ACS Publications. Most Trusted. Most Cited. Most Read
Effective Density and Morphology of Particles Emitted from Small-Scale Combustion of Various Wood Fuels
My Activity

Figure 1Loading Img
    Article

    Effective Density and Morphology of Particles Emitted from Small-Scale Combustion of Various Wood Fuels
    Click to copy article linkArticle link copied!

    View Author Information
    University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio, Finland
    Joint Mass Spectrometry Centre, University of Rostock, 18051 Rostock, Germany
    § Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
    University of Eastern Finland, Department of Applied Physics, P.O. Box 1627, FI-70211 Kuopio, Finland
    VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT, Espoo, Finland
    # HICE, Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, Berlin 10178, Germany, www.hice-vi.eu
    *Phone: +358 40 355 2038; fax: +358 17 163 098; e-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2014, 48, 22, 13298–13306
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es502214a
    Published November 3, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The effective density of fine particles emitted from small-scale wood combustion of various fuels were determined with a system consisting of an aerosol particle mass analyzer and a scanning mobility particle sizer (APM-SMPS). A novel sampling chamber was combined to the system to enable measurements of highly fluctuating combustion processes. In addition, mass-mobility exponents (relates mass and mobility size) were determined from the density data to describe the shape of the particles. Particle size, type of fuel, combustion phase, and combustion conditions were found to have an effect on the effective density and the particle shape. For example, steady combustion phase produced agglomerates with effective density of roughly 1 g cm–3 for small particles, decreasing to 0.25 g cm–3 for 400 nm particles. The effective density was higher for particles emitted from glowing embers phase (ca. 1–2 g cm–3), and a clear size dependency was not observed as the particles were nearly spherical in shape. This study shows that a single value cannot be used for the effective density of particles emitted from wood combustion.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Supporting Information includes; details about the operation of SP-AMS (S3), a schematic figure of the measurement setup (S4), number size distributions from the measurement chamber (S5), a micrographs of the particles emitted from ignition of second batch (S6), an example of the data reduction process (S7), a table providing emission parameters and particle properties (S8) and chemical composition of the fuels (S9). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 44 publications.

    1. Sofie K. Schwink, Liora E. Mael, Thomas H. Dunnington, Maximilian J. Schmid, Jonathan M. Silberstein, Andrew Heck, Nicholas Gotlib, Michael P. Hannigan, Marina E. Vance. Impacts of Aging and Relative Humidity on Properties of Biomass Burning Smoke Particles. ACS ES&T Air 2025, 2 (1) , 109-118. https://doi.org/10.1021/acsestair.4c00224
    2. Jani Leskinen, Anni Hartikainen, Sampsa Väätäinen, Mika Ihalainen, Aki Virkkula, Arunas Mesceriakovas, Petri Tiitta, Mirella Miettinen, Heikki Lamberg, Hendryk Czech, Pasi Yli-Pirilä, Jarkko Tissari, Gert Jakobi, Ralf Zimmermann, Olli Sippula. Photochemical Aging Induces Changes in the Effective Densities, Morphologies, and Optical Properties of Combustion Aerosol Particles. Environmental Science & Technology 2023, 57 (13) , 5137-5148. https://doi.org/10.1021/acs.est.2c04151
    3. Hong-Beom Kwon, Woo-Young Song, Tae-Hoon Lee, Seung-Soo Lee, Yong-Jun Kim. Monitoring the Effective Density of Airborne Nanoparticles in Real Time Using a Microfluidic Nanoparticle Analysis Chip. ACS Sensors 2021, 6 (1) , 137-147. https://doi.org/10.1021/acssensors.0c01986
    4. Chong Han, Shao-Meng Li, Peter Liu, Patrick Lee. Size Dependence of the Physical Characteristics of Particles Containing Refractory Black Carbon in Diesel Vehicle Exhaust. Environmental Science & Technology 2019, 53 (1) , 137-145. https://doi.org/10.1021/acs.est.8b04603
    5. Yurong Zhang, Yong Han. Direct measurement techniques for atmospheric aerosol: Physical properties review. Atmospheric Environment 2025, 344 , 121034. https://doi.org/10.1016/j.atmosenv.2025.121034
    6. Denisa Lizonova, Amogh Nagarkar, Philip Demokritou, Georgios A. Kelesidis. Effective density of inhaled environmental and engineered nanoparticles and its impact on the lung deposition and dosimetry. Particle and Fibre Toxicology 2024, 21 (1) https://doi.org/10.1186/s12989-024-00567-9
    7. Dóra Mentes, Anikó Jordán, László Farkas, Gábor Muránszky, Béla Fiser, Béla Viskolcz, Csaba Póliska. Evaluating emissions and air quality implications of residential waste incineration. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-72173-w
    8. Xiaodong Wei, Jianlin Hu, Chao Liu, Xiaodong Xie, Junjie Yin, Song Guo, Min Hu, Jianfei Peng, Huijun Wang. Advanced modeling of the absorption enhancement of black carbon particles in chamber experiments by considering the morphology and coating thickness. Frontiers of Environmental Science & Engineering 2024, 18 (9) https://doi.org/10.1007/s11783-024-1876-4
    9. A. Mukherjee, A. Hartikainen, J. Joutsensaari, S. Basnet, A. Mesceriakovas, M. Ihalainen, P. Yli-Pirilä, J. Leskinen, M. Somero, J. Louhisalmi, Z. Fang, M. Kalberer, Y. Rudich, J. Tissari, H. Czech, R. Zimmermann, O. Sippula. Black carbon and particle lung-deposited surface area in residential wood combustion emissions: Effects of an electrostatic precipitator and photochemical aging. Science of The Total Environment 2024, , 175840. https://doi.org/10.1016/j.scitotenv.2024.175840
    10. Andreas Paul, Zheng Fang, Patrick Martens, Arya Mukherjee, Gert Jakobi, Mika Ihalainen, Miika Kortelainen, Markus Somero, Pasi Yli-Pirilä, Thorsten Hohaus, Hendryk Czech, Markus Kalberer, Olli Sippula, Yinon Rudich, Ralf Zimmermann, Astrid Kiendler-Scharr. Formation of secondary aerosol from emissions of a Euro 6d-compliant gasoline vehicle with a particle filter. Environmental Science: Atmospheres 2024, 4 (7) , 802-812. https://doi.org/10.1039/D3EA00165B
    11. Tingting Xie, Liming Cao, Jinyi Zheng, Peng Xuan, Xiaofeng Huang. Characterization of size-resolved effective density of atmospheric particles in an urban atmosphere in Southern China. Journal of Environmental Sciences 2024, 141 , 194-204. https://doi.org/10.1016/j.jes.2023.09.021
    12. Timothy A. Sipkens, Joel C. Corbin. Effective density and packing of compacted soot aggregates. Carbon 2024, 226 , 119197. https://doi.org/10.1016/j.carbon.2024.119197
    13. Satish Basnet, Anni Hartikainen, Aki Virkkula, Pasi Yli-Pirilä, Miika Kortelainen, Heikki Suhonen, Laura Kilpeläinen, Mika Ihalainen, Sampsa Väätäinen, Juho Louhisalmi, Markus Somero, Jarkko Tissari, Gert Jakobi, Ralf Zimmermann, Antti Kilpeläinen, Olli Sippula. Contribution of brown carbon to light absorption in emissions of European residential biomass combustion appliances. Atmospheric Chemistry and Physics 2024, 24 (5) , 3197-3215. https://doi.org/10.5194/acp-24-3197-2024
    14. Eva Gregorovičová, Jiří Pospíšil, Tomáš Sitek. The Bulk Density and Cohesion of Submicron Particles Emitted by a Residential Boiler When Burning Solid Fuels. Fire 2023, 6 (11) , 445. https://doi.org/10.3390/fire6110445
    15. Yuner Pang, Minghao Chen, Yuanyuan Wang, Xiyao Chen, Xiaomi Teng, Shaofei Kong, Zhonghua Zheng, Weijun Li. Morphology and Fractal Dimension of Size‐Resolved Soot Particles Emitted From Combustion Sources. Journal of Geophysical Research: Atmospheres 2023, 128 (6) https://doi.org/10.1029/2022JD037711
    16. Danielle N. Wagner, Samuel R. Odhiambo, Rose M. Ayikukwei, Brandon E. Boor. High time‐resolution measurements of ultrafine and fine woodsmoke aerosol number and surface area concentrations in biomass burning kitchens: A case study in Western Kenya. Indoor Air 2022, 32 (10) https://doi.org/10.1111/ina.13132
    17. Yinxiao Zhang, Shaofei Kong, Qin Yan, Kongyang Zhu, Xiaotong Jiang, Lei Liu, Liang Xu, Yuanyuan Wang, Yuner Pang, Xiaomi Teng, Jihao Zhu, Weijun Li. An overlooked source of nanosized lead particles in the atmosphere: Residential honeycomb briquette combustion. Journal of Hazardous Materials 2022, 436 , 129289. https://doi.org/10.1016/j.jhazmat.2022.129289
    18. Woo-Young Song, Seung-Soo Lee, Yong-Jun Kim. Airborne nanoparticle analysis mini-system using a parallel-type inertial impaction technique for real-time monitoring size distribution and effective density. Sensors and Actuators A: Physical 2022, 341 , 113591. https://doi.org/10.1016/j.sna.2022.113591
    19. Long Peng, Yonglin Liu. Theoretical Foundation of the Relationship between Three Definitions of Effective Density and Particle Size. Atmosphere 2022, 13 (4) , 564. https://doi.org/10.3390/atmos13040564
    20. Johan Martinsson, Guillaume Pédehontaa-Hiaa, Dan Madsen, Christopher Rääf. Influence of variable oxygen concentration on the combustion derived release of radiocesium from boreal soil and peat. Science of The Total Environment 2022, 815 , 152725. https://doi.org/10.1016/j.scitotenv.2021.152725
    21. Tomáš Sitek, Jiří Pospíšil, Ján Poláčik, Radomír Chýlek. Thermogravimetric analysis of solid biomass fuels and corresponding emission of fine particles. Energy 2021, 237 , 121609. https://doi.org/10.1016/j.energy.2021.121609
    22. Huizhong Shen, Zhihan Luo, Rui Xiong, Xinlei Liu, Lu Zhang, Yaojie Li, Wei Du, Yuanchen Chen, Hefa Cheng, Guofeng Shen, Shu Tao. A critical review of pollutant emission factors from fuel combustion in home stoves. Environment International 2021, 157 , 106841. https://doi.org/10.1016/j.envint.2021.106841
    23. Long Peng, Zongrui Li, Guohua Zhang, Xinhui Bi, Weiwei Hu, Mingjin Tang, Xinming Wang, Ping'an Peng, Guoying Sheng. A review of measurement techniques for aerosol effective density. Science of The Total Environment 2021, 778 , 146248. https://doi.org/10.1016/j.scitotenv.2021.146248
    24. Xiaodong Wei, Yanhong Zhu, Jianlin Hu, Chao Liu, Xinlei Ge, Song Guo, Dantong Liu, Hong Liao, Huijun Wang. Recent Progress in Impacts of Mixing State on Optical Properties of Black Carbon Aerosol. Current Pollution Reports 2020, 6 (4) , 380-398. https://doi.org/10.1007/s40726-020-00158-0
    25. Tuukka Ihantola, Sebastiano Di Bucchianico, Mikko Happo, Mika Ihalainen, Oskari Uski, Stefanie Bauer, Kari Kuuspalo, Olli Sippula, Jarkko Tissari, Sebastian Oeder, Anni Hartikainen, Teemu J. Rönkkö, Maria-Viola Martikainen, Kati Huttunen, Petra Vartiainen, Heikki Suhonen, Miika Kortelainen, Heikki Lamberg, Ari Leskinen, Martin Sklorz, Bernhard Michalke, Marco Dilger, Carsten Weiss, Gunnar Dittmar, Johannes Beckers, Martin Irmler, Jeroen Buters, Joana Candeias, Hendryk Czech, Pasi Yli-Pirilä, Gülcin Abbaszade, Gert Jakobi, Jürgen Orasche, Jürgen Schnelle-Kreis, Tamara Kanashova, Erwin Karg, Thorsten Streibel, Johannes Passig, Henri Hakkarainen, Jorma Jokiniemi, Ralf Zimmermann, Maija-Riitta Hirvonen, Pasi I. Jalava. Influence of wood species on toxicity of log-wood stove combustion aerosols: a parallel animal and air-liquid interface cell exposure study on spruce and pine smoke. Particle and Fibre Toxicology 2020, 17 (1) https://doi.org/10.1186/s12989-020-00355-1
    26. Tianren Wu, Brandon E. Boor. Characterization of a thermal aerosol generator for HVAC filtration experiments (RP-1734). Science and Technology for the Built Environment 2020, 26 (6) , 816-834. https://doi.org/10.1080/23744731.2020.1730661
    27. Erwin W. Karg, George A. Ferron, Stefanie Bauer, Sebastiano Di Bucchianico, Ralf Zimmermann. Is the particle deposition in a cell exposure facility comparable to the lungs? A computer model approach. Aerosol Science and Technology 2020, 54 (6) , 668-684. https://doi.org/10.1080/02786826.2020.1724868
    28. Hasan Jubaer, Rui Dai, Erwin Ruslim, Shahnaz Mansouri, Zhihua Shan, Meng Wai Woo. New perspectives on capturing particle agglomerates in CFD modeling of spray dryers. Drying Technology 2020, 38 (5-6) , 685-694. https://doi.org/10.1080/07373937.2019.1691585
    29. Xin Wang, Nan Ma, Ting Lei, Johannes Größ, Guo Li, Fobang Liu, Hannah Meusel, Eugene Mikhailov, Alfred Wiedensohler, Hang Su. Effective density and hygroscopicity of protein particles generated with spray-drying process. Journal of Aerosol Science 2019, 137 , 105441. https://doi.org/10.1016/j.jaerosci.2019.105441
    30. Kamaljeet Kaur, Raziye Mohammadpour, Isabel C. Jaramillo, Hamidreza Ghandehari, Christopher Reilly, Robert Paine, Kerry E. Kelly. Application of a quartz crystal microbalance to measure the mass concentration of combustion particle suspensions. Journal of Aerosol Science 2019, 137 , 105445. https://doi.org/10.1016/j.jaerosci.2019.105445
    31. Laura Salo, Fanni Mylläri, Marek Maasikmets, Ville Niemelä, Alar Konist, Keio Vainumäe, Hanna-Lii Kupri, Riina Titova, Pauli Simonen, Minna Aurela, Matthew Bloss, Jorma Keskinen, Hilkka Timonen, Topi Rönkkö. Emission measurements with gravimetric impactors and electrical devices: An aerosol instrument comparison. Aerosol Science and Technology 2019, 53 (5) , 526-539. https://doi.org/10.1080/02786826.2019.1578858
    32. Mika Ihalainen, Pasi Jalava, Tuukka Ihantola, Stefanie Kasurinen, Oskari Uski, Olli Sippula, Anni Hartikainen, Jarkko Tissari, Kari Kuuspalo, Anna Lähde, Maija-Riitta Hirvonen, Jorma Jokiniemi. Design and validation of an air-liquid interface (ALI) exposure device based on thermophoresis. Aerosol Science and Technology 2019, 53 (2) , 133-145. https://doi.org/10.1080/02786826.2018.1556775
    33. David Patiño, Raquel Pérez-Orozco, Jacobo Porteiro, Magín Lapuerta. Characterization of biomass PM emissions using thermophoretic sampling: Composition and morphological description of the carbonaceous residues. Journal of Aerosol Science 2019, 127 , 49-62. https://doi.org/10.1016/j.jaerosci.2018.10.005
    34. Yingying Cha, Ulf Olofsson. Effective density of airborne particles in a railway tunnel from field measurements of mobility and aerodynamic size distributions. Aerosol Science and Technology 2018, 52 (8) , 886-899. https://doi.org/10.1080/02786826.2018.1476750
    35. Jessica Tryner, John Volckens, Anthony J. Marchese. Effects of operational mode on particle size and number emissions from a biomass gasifier cookstove. Aerosol Science and Technology 2018, 52 (1) , 87-97. https://doi.org/10.1080/02786826.2017.1380779
    36. Ta-Chih Hsiao, Li-Hao Young, Yu-Chun Tai, Po-Kai Chang. Effects of temperature, pressure, and carrier gases on the performance of an aerosol particle mass analyser. Atmospheric Measurement Techniques 2018, 11 (8) , 4617-4626. https://doi.org/10.5194/amt-11-4617-2018
    37. Lei Liu, Shaofei Kong, Yinxiao Zhang, Yuanyuan Wang, Liang Xu, Qin Yan, A. P. Lingaswamy, Zongbo Shi, Senlin Lv, Hongya Niu, Longyi Shao, Min Hu, Daizhou Zhang, Jianmin Chen, Xiaoye Zhang, Weijun Li. Morphology, composition, and mixing state of primary particles from combustion sources — crop residue, wood, and solid waste. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-05357-2
    38. Ingeborg E. Nielsen, Axel C. Eriksson, Robert Lindgren, Johan Martinsson, Robin Nyström, Erik Z. Nordin, Ioannis Sadiktsis, Christoffer Boman, Jacob K. Nøjgaard, Joakim Pagels. Time-resolved analysis of particle emissions from residential biomass combustion – Emissions of refractory black carbon, PAHs and organic tracers. Atmospheric Environment 2017, 165 , 179-190. https://doi.org/10.1016/j.atmosenv.2017.06.033
    39. Kangwei Li, Linghong Chen, Stephen J. White, Ke Han, Biao Lv, Kaiji Bao, Xuecheng Wu, Xiang Gao, Merched Azzi, Kefa Cen. Effect of nitrogen oxides (NO and NO 2 ) and toluene on SO 2 photooxidation, nucleation and growth: A smog chamber study. Atmospheric Research 2017, 192 , 38-47. https://doi.org/10.1016/j.atmosres.2017.03.017
    40. Olli Sippula, Heikki Lamberg, Jani Leskinen, Jarkko Tissari, Jorma Jokiniemi. Emissions and ash behavior in a 500 kW pellet boiler operated with various blends of woody biomass and peat. Fuel 2017, 202 , 144-153. https://doi.org/10.1016/j.fuel.2017.04.009
    41. Kangwei Li, Linghong Chen, Ke Han, Biao Lv, Kaiji Bao, Xuecheng Wu, Xiang Gao, Kefa Cen. Smog chamber study on aging of combustion soot in isoprene/SO2/NOx system: Changes of mass, size, effective density, morphology and mixing state. Atmospheric Research 2017, 184 , 139-148. https://doi.org/10.1016/j.atmosres.2016.10.011
    42. Petri Tiitta, Ari Leskinen, Liqing Hao, Pasi Yli-Pirilä, Miika Kortelainen, Julija Grigonyte, Jarkko Tissari, Heikki Lamberg, Anni Hartikainen, Kari Kuuspalo, Aki-Matti Kortelainen, Annele Virtanen, Kari E. J. Lehtinen, Mika Komppula, Simone Pieber, André S. H. Prévôt, Timothy B. Onasch, Douglas R. Worsnop, Hendryk Czech, Ralf Zimmermann, Jorma Jokiniemi, Olli Sippula. Transformation of logwood combustion emissions in a smog chamber: formation of secondary organic aerosol and changes in the primary organic aerosol upon daytime and nighttime aging. Atmospheric Chemistry and Physics 2016, 16 (20) , 13251-13269. https://doi.org/10.5194/acp-16-13251-2016
    43. Joel C. Corbin, Alejandro Keller, Ulrike Lohmann, Heinz Burtscher, Berko Sierau, Amewu A. Mensah. Organic Emissions from a Wood Stove and a Pellet Stove Before and After Simulated Atmospheric Aging. Aerosol Science and Technology 2015, 49 (11) , 1037-1050. https://doi.org/10.1080/02786826.2015.1079586
    44. J. C. Corbin, U. Lohmann, B. Sierau, A. Keller, H. Burtscher, A. A. Mensah. Black carbon surface oxidation and organic composition of beech-wood soot aerosols. Atmospheric Chemistry and Physics 2015, 15 (20) , 11885-11907. https://doi.org/10.5194/acp-15-11885-2015

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2014, 48, 22, 13298–13306
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es502214a
    Published November 3, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    1232

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.