ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Evidence of Remediation-Induced Alteration of Subsurface Poly- and Perfluoroalkyl Substance Distribution at a Former Firefighter Training Area

View Author Information
Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
CB&I Federal Services, LLC, Lawrenceville, New Jersey 08648, United States
CB&I Federal Services, Inc., Denver, Colorado 80237, United States
§Department of Chemistry and Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, California 94720, United States
Cite this: Environ. Sci. Technol. 2014, 48, 12, 6644–6652
Publication Date (Web):May 27, 2014
https://doi.org/10.1021/es5006187
Copyright © 2014 American Chemical Society

    Article Views

    3941

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (1 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Poly- and perfluoroalkyl substances (PFASs) are a class of fluorinated chemicals that are utilized in firefighting and have been reported in groundwater and soil at several firefighter training areas. In this study, soil and groundwater samples were collected from across a former firefighter training area to examine the extent to which remedial activities have altered the composition and spatial distribution of PFASs in the subsurface. Log Koc values for perfluoroalkyl acids (PFAAs), estimated from analysis of paired samples of groundwater and aquifer solids, indicated that solid/water partitioning was not entirely consistent with predictions based on laboratory studies. Differential PFAA transport was not strongly evident in the subsurface, likely due to remediation-induced conditions. When compared to the surface soil spatial distributions, the relative concentrations of perfluorooctanesulfonate (PFOS) and PFAA precursors in groundwater strongly suggest that remedial activities altered the subsurface PFAS distribution, presumably through significant pumping of groundwater and transformation of precursors to PFAAs. Additional evidence for transformation of PFAA precursors during remediation included elevated ratios of perfluorohexanesulfonate (PFHxS) to PFOS in groundwater near oxygen sparging wells.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Figures S1–S10 and Tables S1–S9. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 184 publications.

    1. Christopher G Scheitlin, Kavitha Dasu, Stephen Rosansky, Lindy Espina Dejarme, Dinusha Siriwardena, Jonathan Thorn, Larry Mullins, Ian Haggerty, Krenar Shqau, Julia Stowe. Application of Supercritical Water Oxidation to Effectively Destroy Per- and Polyfluoroalkyl Substances in Aqueous Matrices. ACS ES&T Water 2023, 3 (8) , 2053-2062. https://doi.org/10.1021/acsestwater.2c00548
    2. Edmund H. Antell, Shan Yi, Christopher I. Olivares, Bridger J. Ruyle, Jacob T. Kim, Katerina Tsou, Fuhar Dixit, Lisa Alvarez-Cohen, David L. Sedlak. The Total Oxidizable Precursor (TOP) Assay as a Forensic Tool for Per- and Polyfluoroalkyl Substances (PFAS) Source Apportionment. ACS ES&T Water 2023, Article ASAP.
    3. Jason P. Hnatko, Chen Liu, Jack L. Elsey, Sheng Dong, John D. Fortner, Kurt D. Pennell, Linda M. Abriola, Natalie L. Cápiro. Microbial Reductive Dechlorination by a Commercially Available Dechlorinating Consortium Is Not Inhibited by Perfluoroalkyl Acids (PFAAs) at Field-Relevant Concentrations. Environmental Science & Technology 2023, 57 (22) , 8301-8312. https://doi.org/10.1021/acs.est.2c04815
    4. Nicholas Gonda, Sarah Choyke, Charles Schaefer, Christopher P. Higgins, Bettina Voelker. Hydroxyl Radical Transformations of Perfluoroalkyl Acid (PFAA) Precursors in Aqueous Film Forming Foams (AFFFs). Environmental Science & Technology 2023, 57 (21) , 8053-8064. https://doi.org/10.1021/acs.est.2c08689
    5. Bridger J. Ruyle, Lara Schultes, Denise M. Akob, Cassandra R. Harris, Michelle M. Lorah, Simon Vojta, Jitka Becanova, Shelley McCann, Heidi M. Pickard, Ann Pearson, Rainer Lohmann, Chad D. Vecitis, Elsie M. Sunderland. Nitrifying Microorganisms Linked to Biotransformation of Perfluoroalkyl Sulfonamido Precursors from Legacy Aqueous Film-Forming Foams. Environmental Science & Technology 2023, 57 (14) , 5592-5602. https://doi.org/10.1021/acs.est.2c07178
    6. Larry B. Barber, Heidi M. Pickard, David A. Alvarez, Jitka Becanova, Steffanie H. Keefe, Denis R. LeBlanc, Rainer Lohmann, Jeffery A. Steevens, Alan M. Vajda. Uptake of Per- and Polyfluoroalkyl Substances by Fish, Mussel, and Passive Samplers in Mobile-Laboratory Exposures Using Groundwater from a Contamination Plume at a Historical Fire Training Area, Cape Cod, Massachusetts. Environmental Science & Technology 2023, 57 (14) , 5544-5557. https://doi.org/10.1021/acs.est.2c06500
    7. John F. Stults, Youn Jeong Choi, Cooper Rockwell, Charles E. Schaefer, Dung D. Nguyen, Detlef R. U. Knappe, Tissa H. Illangasekare, Christopher P. Higgins. Predicting Concentration- and Ionic-Strength-Dependent Air–Water Interfacial Partitioning Parameters of PFASs Using Quantitative Structure–Property Relationships (QSPRs). Environmental Science & Technology 2023, 57 (13) , 5203-5215. https://doi.org/10.1021/acs.est.2c07316
    8. Maria Quant, Ola Willstrand, Tove Mallin, Jonna Hynynen. Ecotoxicity Evaluation of Fire-Extinguishing Water from Large-Scale Battery and Battery Electric Vehicle Fire Tests. Environmental Science & Technology 2023, 57 (12) , 4821-4830. https://doi.org/10.1021/acs.est.2c08581
    9. Jose Caleb Quezada Davalos, Michael A. Michaud, Luis E. Lowe, Emily N. Hanson, Janel E. Owens. Per- and Polyfluoroalkyl Substances (PFASs) in the Fountain Creek Watershed, Colorado Springs, CO, USA: A Yearlong Investigation of PFAS Levels in Water, Soils, and Sediments. ACS ES&T Water 2023, 3 (1) , 96-105. https://doi.org/10.1021/acsestwater.2c00440
    10. Emily K. Cook, Christopher I. Olivares, Edmund H. Antell, Shan Yi, Anastasia Nickerson, Youn Jeong Choi, Christopher P. Higgins, David L. Sedlak, Lisa Alvarez-Cohen. Biological and Chemical Transformation of the Six-Carbon Polyfluoroalkyl Substance N-Dimethyl Ammonio Propyl Perfluorohexane Sulfonamide (AmPr-FHxSA). Environmental Science & Technology 2022, 56 (22) , 15478-15488. https://doi.org/10.1021/acs.est.2c00261
    11. Peng-Fei Yan, Sheng Dong, Katherine E. Manz, Chen Liu, Matthew J. Woodcock, Melissa P. Mezzari, Linda M. Abriola, Kurt D. Pennell, Natalie L. Cápiro. Biotransformation of 8:2 Fluorotelomer Alcohol in Soil from Aqueous Film-Forming Foams (AFFFs)-Impacted Sites under Nitrate-, Sulfate-, and Iron-Reducing Conditions. Environmental Science & Technology 2022, 56 (19) , 13728-13739. https://doi.org/10.1021/acs.est.2c03669
    12. Thi Minh Hong Nguyen, Jennifer Bräunig, Rai S. Kookana, Sarit L. Kaserzon, Emma R. Knight, Hoang Nhat Phong Vo, Shervin Kabiri, Divina A. Navarro, Charles Grimison, Nicole Riddell, Christopher P. Higgins, Michael J. McLaughlin, Jochen F. Mueller. Assessment of Mobilization Potential of Per- and Polyfluoroalkyl Substances for Soil Remediation. Environmental Science & Technology 2022, 56 (14) , 10030-10041. https://doi.org/10.1021/acs.est.2c00401
    13. Vanessa Y. Maldonado, Trever Schwichtenberg, Christopher Schmokel, Suzanne E. Witt, Jennifer A. Field. Electrochemical Transformations of Perfluoroalkyl Acid (PFAA) Precursors and PFAAs in Landfill Leachates. ACS ES&T Water 2022, 2 (4) , 624-634. https://doi.org/10.1021/acsestwater.1c00479
    14. Peter B. McMahon, Andrea K. Tokranov, Laura M. Bexfield, Bruce D. Lindsey, Tyler D. Johnson, Melissa A. Lombard, Elise Watson. Perfluoroalkyl and Polyfluoroalkyl Substances in Groundwater Used as a Source of Drinking Water in the Eastern United States. Environmental Science & Technology 2022, 56 (4) , 2279-2288. https://doi.org/10.1021/acs.est.1c04795
    15. Min Liu, Gabriel Munoz, Sung Vo Duy, Sébastien Sauvé, Jinxia Liu. Per- and Polyfluoroalkyl Substances in Contaminated Soil and Groundwater at Airports: A Canadian Case Study. Environmental Science & Technology 2022, 56 (2) , 885-895. https://doi.org/10.1021/acs.est.1c04798
    16. Derek J. Muensterman, Ivan A. Titaley, Graham F. Peaslee, Leah D. Minc, Liliana Cahuas, Alix E. Rodowa, Yuki Horiuchi, Shogo Yamane, Thierry N.J. Fouquet, John C. Kissel, Courtney C. Carignan, Jennifer A. Field. Disposition of Fluorine on New Firefighter Turnout Gear. Environmental Science & Technology 2022, 56 (2) , 974-983. https://doi.org/10.1021/acs.est.1c06322
    17. Jeffrey T. McDonough, Richard H. Anderson, Johnsie R. Lang, David Liles, Kasey Matteson, Theresa Olechiw. Field-Scale Demonstration of PFAS Leachability Following In Situ Soil Stabilization. ACS Omega 2022, 7 (1) , 419-429. https://doi.org/10.1021/acsomega.1c04789
    18. Shervin Kabiri, William Tucker, Divina A. Navarro, Jennifer Bräunig, Kristie Thompson, Emma R. Knight, Thi Minh Hong Nguyen, Charles Grimison, Craig M. Barnes, Christopher P. Higgins, Jochen F. Mueller, Rai S. Kookana, Michael J. McLaughlin. Comparing the Leaching Behavior of Per- and Polyfluoroalkyl Substances from Contaminated Soils Using Static and Column Leaching Tests. Environmental Science & Technology 2022, 56 (1) , 368-378. https://doi.org/10.1021/acs.est.1c06604
    19. Sophia D. Steffens, Emily K. Cook, David L. Sedlak, Lisa Alvarez-Cohen. Under-reporting Potential of Perfluorooctanesulfonic Acid (PFOS) under High-Ionic Strength Conditions. Environmental Science & Technology Letters 2021, 8 (12) , 1032-1037. https://doi.org/10.1021/acs.estlett.1c00762
    20. Anastasia Nickerson, Andrew C. Maizel, Christopher I. Olivares, Charles E. Schaefer, Christopher P. Higgins. Simulating Impacts of Biosparging on Release and Transformation of Poly- and Perfluorinated Alkyl Substances from Aqueous Film-Forming Foam-Impacted Soil. Environmental Science & Technology 2021, 55 (23) , 15744-15753. https://doi.org/10.1021/acs.est.1c03448
    21. Andrew C. Maizel, Stefanie Shea, Anastasia Nickerson, Charles Schaefer, Christopher P. Higgins. Release of Per- and Polyfluoroalkyl Substances from Aqueous Film-Forming Foam Impacted Soils. Environmental Science & Technology 2021, 55 (21) , 14617-14627. https://doi.org/10.1021/acs.est.1c02871
    22. Yifan Ji, Ni Yan, Mark L. Brusseau, Bo Guo, Xilai Zheng, Mengfan Dai, Hejie Liu, Xin Li. Impact of a Hydrocarbon Surfactant on the Retention and Transport of Perfluorooctanoic Acid in Saturated and Unsaturated Porous Media. Environmental Science & Technology 2021, 55 (15) , 10480-10490. https://doi.org/10.1021/acs.est.1c01919
    23. Marzieh Shojaei, Naveen Kumar, Suparada Chaobol, Ke Wu, Michelle Crimi, Jennifer Guelfo. Enhanced Recovery of Per- and Polyfluoroalkyl Substances (PFASs) from Impacted Soils Using Heat Activated Persulfate. Environmental Science & Technology 2021, 55 (14) , 9805-9816. https://doi.org/10.1021/acs.est.0c08069
    24. Joseph A. Charbonnet, Alix E. Rodowa, Nayantara T. Joseph, Jennifer L. Guelfo, Jennifer A. Field, Gerrad D. Jones, Christopher P. Higgins, Damian E. Helbling, Erika F. Houtz. Environmental Source Tracking of Per- and Polyfluoroalkyl Substances within a Forensic Context: Current and Future Techniques. Environmental Science & Technology 2021, 55 (11) , 7237-7245. https://doi.org/10.1021/acs.est.0c08506
    25. Bridger J. Ruyle, Heidi M. Pickard, Denis R. LeBlanc, Andrea K. Tokranov, Colin P. Thackray, Xindi C. Hu, Chad D. Vecitis, Elsie M. Sunderland. Isolating the AFFF Signature in Coastal Watersheds Using Oxidizable PFAS Precursors and Unexplained Organofluorine. Environmental Science & Technology 2021, 55 (6) , 3686-3695. https://doi.org/10.1021/acs.est.0c07296
    26. Sarah Van Glubt, Mark L. Brusseau. Contribution of Nonaqueous-Phase Liquids to the Retention and Transport of Per and Polyfluoroalkyl Substances (PFAS) in Porous Media. Environmental Science & Technology 2021, 55 (6) , 3706-3715. https://doi.org/10.1021/acs.est.0c07355
    27. James N. Dodds, Nancy Lee M. Alexander, Kaylie I. Kirkwood, MaKayla R. Foster, Zachary R. Hopkins, Detlef R. U. Knappe, Erin S. Baker. From Pesticides to Per- and Polyfluoroalkyl Substances: An Evaluation of Recent Targeted and Untargeted Mass Spectrometry Methods for Xenobiotics. Analytical Chemistry 2021, 93 (1) , 641-656. https://doi.org/10.1021/acs.analchem.0c04359
    28. Bridger J. Ruyle, Colin P. Thackray, James P. McCord, Mark J. Strynar, Kevin A. Mauge-Lewis, Suzanne E. Fenton, Elsie M. Sunderland. Reconstructing the Composition of Per- and Polyfluoroalkyl Substances in Contemporary Aqueous Film-Forming Foams. Environmental Science & Technology Letters 2021, 8 (1) , 59-65. https://doi.org/10.1021/acs.estlett.0c00798
    29. Anastasia Nickerson, Alix E. Rodowa, David T. Adamson, Jennifer A. Field, Poonam R. Kulkarni, John J. Kornuc, Christopher P. Higgins. Spatial Trends of Anionic, Zwitterionic, and Cationic PFASs at an AFFF-Impacted Site. Environmental Science & Technology 2021, 55 (1) , 313-323. https://doi.org/10.1021/acs.est.0c04473
    30. David T. Adamson, Anastasia Nickerson, Poonam R. Kulkarni, Christopher P. Higgins, Jovan Popovic, Jennifer Field, Alix Rodowa, Charles Newell, Phil DeBlanc, John J. Kornuc. Mass-Based, Field-Scale Demonstration of PFAS Retention within AFFF-Associated Source Areas. Environmental Science & Technology 2020, 54 (24) , 15768-15777. https://doi.org/10.1021/acs.est.0c04472
    31. Ri Wang, Casey Ching, William R. Dichtel, Damian E. Helbling. Evaluating the Removal of Per- and Polyfluoroalkyl Substances from Contaminated Groundwater with Different Adsorbents Using a Suspect Screening Approach. Environmental Science & Technology Letters 2020, 7 (12) , 954-960. https://doi.org/10.1021/acs.estlett.0c00736
    32. Hao Chen, Gabriel Munoz, Sung Vo Duy, Lu Zhang, Yiming Yao, Zhen Zhao, Lixin Yi, Min Liu, Hongwen Sun, Jinxia Liu, Sébastien Sauvé. Occurrence and Distribution of Per- and Polyfluoroalkyl Substances in Tianjin, China: The Contribution of Emerging and Unknown Analogues. Environmental Science & Technology 2020, 54 (22) , 14254-14264. https://doi.org/10.1021/acs.est.0c00934
    33. Samantha M. Hall, Sharyle Patton, Myrto Petreas, Sharon Zhang, Allison L. Phillips, Kate Hoffman, Heather M. Stapleton. Per- and Polyfluoroalkyl Substances in Dust Collected from Residential Homes and Fire Stations in North America. Environmental Science & Technology 2020, 54 (22) , 14558-14567. https://doi.org/10.1021/acs.est.0c04869
    34. Trever Schwichtenberg, Dorin Bogdan, Courtney C. Carignan, Patrick Reardon, Justin Rewerts, Thomas Wanzek, Jennifer A. Field. PFAS and Dissolved Organic Carbon Enrichment in Surface Water Foams on a Northern U.S. Freshwater Lake. Environmental Science & Technology 2020, 54 (22) , 14455-14464. https://doi.org/10.1021/acs.est.0c05697
    35. Hao Chen, Min Liu, Gabriel Munoz, Sung Vo Duy, Sébastien Sauvé, Yiming Yao, Hongwen Sun, Jinxia Liu. Fast Generation of Perfluoroalkyl Acids from Polyfluoroalkyl Amine Oxides in Aerobic Soils. Environmental Science & Technology Letters 2020, 7 (10) , 714-720. https://doi.org/10.1021/acs.estlett.0c00543
    36. Casey Ching, Max J. Klemes, Brittany Trang, William R. Dichtel, Damian E. Helbling. β-Cyclodextrin Polymers with Different Cross-Linkers and Ion-Exchange Resins Exhibit Variable Adsorption of Anionic, Zwitterionic, and Nonionic PFASs. Environmental Science & Technology 2020, 54 (19) , 12693-12702. https://doi.org/10.1021/acs.est.0c04028
    37. Anastasia Nickerson, Andrew C. Maizel, Poonam R. Kulkarni, David T. Adamson, John J. Kornuc, Christopher P. Higgins. Enhanced Extraction of AFFF-Associated PFASs from Source Zone Soils. Environmental Science & Technology 2020, 54 (8) , 4952-4962. https://doi.org/10.1021/acs.est.0c00792
    38. James N. Dodds, Zachary R. Hopkins, Detlef R. U. Knappe, Erin S. Baker. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry–Mass Spectrometry (IMS-MS). Analytical Chemistry 2020, 92 (6) , 4427-4435. https://doi.org/10.1021/acs.analchem.9b05364
    39. Florian Dubocq, Thanh Wang, Leo W. Y. Yeung, Viktor Sjöberg, Anna Kärrman. Characterization of the Chemical Contents of Fluorinated and Fluorine-Free Firefighting Foams Using a Novel Workflow Combining Nontarget Screening and Total Fluorine Analysis. Environmental Science & Technology 2020, 54 (1) , 245-254. https://doi.org/10.1021/acs.est.9b05440
    40. Mark L. Brusseau, Naima Khan, Yake Wang, Ni Yan, Sarah Van Glubt, Kenneth C. Carroll. Nonideal Transport and Extended Elution Tailing of PFOS in Soil. Environmental Science & Technology 2019, 53 (18) , 10654-10664. https://doi.org/10.1021/acs.est.9b02343
    41. Erika Houtz, Miaomiao Wang, June-Soo Park. Identification and Fate of Aqueous Film Forming Foam Derived Per- and Polyfluoroalkyl Substances in a Wastewater Treatment Plant. Environmental Science & Technology 2018, 52 (22) , 13212-13221. https://doi.org/10.1021/acs.est.8b04028
    42. Charles E. Schaefer, Sarah Choyke, P. Lee Ferguson, Christina Andaya, Aniela Burant, Andrew Maizel, Timothy J. Strathmann, Christopher P. Higgins. Electrochemical Transformations of Perfluoroalkyl Acid (PFAA) Precursors and PFAAs in Groundwater Impacted with Aqueous Film Forming Foams. Environmental Science & Technology 2018, 52 (18) , 10689-10697. https://doi.org/10.1021/acs.est.8b02726
    43. Feng Xiao, Ryan A. Hanson, Svetlana A. Golovko, Mikhail Y. Golovko, William A. Arnold. PFOA and PFOS Are Generated from Zwitterionic and Cationic Precursor Compounds During Water Disinfection with Chlorine or Ozone. Environmental Science & Technology Letters 2018, 5 (6) , 382-388. https://doi.org/10.1021/acs.estlett.8b00266
    44. Yanyan Zhang, Yue Zhi, Jinxia Liu, Subhasis Ghoshal. Sorption of Perfluoroalkyl Acids to Fresh and Aged Nanoscale Zerovalent Iron Particles. Environmental Science & Technology 2018, 52 (11) , 6300-6308. https://doi.org/10.1021/acs.est.8b00487
    45. Shan Yi, Katie C. Harding-Marjanovic, Erika F. Houtz, Ying Gao, Jennifer E. Lawrence, Rita V. Nichiporuk, Anthony T. Iavarone, Wei-Qin Zhuang, Martin Hansen, Jennifer A. Field, David L. Sedlak, Lisa Alvarez-Cohen. Biotransformation of AFFF Component 6:2 Fluorotelomer Thioether Amido Sulfonate Generates 6:2 Fluorotelomer Thioether Carboxylate under Sulfate-Reducing Conditions. Environmental Science & Technology Letters 2018, 5 (5) , 283-288. https://doi.org/10.1021/acs.estlett.8b00148
    46. Saerom Park, Chloe de Perre, and Linda S. Lee . Alternate Reductants with VB12 to Transform C8 and C6 Perfluoroalkyl Sulfonates: Limitations and Insights into Isomer-Specific Transformation Rates, Products and Pathways. Environmental Science & Technology 2017, 51 (23) , 13869-13877. https://doi.org/10.1021/acs.est.7b03744
    47. Thomas A. Bruton and David L. Sedlak . Treatment of Aqueous Film-Forming Foam by Heat-Activated Persulfate Under Conditions Representative of In Situ Chemical Oxidation. Environmental Science & Technology 2017, 51 (23) , 13878-13885. https://doi.org/10.1021/acs.est.7b03969
    48. Lisa A. D’Agostino and Scott A. Mabury . Certain Perfluoroalkyl and Polyfluoroalkyl Substances Associated with Aqueous Film Forming Foam Are Widespread in Canadian Surface Waters. Environmental Science & Technology 2017, 51 (23) , 13603-13613. https://doi.org/10.1021/acs.est.7b03994
    49. Krista A. Barzen-Hanson, Shannon E. Davis, Markus Kleber, and Jennifer A. Field . Sorption of Fluorotelomer Sulfonates, Fluorotelomer Sulfonamido Betaines, and a Fluorotelomer Sulfonamido Amine in National Foam Aqueous Film-Forming Foam to Soil. Environmental Science & Technology 2017, 51 (21) , 12394-12404. https://doi.org/10.1021/acs.est.7b03452
    50. Sandra Mejia-Avendaño, Gabriel Munoz, Sung Vo Duy, Mélanie Desrosiers, Paul Benoı̂t, Sébastien Sauvé, and Jinxia Liu . Novel Fluoroalkylated Surfactants in Soils Following Firefighting Foam Deployment During the Lac-Mégantic Railway Accident. Environmental Science & Technology 2017, 51 (15) , 8313-8323. https://doi.org/10.1021/acs.est.7b02028
    51. Xin Xiao, Bridget A. Ulrich, Baoliang Chen, and Christopher P. Higgins . Sorption of Poly- and Perfluoroalkyl Substances (PFASs) Relevant to Aqueous Film-Forming Foam (AFFF)-Impacted Groundwater by Biochars and Activated Carbon. Environmental Science & Technology 2017, 51 (11) , 6342-6351. https://doi.org/10.1021/acs.est.7b00970
    52. Dylan Eberle, Raymond Ball, and Thomas B. Boving . Impact of ISCO Treatment on PFAA Co-Contaminants at a Former Fire Training Area. Environmental Science & Technology 2017, 51 (9) , 5127-5136. https://doi.org/10.1021/acs.est.6b06591
    53. Andrea K. Weber, Larry B. Barber, Denis R. LeBlanc, Elsie M. Sunderland, and Chad D. Vecitis . Geochemical and Hydrologic Factors Controlling Subsurface Transport of Poly- and Perfluoroalkyl Substances, Cape Cod, Massachusetts. Environmental Science & Technology 2017, 51 (8) , 4269-4279. https://doi.org/10.1021/acs.est.6b05573
    54. Zhanyun Wang, Jamie C. DeWitt, Christopher P. Higgins, and Ian T. Cousins . A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)?. Environmental Science & Technology 2017, 51 (5) , 2508-2518. https://doi.org/10.1021/acs.est.6b04806
    55. Krista A. Barzen-Hanson, Simon C. Roberts, Sarah Choyke, Karl Oetjen, Alan McAlees, Nicole Riddell, Robert McCrindle, P. Lee Ferguson, Christopher P. Higgins, and Jennifer A. Field . Discovery of 40 Classes of Per- and Polyfluoroalkyl Substances in Historical Aqueous Film-Forming Foams (AFFFs) and AFFF-Impacted Groundwater. Environmental Science & Technology 2017, 51 (4) , 2047-2057. https://doi.org/10.1021/acs.est.6b05843
    56. Gabriel Munoz, Mélanie Desrosiers, Sung Vo Duy, Pierre Labadie, Hélène Budzinski, Jinxia Liu, and Sébastien Sauvé . Environmental Occurrence of Perfluoroalkyl Acids and Novel Fluorotelomer Surfactants in the Freshwater Fish Catostomus commersonii and Sediments Following Firefighting Foam Deployment at the Lac-Mégantic Railway Accident. Environmental Science & Technology 2017, 51 (3) , 1231-1240. https://doi.org/10.1021/acs.est.6b05432
    57. Katie C. Harding-Marjanovic, Shan Yi, Tess S. Weathers, Jonathan O. Sharp, David L. Sedlak, and Lisa Alvarez-Cohen . Effects of Aqueous Film-Forming Foams (AFFFs) on Trichloroethene (TCE) Dechlorination by a Dehalococcoides mccartyi-Containing Microbial Community. Environmental Science & Technology 2016, 50 (7) , 3352-3361. https://doi.org/10.1021/acs.est.5b04773
    58. Tess S. Weathers, Katie Harding-Marjanovic, Christopher P. Higgins, Lisa Alvarez-Cohen, and Jonathan O. Sharp . Perfluoroalkyl Acids Inhibit Reductive Dechlorination of Trichloroethene by Repressing Dehalococcoides. Environmental Science & Technology 2016, 50 (1) , 240-248. https://doi.org/10.1021/acs.est.5b04854
    59. Katie C. Harding-Marjanovic, Erika F. Houtz, Shan Yi, Jennifer A. Field, David L. Sedlak, and Lisa Alvarez-Cohen . Aerobic Biotransformation of Fluorotelomer Thioether Amido Sulfonate (Lodyne) in AFFF-Amended Microcosms. Environmental Science & Technology 2015, 49 (13) , 7666-7674. https://doi.org/10.1021/acs.est.5b01219
    60. Krista A. Barzen-Hanson and Jennifer A. Field . Discovery and Implications of C2 and C3 Perfluoroalkyl Sulfonates in Aqueous Film-Forming Foams and Groundwater. Environmental Science & Technology Letters 2015, 2 (4) , 95-99. https://doi.org/10.1021/acs.estlett.5b00049
    61. Erica R. McKenzie, Robert L. Siegrist, John E. McCray, and Christopher P. Higgins . Effects of Chemical Oxidants on Perfluoroalkyl Acid Transport in One-Dimensional Porous Media Columns. Environmental Science & Technology 2015, 49 (3) , 1681-1689. https://doi.org/10.1021/es503676p
    62. Courtney D. Rich, Andrea C. Blaine, Lakhwinder Hundal, and Christopher P. Higgins . Bioaccumulation of Perfluoroalkyl Acids by Earthworms (Eisenia fetida) Exposed to Contaminated Soils. Environmental Science & Technology 2015, 49 (2) , 881-888. https://doi.org/10.1021/es504152d
    63. Kalle L. Jahn, Demian M. Saffer, Katherine H. Freeman, Sara A. Lincoln. Storage, Transport, and Fate of Perfluoroalkyl Acids (PFAAs) in a Wastewater Reuse and Groundwater Recharge System. Water Resources Research 2023, 59 (9) https://doi.org/10.1029/2022WR034321
    64. G.B. Douglas, J.L. Vanderzalm, M. Williams, J.K. Kirby, R.S. Kookana, T.P. Bastow, M. Bauer, K.C. Bowles, D. Skuse, G.B. Davis. PFAS contaminated asphalt and concrete - Knowledge gaps for future research and management. Science of The Total Environment 2023, 887 , 164025. https://doi.org/10.1016/j.scitotenv.2023.164025
    65. Seyfollah Gilak Hakimabadi, Alannah Taylor, Anh Le-Tuan Pham. Factors Affecting the Adsorption of Per- and Polyfluoroalkyl Substances (PFAS) by Colloidal Activated Carbon. Water Research 2023, 242 , 120212. https://doi.org/10.1016/j.watres.2023.120212
    66. Linyang Lv, Baolin Liu, Bimi Zhang, Yong Yu, Lei Gao, Lingjie Ding. A systematic review on distribution, sources and sorption of perfluoroalkyl acids (PFAAs) in soil and their plant uptake. Environmental Research 2023, 231 , 116156. https://doi.org/10.1016/j.envres.2023.116156
    67. Jessica A. LaFond, Paul B. Hatzinger, Jennifer L. Guelfo, Kayleigh Millerick, W. Andrew Jackson. Bacterial transformation of per- and poly-fluoroalkyl substances: a review for the field of bioremediation. Environmental Science: Advances 2023, 2 (8) , 1019-1041. https://doi.org/10.1039/D3VA00031A
    68. Fang Zhang, Runlei Ge, Ziren Wan, Guanghe Li, Lifeng Cao. Dual effects of PFOA or PFOS on reductive dechlorination of trichloroethylene (TCE). Water Research 2023, 240 , 120093. https://doi.org/10.1016/j.watres.2023.120093
    69. Jean Noel Uwayezu, Ivan Carabante, Patrick van Hees, Patrik Karlsson, Jurate Kumpiene. Validation of UV/persulfate as a PFAS treatment of industrial wastewater and environmental samples. Journal of Water Process Engineering 2023, 53 , 103614. https://doi.org/10.1016/j.jwpe.2023.103614
    70. Jeffery Tyler McGarr, Eric Gentil Mbonimpa, Drew Clifton McAvoy, Mohamad Reza Soltanian. Fate and Transport of Per- and Polyfluoroalkyl Substances (PFAS) at Aqueous Film Forming Foam (AFFF) Discharge Sites: A Review. Soil Systems 2023, 7 (2) , 53. https://doi.org/10.3390/soilsystems7020053
    71. Kalle L. Jahn, Sara A. Lincoln, Katherine H. Freeman, Demian M. Saffer. Preferential Retention and Transport of Perfluorooctanesulfonic Acid in a Dolomite Aquifer. Groundwater 2023, 61 (3) , 318-329. https://doi.org/10.1111/gwat.13255
    72. Nur-Us-Shafa Mazumder, Md Tanjim Hossain, Fatema Tuj Jahura, Arjunsing Girase, Andrew Stephen Hall, Jingtian Lu, R. Bryan Ormond. Firefighters’ exposure to per-and polyfluoroalkyl substances (PFAS) as an occupational hazard: A review. Frontiers in Materials 2023, 10 https://doi.org/10.3389/fmats.2023.1143411
    73. Essa A. Khan, Randi Grønnestad, Åse Krøkje, Zdenka Bartosov, Silje Modahl Johanson, Mette H.B. Müller, Augustine Arukwe. Alteration of hepato-lipidomic homeostasis in A/J mice fed an environmentally relevant PFAS mixture. Environment International 2023, 173 , 107838. https://doi.org/10.1016/j.envint.2023.107838
    74. Jia Li, Beidou Xi, Ganghui Zhu, Ying Yuan, Weijiang Liu, Yi Gong, Wenbing Tan. A critical review of the occurrence, fate and treatment of per- and polyfluoroalkyl substances (PFASs) in landfills. Environmental Research 2023, 218 , 114980. https://doi.org/10.1016/j.envres.2022.114980
    75. Anushka Garg, Nagaraj P. Shetti, Soumen Basu, Mallikarjuna N. Nadagouda, Tejraj M. Aminabhavi. Treatment technologies for removal of per- and polyfluoroalkyl substances (PFAS) in biosolids. Chemical Engineering Journal 2023, 453 , 139964. https://doi.org/10.1016/j.cej.2022.139964
    76. Yifei Wang, Yuqing Ji, Viktor Tishchenko, Qingguo Huang. Removing per- and polyfluoroalkyl substances (PFAS) in water by foam fractionation. Chemosphere 2023, 311 , 137004. https://doi.org/10.1016/j.chemosphere.2022.137004
    77. Zanina Ilieva, Patricia Hania, Roxana Suehring, Kimberley Gilbride, Rania Hamza. Impact of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) on secondary sludge microorganisms: removal, potential toxicity, and their implications on existing wastewater treatment regulations in Canada. Environmental Science: Processes & Impacts 2023, 44 https://doi.org/10.1039/D3EM00202K
    78. Richard H. Anderson, James B. Feild, Heidi Dieffenbach-Carle, Omneya Elsharnouby, Rita K. Krebs. Assessment of PFAS in collocated soil and porewater samples at an AFFF-impacted source zone: Field-scale validation of suction lysimeters. Chemosphere 2022, 308 , 136247. https://doi.org/10.1016/j.chemosphere.2022.136247
    79. Charbel Abou-Khalil, Dibyendu Sarkar, Pamela Braykaa, Michel C. Boufadel. Mobilization of Per- and Polyfluoroalkyl Substances (PFAS) in Soils: A Review. Current Pollution Reports 2022, 8 (4) , 422-444. https://doi.org/10.1007/s40726-022-00241-8
    80. Christian Kassar, Cole Graham, Treavor H. Boyer. Removal of perfluoroalkyl acids and common drinking water contaminants by weak-base anion exchange resins: Impacts of solution pH and resin properties. Water Research X 2022, 17 , 100159. https://doi.org/10.1016/j.wroa.2022.100159
    81. Glen R. Jenness, Ashlyn M. Koval, Brian D. Etz, Manoj K. Shukla. Atomistic insights into the hydrodefluorination of PFAS using silylium catalysts. Environmental Science: Processes & Impacts 2022, 24 (11) , 2085-2099. https://doi.org/10.1039/D2EM00291D
    82. Gwynn R. Johnson, Mark L. Brusseau, Kenneth C. Carroll, Geoffrey R. Tick, Candice M. Duncan. Global distributions, source-type dependencies, and concentration ranges of per- and polyfluoroalkyl substances in groundwater. Science of The Total Environment 2022, 841 , 156602. https://doi.org/10.1016/j.scitotenv.2022.156602
    83. Xiaopeng Min, Jingwan Huo, Qianqian Dong, Shangping Xu, Yin Wang. Enhanced sorption of perfluorooctanoic acid with organically functionalized layered double hydroxide. Chemical Engineering Journal 2022, 446 , 137019. https://doi.org/10.1016/j.cej.2022.137019
    84. Gillian M. Wilton, Jason I. Gerhard, David W. Major. Carbon injection to support in‐situ smoldering remediation. Remediation Journal 2022, https://doi.org/10.1002/rem.21737
    85. Joel Fabregat-Palau, Miquel Vidal, Anna Rigol. Examining sorption of perfluoroalkyl substances (PFAS) in biochars and other carbon-rich materials. Chemosphere 2022, 302 , 134733. https://doi.org/10.1016/j.chemosphere.2022.134733
    86. Karla Pozo, Lucas Buruaem Moreira, Pavlina Karaskova, Petra Přibylová, Jana Klánová, Maysa Ueda de Carvalho, Luciane Alves Maranho, Denis Moledo de Souza Abessa. Using large amounts of firefighting foams releases per- and polyfluoroalkyl substances (PFAS) into estuarine environments: A baseline study in Latin America. Marine Pollution Bulletin 2022, 182 , 113938. https://doi.org/10.1016/j.marpolbul.2022.113938
    87. Charles J. Newell, Hassan Javed, Yue Li, Nicholas W. Johnson, Stephen D. Richardson, John A. Connor, David T. Adamson. Enhanced attenuation (EA) to manage PFAS plumes in groundwater. Remediation Journal 2022, 32 (4) , 239-257. https://doi.org/10.1002/rem.21731
    88. Zhiwen Tang, Xin Song, Minmin Xu, Jin Yao, Mukhtiar Ali, Qing Wang, Jun Zeng, Xiaoyan Ding, Congjun Wang, Zhuanxia Zhang, Xin Liu. Effects of co-occurrence of PFASs and chlorinated aliphatic hydrocarbons on microbial communities in groundwater: A field study. Journal of Hazardous Materials 2022, 435 , 128969. https://doi.org/10.1016/j.jhazmat.2022.128969
    89. Congrui Li, Chenming Zhang, Badin Gibbes, Tao Wang, David Lockington. Coupling effects of tide and salting-out on perfluorooctane sulfonate (PFOS) transport and adsorption in a coastal aquifer. Advances in Water Resources 2022, 166 , 104240. https://doi.org/10.1016/j.advwatres.2022.104240
    90. Huifang Zhong, Wencheng Liu, Ningqi Li, Donghui Ma, Chunyan Zhao, Juan Li, Yawei Wang, Guibin Jiang. Assessment of perfluorohexane sulfonic acid (PFHxS)-related compounds degradation potential: Computational and experimental approaches. Journal of Hazardous Materials 2022, 436 , 129240. https://doi.org/10.1016/j.jhazmat.2022.129240
    91. Zhen Zhao, Jie Li, Xianming Zhang, Leien Wang, Jamin Wang, Tian Lin. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in groundwater: current understandings and challenges to overcome. Environmental Science and Pollution Research 2022, 29 (33) , 49513-49533. https://doi.org/10.1007/s11356-022-20755-4
    92. Youn Jeong Choi, Damian E. Helbling, Jinxia Liu, Christopher I. Olivares, Christopher P. Higgins. Microbial biotransformation of aqueous film-forming foam derived polyfluoroalkyl substances. Science of The Total Environment 2022, 824 , 153711. https://doi.org/10.1016/j.scitotenv.2022.153711
    93. Song-Thao Le, Yi Gao, Tohren C.G. Kibbey, William C. Glamore, Denis M. O'Carroll. Predicting the impact of salt mixtures on the air-water interfacial behavior of PFAS. Science of The Total Environment 2022, 819 , 151987. https://doi.org/10.1016/j.scitotenv.2021.151987
    94. Lifeng Cao, Wenxin Xu, Ziren Wan, Guanghe Li, Fang Zhang. Occurrence of PFASs and its effect on soil bacteria at a fire-training area using PFOS-restricted aqueous film-forming foams. iScience 2022, 25 (4) , 104084. https://doi.org/10.1016/j.isci.2022.104084
    95. Hermann A. Kaboré, Ken Goeury, Mélanie Desrosiers, Sung Vo Duy, Jinxia Liu, Gilbert Cabana, Gabriel Munoz, Sébastien Sauvé. Novel and legacy per- and polyfluoroalkyl substances (PFAS) in freshwater sporting fish from background and firefighting foam impacted ecosystems in Eastern Canada. Science of The Total Environment 2022, 816 , 151563. https://doi.org/10.1016/j.scitotenv.2021.151563
    96. David T. Adamson, Poonam R. Kulkarni, Anastasia Nickerson, Christopher P. Higgins, Jennifer Field, Trever Schwichtenberg, Charles Newell, John J. Kornuc. Characterization of relevant site-specific PFAS fate and transport processes at multiple AFFF sites. Environmental Advances 2022, 7 , 100167. https://doi.org/10.1016/j.envadv.2022.100167
    97. Christopher I. Olivares, Shan Yi, Emily K. Cook, Youn Jeong Choi, Renato Montagnolli, Adam Byrne, Christopher P. Higgins, David L. Sedlak, Lisa Alvarez-Cohen. Aerobic BTEX biodegradation increases yield of perfluoroalkyl carboxylic acids from biotransformation of a polyfluoroalkyl surfactant, 6:2 FtTAoS. Environmental Science: Processes & Impacts 2022, 24 (3) , 439-446. https://doi.org/10.1039/D1EM00494H
    98. J. Daniel Bryant, Richard Anderson, Stephanie C. Bolyard, J. Tim Bradburne, Mark L. Brusseau, Grant Carey, Dora Chiang, Rosa Gwinn, Brian R. Hoye, Thomas L. Maher, Angus E. McGrath, Matthew Schroeder, Bruce R. Thompson, David Woodward. PFAS Experts Symposium 2: Key advances in poly‐ and perfluoroalkyl characterization, fate, and transport. Remediation Journal 2022, 32 (1-2) , 19-28. https://doi.org/10.1002/rem.21703
    99. Marina G. Evich, Mary J. B. Davis, James P. McCord, Brad Acrey, Jill A. Awkerman, Detlef R. U. Knappe, Andrew B. Lindstrom, Thomas F. Speth, Caroline Tebes-Stevens, Mark J. Strynar, Zhanyun Wang, Eric J. Weber, W. Matthew Henderson, John W. Washington. Per- and polyfluoroalkyl substances in the environment. Science 2022, 375 (6580) https://doi.org/10.1126/science.abg9065
    100. Diwakar Suresh Babu, Johannes M.C. Mol, Josephus G. Buijnsters. Experimental insights into anodic oxidation of hexafluoropropylene oxide dimer acid (GenX) on boron-doped diamond anodes. Chemosphere 2022, 288 , 132417. https://doi.org/10.1016/j.chemosphere.2021.132417
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect