared Clay. Catalysts 2021, 11 (5) , 637. https://doi.org/10.3390/catal11050637
    65. Carolina Merino, Yakov Kuzyakov, Karina Godoy, Ignacio Jofré, Francisco Nájera, Francisco Matus. Iron-reducing bacteria decompose lignin by electron transfer from soil organic matter. Science of The Total Environment 2021, 761 , 143194. https://doi.org/10.1016/j.scitotenv.2020.143194
    66. Miroslav Honty, Lander Frederickx, Dipanjan Banerjee, Alwina Hoving. Fe distribution, redox state and electrochemical activity in Boom Clay. Applied Geochemistry 2021, 125 , 104857. https://doi.org/10.1016/j.apgeochem.2020.104857
    67. Rabialtu Sulihah Binti Ibrahim, Zainura Zainon Noor, Nurul Huda Baharuddin, Noor Sabrina Ahmad Mutamim, Adhi Yuniarto. Microbial Fuel Cell Membrane Bioreactor in Wastewater Treatment, Electricity Generation and Fouling Mitigation. Chemical Engineering & Technology 2020, 43 (10) , 1908-1921. https://doi.org/10.1002/ceat.202000067
    68. Funda Ozkok, Yesim Muge Sahin, Vildan Enisoglu Atalay, Kamala Asgarova, Nihal Onul, Tunc Catal. Sensitive detection of iron (II) sulfate with a novel reagent using spectrophotometry. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020, 240 , 118631. https://doi.org/10.1016/j.saa.2020.118631
    69. Shun Li, Andreas Kappler, Yongguan Zhu, Stefan B. Haderlein. Mediated electrochemical analysis as emerging tool to unravel links between microbial redox cycling of natural organic matter and anoxic nitrogen cycling. Earth-Science Reviews 2020, 208 , 103281. https://doi.org/10.1016/j.earscirev.2020.103281
    70. Hao Qiu, Hang Xu, Zibo Xu, Bing Xia, Willie J.G.M. Peijnenburg, Xinde Cao, Huihui Du, Ling Zhao, Rongliang Qiu, Erkai He. The shuttling effects and associated mechanisms of different types of iron oxide nanoparticles for Cu(II) reduction by Geobacter sulfurreducens. Journal of Hazardous Materials 2020, 393 , 122390. https://doi.org/10.1016/j.jhazmat.2020.122390
    71. Márcia S.S. Santos, Luciana Peixoto, João Azevedo, Ricardo A.R. Monteiro, Celia Dias-Ferreira, M. Madalena Alves, Adélio Mendes. Microbially-charged electrochemical fuel for energy storage in a redox flow cell. Journal of Power Sources 2020, 445 , 227307. https://doi.org/10.1016/j.jpowsour.2019.227307
    72. Ania S. Pavitt, Paul G. Tratnyek. Electrochemical characterization of natural organic matter by direct voltammetry in an aprotic solvent. Environmental Science: Processes & Impacts 2019, 21 (10) , 1664-1683. https://doi.org/10.1039/C9EM00313D
    73. Saber Mohammadi Chalanchi, Ali Ebrahimi, Alireza Nowroozi. Complexes of damirone A/C, batzelline A/D, makaluvamine O and makaluvone with guanidinium and magnesium cations: a theoretical study. Structural Chemistry 2019, 30 (5) , 1635-1646. https://doi.org/10.1007/s11224-019-01325-w
    74. Hanyu Wang, Alexander Johs, James F. Browning, David Alan Tennant, Liyuan Liang. Electrochemical properties of the interaction between cytochrome c and a hematite nanowire array electrode. Bioelectrochemistry 2019, 129 , 162-169. https://doi.org/10.1016/j.bioelechem.2019.05.012
    75. Meng Li, Dong Wang, Xiaoduo Liu, Jingmei Sun. Evaluation and correction on quinones’ quantification errors: Derived from the coexistence of different quinone species and pH-sensitive feature. Chemosphere 2019, 230 , 67-75. https://doi.org/10.1016/j.chemosphere.2019.04.146
    76. Jie Cao, Jin Huang, Huaping Dong, Jianfa Li, Jianxin Shou, Yimin Li. Effects of surfactants on the removal of nitrobenzene by Fe(II) sorbed on goethite. Journal of Colloid and Interface Science 2019, 552 , 764-770. https://doi.org/10.1016/j.jcis.2019.05.095
    77. Melany Ruiz-Urigüen, Daniel Steingart, Peter R. Jaffé. Oxidation of ammonium by Feammox Acidimicrobiaceae sp. A6 in anaerobic microbial electrolysis cells. Environmental Science: Water Research & Technology 2019, 5 (9) , 1582-1592. https://doi.org/10.1039/C9EW00366E
    78. Lipeng Gu, Bin Huang, Fengxia Han, Zhixiang Xu, Dong Ren, Huan He, Xuejun Pan, Dionysios D. Dionysiou. Intermittent light and microbial action of mixed endogenous source DOM affects degradation of 17β-estradiol day after day in a relatively deep natural anaerobic aqueous environment. Journal of Hazardous Materials 2019, 369 , 40-49. https://doi.org/10.1016/j.jhazmat.2019.02.017
    79. Yanping Zhu, Min Wu, Naiyun Gao, Wenhai Chu, Liuzhu Zhao, Qiongfang Wang. Enhanced dissimilatory perchlorate reduction in the presence of humic acids or 2,6-anthraquinone disulfonate as quinone redox mediators. Chemical Engineering Journal 2019, 357 , 75-83. https://doi.org/10.1016/j.cej.2018.09.061
    80. Shuai Lan, Xiaoming Wang, Peng Yang, Zhangjie Qin, Mengqiang Zhu, Jing Zhang, Fan Liu, Wenfeng Tan, Qiaoyun Huang, Xionghan Feng. The catalytic effect of AQDS as an electron shuttle on Mn(II) oxidation to birnessite on ferrihydrite at circumneutral pH. Geochimica et Cosmochimica Acta 2019, 247 , 175-190. https://doi.org/10.1016/j.gca.2018.12.018
    81. Jin Huang, Jie Cao, Ni Tu, Huaping Dong, Jianfa Li, Jianxin Shou, Yimin Li. Effect of surfactants on the removal of nitrobenzene by Fe-bearing montmorillonite/Fe(II). Journal of Colloid and Interface Science 2019, 533 , 409-415. https://doi.org/10.1016/j.jcis.2018.08.090
    82. Bo Gao, Sidra Iftekhar, Varsha Srivastava, Bhairavi Doshi, Mika Sillanpää. Insights into the generation of reactive oxygen species (ROS) over polythiophene/ZnIn 2 S 4 based on different modification processing. Catalysis Science & Technology 2018, 8 (8) , 2186-2194. https://doi.org/10.1039/C8CY00303C
    83. Bin Huang, Shumei Gao, Zhixiang Xu, Huan He, Xuejun Pan. The Functional Mechanisms and Application of Electron Shuttles in Extracellular Electron Transfer. Current Microbiology 2018, 75 (1) , 99-106. https://doi.org/10.1007/s00284-017-1386-8
    84. Xin-Nan Wang, Guo-Xin Sun, Xiao-Ming Li, Thomas A. Clarke, Yong-Guan Zhu. Electron shuttle-mediated microbial Fe(III) reduction under alkaline conditions. Journal of Soils and Sediments 2018, 18 (1) , 159-168. https://doi.org/10.1007/s11368-017-1736-y
    85. Federico dos Reis Copello, Leonardo Lizarraga, Silvia Orsetti, Fernando V. Molina. Swelling and aggregation of Leonardite upon pH change and PbII binding: an AFM study. Environmental Chemistry 2018, 15 (3) , 162. https://doi.org/10.1071/EN17224
    86. Adele M. Jones, Richard N. Collins, T. David Waite. Redox characterization of the Fe(II)-catalyzed transformation of ferrihydrite to goethite. Geochimica et Cosmochimica Acta 2017, 218 , 257-272. https://doi.org/10.1016/j.gca.2017.09.024
    87. Bo Gao, Zahra Safaei, Indu Babu, Sidra Iftekhar, Evgenia Iakovleva, Varsha Srivastava, Bhairavi Doshi, Samia Ben Hammouda, Simo Kalliola, Mika Sillanpää. Modification of ZnIn2S4 by anthraquinone-2-sulfonate doped polypyrrole as acceptor-donor system for enhanced photocatalytic degradation of tetracycline. Journal of Photochemistry and Photobiology A: Chemistry 2017, 348 , 150-160. https://doi.org/10.1016/j.jphotochem.2017.08.037
    88. Olga Taran. Electron Transfer between Electrically Conductive Minerals and Quinones. Frontiers in Chemistry 2017, 5 https://doi.org/10.3389/fchem.2017.00049
    89. Ann-Kathrin Ghattas, Ferdinand Fischer, Arne Wick, Thomas A. Ternes. Anaerobic biodegradation of (emerging) organic contaminants in the aquatic environment. Water Research 2017, 116 , 268-295. https://doi.org/10.1016/j.watres.2017.02.001
    90. Rui Han, Xiaomin Li, Yundang Wu, Fangbai Li, Tongxu Liu. In situ spectral kinetics of quinone reduction by c-type cytochromes in intact Shewanella oneidensis MR-1 cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2017, 520 , 505-513. https://doi.org/10.1016/j.colsurfa.2017.02.023
    91. Ya Ting Shen, Yu Fang Song. Effects of organic ligands on Pb absorption and speciation changes in Arabidopsis as determined by micro X-ray fluorescence and X-ray absorption near-edge structure analysis. Journal of Synchrotron Radiation 2017, 24 (2) , 463-468. https://doi.org/10.1107/S1600577517001941
    92. Caleb E Levar, Colleen L Hoffman, Aubrey J Dunshee, Brandy M Toner, Daniel R Bond. Redox potential as a master variable controlling pathways of metal reduction by Geobacter sulfurreducens. The ISME Journal 2017, 11 (3) , 741-752. https://doi.org/10.1038/ismej.2016.146
    93. Weihuang Zhu, Dan Yu, Mengran Shi, Yongtao Zhang, Tinglin Huang. Quinone-Mediated Microbial Goethite Reduction and Transformation of Redox Mediator, Anthraquinone-2,6-Disulfonate (AQDS). Geomicrobiology Journal 2017, 34 (1) , 27-36. https://doi.org/10.1080/01490451.2015.1137658
    94. Jennifer H. Strehlau, Brandy M. Toner, William A. Arnold, R. Lee Penn. Accessible reactive surface area and abiotic redox reactivity of iron oxyhydroxides in acidic brines. Geochimica et Cosmochimica Acta 2017, 197 , 345-355. https://doi.org/10.1016/j.gca.2016.10.015
    95. Adele M. Jones, Andrew S. Kinsela, Richard N. Collins, T. David Waite. The reduction of 4-chloronitrobenzene by Fe(II)-Fe(III) oxide systems - correlations with reduction potential and inhibition by silicate. Journal of Hazardous Materials 2016, 320 , 143-149. https://doi.org/10.1016/j.jhazmat.2016.08.031
    96. Yundang Wu, Fangbai Li, Tongxu Liu, Rui Han, Xiaobo Luo. pH dependence of quinone-mediated extracellular electron transfer in a bioelectrochemical system. Electrochimica Acta 2016, 213 , 408-415. https://doi.org/10.1016/j.electacta.2016.07.122
    97. Weihuang Zhu, Mengran Shi, Dan Yu, Chongxuan Liu, Tinglin Huang, Fengchang Wu. Characteristics and Kinetic Analysis of AQS Transformation and Microbial Goethite Reduction:Insight into “Redox mediator-Microbe-Iron oxide” Interaction Process. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep23718
    98. Stefan Peiffer, Moli Wan. Reductive Dissolution and Reactivity of Ferric (Hydr)oxides: New Insights and Implications for Environmental Redox Processes. 2016, 31-52. https://doi.org/10.1002/9783527691395.ch3
    99. Wenxiu Qin, Yujun Wang, Guodong Fang, Tongliang Wu, Cun Liu, Dongmei Zhou. Evidence for the generation of reactive oxygen species from hydroquinone and benzoquinone: Roles in arsenite oxidation. Chemosphere 2016, 150 , 71-78. https://doi.org/10.1016/j.chemosphere.2016.01.119
    100. Maximilian P. Lau, Michael Sander, Jörg Gelbrecht, Michael Hupfer. Spatiotemporal redox dynamics in a freshwater lake sediment under alternating oxygen availabilities: combined analyses of dissolved and particulate electron acceptors. Environmental Chemistry 2016, 13 (5) , 826. https://doi.org/10.1071/EN15217
    Load all citations

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2013, 47, 24, 14161–14168
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es403658g
    Published November 15, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    3782

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.