ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Monitoring the Environmental Effects of CeO2 and ZnO Nanoparticles Through the Life Cycle of Corn (Zea mays) Plants and in Situ μ-XRF Mapping of Nutrients in Kernels

View Author Information
Chemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
Environmental Science and Engineering PhD program, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
§ UC Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
Texas AgriLife Research Center at El Paso, Texas A&M University System, 1380 A&M Circle, El Paso, Texas 79927, United States
Department of Public Health Sciences, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
*Phone: 915-747-5359; fax: (915)747-5748; e-mail: [email protected]
Cite this: Environ. Sci. Technol. 2015, 49, 5, 2921–2928
Publication Date (Web):February 3, 2015
https://doi.org/10.1021/es5060226
Copyright © 2015 American Chemical Society

    Article Views

    2470

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)

    Abstract

    Abstract Image

    Information about changes in physiological and agronomic parameters through the life cycle of plants exposed to engineered nanoparticles (NPs) is scarce. In this study, corn (Zea mays) plants were cultivated to full maturity in soil amended with either nCeO2 or nZnO at 0, 400, and 800 mg/kg. Gas exchange was monitored every 10 days, and at harvest, bioaccumulation of Ce and Zn in tissues was determined by ICP-OES/MS. The effects of NPs exposure on nutrient concentration and distribution in ears were also evaluated by ICP-OES and μ-XRF. Results showed that nCeO2 at both concentrations did not impact gas exchange in leaves at any growth stage, while nZnO at 800 mg/kg reduced net photosynthesis by 12%, stomatal conductance by 15%, and relative chlorophyll content by 10% at day 20. Yield was reduced by 38% with nCeO2 and by 49% with nZnO. Importantly, μ-XRF mapping showed that nCeO2 changed the allocation of calcium in kernels, compared to controls. In nCeO2 treated plants, Cu, K, Mn, and Zn were mainly localized at the insertion of kernels into cobs, but Ca and Fe were distributed in other parts of the kernels. Results showed that nCeO2 and nZnO reduced corn yield and altered quality of corn.

    Cited By

    This article is cited by 159 publications.

    1. Yang Liu, Christian Körnig, Bing Qi, Oliver Schmutzler, Theresa Staufer, Carlos Sanchez-Cano, Elisabeth Magel, Jason C. White, Neus Feliu, Florian Grüner, Wolfgang J. Parak. Size- and Ligand-Dependent Transport of Nanoparticles in Matricaria chamomilla as Demonstrated by Mass Spectroscopy and X-ray Fluorescence Imaging. ACS Nano 2022, 16 (8) , 12941-12951. https://doi.org/10.1021/acsnano.2c05339
    2. Ayushi Priyam, Natasha Yadav, Pallavolu M. Reddy, Luis O.B. Afonso, Aaron G. Schultz, Pushplata Prasad Singh. Uptake and Benefits of Biogenic Phosphorus Nanomaterials Applied via Fertigation to Japonica Rice (Taipei 309) in Low- and High-Calcareous Soil Conditions. ACS Agricultural Science & Technology 2022, 2 (3) , 462-476. https://doi.org/10.1021/acsagscitech.1c00244
    3. Peng Zhang, Zhiling Guo, Fazel Abdolahpur Monikh, Iseult Lynch, Eugenia Valsami-Jones, Zhiyong Zhang. Growing Rice (Oryza sativa) Aerobically Reduces Phytotoxicity, Uptake, and Transformation of CeO2 Nanoparticles. Environmental Science & Technology 2021, 55 (13) , 8654-8664. https://doi.org/10.1021/acs.est.0c08813
    4. Qing Zhou, Xu Zhang, Zhong Wu. Impact of TiO2 and ZnO Nanoparticles on Soil Bacteria and the Enantioselective Transformation of Racemic-Metalaxyl in Agricultural Soil with Lolium perenne: A Wild Greenhouse Cultivation. Journal of Agricultural and Food Chemistry 2020, 68 (40) , 11242-11252. https://doi.org/10.1021/acs.jafc.0c03959
    5. Hongda Sun, Wei Du, Qingqing Peng, Zhiyuan Lv, Hui Mao, Peter M. Kopittke. Development of ZnO Nanoparticles as an Efficient Zn Fertilizer: Using Synchrotron-Based Techniques and Laser Ablation to Examine Elemental Distribution in Wheat Grain. Journal of Agricultural and Food Chemistry 2020, 68 (18) , 5068-5075. https://doi.org/10.1021/acs.jafc.0c00084
    6. Yiming Su, Vanessa E. T. M. Ashworth, Nicholas K. Geitner, Mark R. Wiesner, Nichole Ginnan, Philippe Rolshausen, Caroline Roper, David Jassby. Delivery, Fate, and Mobility of Silver Nanoparticles in Citrus Trees. ACS Nano 2020, 14 (3) , 2966-2981. https://doi.org/10.1021/acsnano.9b07733
    7. Mengyao Liu, Sheng Feng, Yuhui Ma, Changjian Xie, Xiao He, Yayun Ding, Junzhe Zhang, Wenhe Luo, Lirong Zheng, Dongliang Chen, Fang Yang, Zhifang Chai, Yuliang Zhao, Zhiyong Zhang. Influence of Surface Charge on the Phytotoxicity, Transformation, and Translocation of CeO2 Nanoparticles in Cucumber Plants. ACS Applied Materials & Interfaces 2019, 11 (18) , 16905-16913. https://doi.org/10.1021/acsami.9b01627
    8. Cheng Peng, Si Chen, Chensi Shen, Miao He, Yunqi Zhang, Jien Ye, Jianshe Liu, Jiyan Shi. Iron Plaque: A Barrier Layer to the Uptake and Translocation of Copper Oxide Nanoparticles by Rice Plants. Environmental Science & Technology 2018, 52 (21) , 12244-12254. https://doi.org/10.1021/acs.est.8b02687
    9. Alisha Prasad, Carlos E. Astete, Andreea E. Bodoki, McKenzie Windham, Ede Bodoki, Cristina M. Sabliov. Zein Nanoparticles Uptake and Translocation in Hydroponically Grown Sugar Cane Plants. Journal of Agricultural and Food Chemistry 2018, 66 (26) , 6544-6551. https://doi.org/10.1021/acs.jafc.7b02487
    10. Teng Zhang, Hongda Sun, Zhiyuan Lv, Lili Cui, Hui Mao, Peter M. Kopittke. Using Synchrotron-Based Approaches To Examine the Foliar Application of ZnSO4 and ZnO Nanoparticles for Field-Grown Winter Wheat. Journal of Agricultural and Food Chemistry 2018, 66 (11) , 2572-2579. https://doi.org/10.1021/acs.jafc.7b04153
    11. Jie Yang, Fuping Jiang, Chuanxin Ma, Yukui Rui, Mengmeng Rui, Muhammad Adeel, Weidong Cao, Baoshan Xing. Alteration of Crop Yield and Quality of Wheat upon Exposure to Silver Nanoparticles in a Life Cycle Study. Journal of Agricultural and Food Chemistry 2018, 66 (11) , 2589-2597. https://doi.org/10.1021/acs.jafc.7b04904
    12. Ryan A. Davis, Devin A. Rippner, Sven H. Hausner, Sanjai J. Parikh, Andrew J. McElrone, and Julie L. Sutcliffe . In Vivo Tracking of Copper-64 Radiolabeled Nanoparticles in Lactuca sativa. Environmental Science & Technology 2017, 51 (21) , 12537-12546. https://doi.org/10.1021/acs.est.7b03333
    13. Saheli Pradhan and Damodhara Rao Mailapalli . Interaction of Engineered Nanoparticles with the Agri-environment. Journal of Agricultural and Food Chemistry 2017, 65 (38) , 8279-8294. https://doi.org/10.1021/acs.jafc.7b02528
    14. Cheng Peng, Chen Xu, Qinglin Liu, Lijuan Sun, Yongming Luo, and Jiyan Shi . Fate and Transformation of CuO Nanoparticles in the Soil–Rice System during the Life Cycle of Rice Plants. Environmental Science & Technology 2017, 51 (9) , 4907-4917. https://doi.org/10.1021/acs.est.6b05882
    15. Hong Liu, Chuanxin Ma, Guangcai Chen, Jason C. White, Zonghua Wang, Baoshan Xing, and Om Parkash Dhankher . Titanium Dioxide Nanoparticles Alleviate Tetracycline Toxicity to Arabidopsis thaliana (L.). ACS Sustainable Chemistry & Engineering 2017, 5 (4) , 3204-3213. https://doi.org/10.1021/acssuschemeng.6b02976
    16. Lucia Rodriguez-Freire, Sumant Avasarala, Abdul-Mehdi S. Ali, Diane Agnew, Joseph H. Hoover, Kateryna Artyushkova, Drew E. Latta, Eric J. Peterson, Johnnye Lewis, Laura J. Crossey, Adrian J. Brearley, and José M. Cerrato . Post Gold King Mine Spill Investigation of Metal Stability in Water and Sediments of the Animas River Watershed. Environmental Science & Technology 2016, 50 (21) , 11539-11548. https://doi.org/10.1021/acs.est.6b03092
    17. Xingmao Ma, Qiang Wang, Lorenzo Rossi, and Weilan Zhang . Cerium Oxide Nanoparticles and Bulk Cerium Oxide Leading to Different Physiological and Biochemical Responses in Brassica rapa. Environmental Science & Technology 2016, 50 (13) , 6793-6802. https://doi.org/10.1021/acs.est.5b04111
    18. Patricia A. Holden, Jorge L. Gardea-Torresdey, Fred Klaessig, Ronald F. Turco, Monika Mortimer, Kerstin Hund-Rinke, Elaine A. Cohen Hubal, David Avery, Damià Barceló, Renata Behra, Yoram Cohen, Laurence Deydier-Stephan, P. Lee Ferguson, Teresa F. Fernandes, Barbara Herr Harthorn, W. Matthew Henderson, Robert A. Hoke, Danail Hristozov, John M. Johnston, Agnes B. Kane, Larry Kapustka, Arturo A. Keller, Hunter S. Lenihan, Wess Lovell, Catherine J. Murphy, Roger M. Nisbet, Elijah J. Petersen, Edward R. Salinas, Martin Scheringer, Monita Sharma, David E. Speed, Yasir Sultan, Paul Westerhoff, Jason C. White, Mark R. Wiesner, Eva M. Wong, Baoshan Xing, Meghan Steele Horan, Hilary A. Godwin, and André E. Nel . Considerations of Environmentally Relevant Test Conditions for Improved Evaluation of Ecological Hazards of Engineered Nanomaterials. Environmental Science & Technology 2016, 50 (12) , 6124-6145. https://doi.org/10.1021/acs.est.6b00608
    19. Lijuan Zhao, Yuxiong Huang, Jerry Hu, Hongjun Zhou, Adeyemi S. Adeleye, and Arturo A. Keller . 1H NMR and GC-MS Based Metabolomics Reveal Defense and Detoxification Mechanism of Cucumber Plant under Nano-Cu Stress. Environmental Science & Technology 2016, 50 (4) , 2000-2010. https://doi.org/10.1021/acs.est.5b05011
    20. Sanghamitra Majumdar, Igor C. Almeida, Emma A. Arigi, Hyungwon Choi, Nathan C. VerBerkmoes, Jesica Trujillo-Reyes, Juan P. Flores-Margez, Jason C. White, Jose R. Peralta-Videa, and Jorge L. Gardea-Torresdey . Environmental Effects of Nanoceria on Seed Production of Common Bean (Phaseolus vulgaris): A Proteomic Analysis. Environmental Science & Technology 2015, 49 (22) , 13283-13293. https://doi.org/10.1021/acs.est.5b03452
    21. Chuanxin Ma, Sudesh Chhikara, Rakesh Minocha, Stephanie Long, Craig Musante, Jason C. White, Baoshan Xing, and Om Parkash Dhankher . Reduced Silver Nanoparticle Phytotoxicity in Crambe abyssinica with Enhanced Glutathione Production by Overexpressing Bacterial γ-Glutamylcysteine Synthase. Environmental Science & Technology 2015, 49 (16) , 10117-10126. https://doi.org/10.1021/acs.est.5b02007
    22. Muhammad Noman, Temoor Ahmed, Usman Ijaz, Amir Hameed, Muhammad Shahid, Azizullah, Dayong Li, Fengming Song. Microbe-oriented nanoparticles as phytomedicines for plant health management: An emerging paradigm to achieve global food security. Critical Reviews in Food Science and Nutrition 2023, 63 (25) , 7489-7509. https://doi.org/10.1080/10408398.2022.2046543
    23. Saad Hanif, Anila Sajjad, Rabia Javed, Abdul Mannan, Muhammad Zia. Proline doped ZnO nanocomposite alleviates NaCl induced adverse effects on morpho-biochemical response in Coriandrum sativum. Plant Stress 2023, 9 , 100173. https://doi.org/10.1016/j.stress.2023.100173
    24. Mahmoud F. Seleiman, Awais Ahmad, Martin L. Battaglia, Hafiz Muhammad Bilal, Bushra A. Alhammad, Naeem Khan. Zinc oxide nanoparticles: A unique saline stress mitigator with the potential to increase future crop production. South African Journal of Botany 2023, 159 , 208-218. https://doi.org/10.1016/j.sajb.2023.06.009
    25. Louisa Smieska, Mary Lou Guerinot, Karin Olson Hoal, Matthew Reid, Olena Vatamaniuk. Synchrotron science for sustainability: life cycle of metals in the environment. Metallomics 2023, 15 (8) https://doi.org/10.1093/mtomcs/mfad041
    26. Halley Caixeta Oliveira, Amedea Barozzi Seabra, Selahattin Kondak, Oluwatosin Peace Adedokun, Zsuzsanna Kolbert, . Multilevel approach to plant–nanomaterial relationships: from cells to living ecosystems. Journal of Experimental Botany 2023, 74 (12) , 3406-3424. https://doi.org/10.1093/jxb/erad107
    27. Bianca Vicente Costa Oscar, Sílvia Pedroso Melegari, Denice Schulz Vicentini, Carmen Simioni, Luciane Cristina Ouriques, Rodrigo Costa Puerari, William Gerson Matias. Toxicological effects of pure and amine-functionalized ZnO nanorods on Daphnia magna and Lactuca sativa. Environmental Science: Nano 2023, 10 (4) , 1190-1207. https://doi.org/10.1039/D2EN00622G
    28. Poonam Patel, Prerna Dhingra, S. L. Kothari, Rohit Jain, Sumita Kachhwaha. Interaction between Metal Oxide Nanoparticles and Terrestrial Plants: An Overview of the Mode of Action and Future Perspectives. 2023, 36-87. https://doi.org/10.2174/9789815123555123010006
    29. Boregowda Nandini, Kiran S. Mawale, Parvatam Giridhar. Nanomaterials in agriculture for plant health and food safety: a comprehensive review on the current state of agro-nanoscience. 3 Biotech 2023, 13 (3) https://doi.org/10.1007/s13205-023-03470-w
    30. Manikandan Appu, Huixiang Wu, Hao Chen, Jianying Huang. Tea polyphenols mediated biogenic synthesis of chitosan-coated cerium oxide (CS/CeO2) nanocomposites and their potent antimicrobial capabilities. Environmental Science and Pollution Research 2023, 30 (15) , 42575-42586. https://doi.org/10.1007/s11356-022-19349-x
    31. Xin Gui, Chaonan Dong, Shixian Fan, Chunlei Jiao, Zhuda Song, Jiaqi Shen, Yong Zhao, Xuanzhen Li, Fawen Zhang, Yuhui Ma, Xiao He, Aijun Lin, Zhiyong Zhang. Effects of CeO2 Nanoparticles on Nutritional Quality of Two Crop Plants, Corn (Zea mays L.) and Soybean (Glycine max L.). Molecules 2023, 28 (4) , 1798. https://doi.org/10.3390/molecules28041798
    32. Kirill Azarin, Alexander Usatov, Tatiana Minkina, Nadezhda Duplii, Alexandra Kasyanova, Aleksei Fedorenko, Vladimir Khachumov, Saglara Mandzhieva, Vishnu D. Rajput. Effects of bulk and nano-ZnO particles on functioning of photosynthetic apparatus in barley (Hordeum vulgare L.). Environmental Research 2023, 216 , 114748. https://doi.org/10.1016/j.envres.2022.114748
    33. Himanshi Jangir, Mainak Das. Nanocerium Oxide in Medicine, Agriculture and the Industry. 2023, 1-23. https://doi.org/10.1007/978-3-031-20581-1_1
    34. Muhammad Ashar Ayub, Naqshe Zuhra, Muhammad Umair, Muhammad Aamer Maqsood, Muhammad Zia ur Rehman, Muhammad Usman, Sidra Anayatullah. Crop growth on metal-contaminated soils using nanotechnology. 2023, 277-303. https://doi.org/10.1016/B978-0-323-98371-6.00010-0
    35. Muhammad Ansar Farooq, Afsheen Fatima, Sana Rehman, Ayesha Batool, Iram Gul, Aamir Alaud Din, Hassan Anwer, Muhammad Arshad. Phytotoxicity Response and Defense Mechanisms of Nanocomposites/Mixture of Nanoparticles. 2023, 43-58. https://doi.org/10.1007/978-981-99-2419-6_3
    36. Ravinder Kumar, Vikash Nain, Joginder Singh Duhan. An Ecological Approach to Control Pathogens of Lycopersicon esculentum L. by Slow Release of Mancozeb from Biopolymeric Conjugated Nanoparticles. Journal of Xenobiotics 2022, 12 (4) , 329-343. https://doi.org/10.3390/jox12040023
    37. Mukta Rani Sarkar, Md. Harun-or Rashid, Aminur Rahman, Md. Abdul Kafi, Md. Ismail Hosen, Md. Shahidur Rahman, M. Nuruzzaman Khan. Recent advances in nanomaterials based sustainable agriculture: An overview. Environmental Nanotechnology, Monitoring & Management 2022, 18 , 100687. https://doi.org/10.1016/j.enmm.2022.100687
    38. Esfandiar Jahantab, Jalil Farzadmehr, SayedHamid Matinkhah, Nikoo Taheri Mohammad Abadi, Elham Shafeiyan, Habib Yazdanshenas. Effect of metal oxide nanoparticles on the activity of glutathione reductase, catalase, peroxidase and superoxide dismutase in plants under drought. Irrigation and Drainage 2022, 71 (5) , 1351-1362. https://doi.org/10.1002/ird.2739
    39. Indukalpa Das, Bhaskarjyoti Gogoi, Bidisha Sharma, Debajit Borah. Role of metal-nanoparticles in farming practices: an insight. 3 Biotech 2022, 12 (11) https://doi.org/10.1007/s13205-022-03361-6
    40. Nelofer Jan, Neelofar Majeed, Muneeb Ahmad, Waseem Ahmad Lone, Riffat John. Nano-pollution: Why it should worry us. Chemosphere 2022, 302 , 134746. https://doi.org/10.1016/j.chemosphere.2022.134746
    41. Ali Daryabeigi Zand, Azar Vaezi Heir, Hamidreza Khodaei. Integrated remediation approach for metal polluted soils using plants, nanomaterials and root-associated bacteria. Journal of Dispersion Science and Technology 2022, 43 (11) , 1674-1688. https://doi.org/10.1080/01932691.2021.1878900
    42. Bilal Beig, Muhammad Bilal Khan Niazi, Farooq Sher, Zaib Jahan, Umer Shahzad Malik, Mohammad Daud Khan, Juliana Heloisa Pinê Américo-Pinheiro, Dai-Viet N. Vo. Nanotechnology-based controlled release of sustainable fertilizers. A review. Environmental Chemistry Letters 2022, 20 (4) , 2709-2726. https://doi.org/10.1007/s10311-022-01409-w
    43. Jiangtao Tan, Yongjian Chen, Zhaowen Mo, Chunju Tan, Runhao Wen, Zhengtong Chen, Hua Tian. Zinc oxide nanoparticles and polyethylene microplastics affect the growth, physiological and biochemical attributes, and Zn accumulation of rice seedlings. Environmental Science and Pollution Research 2022, 29 (40) , 61534-61546. https://doi.org/10.1007/s11356-022-19262-3
    44. Bilal Ahmed, Asfa Rizvi, Asad Syed, Vishnu D. Rajput, Abdallah M. Elgorban, Salim S. Al-Rejaie, Tatiana Minkina, Mohammad Saghir Khan, Jintae Lee. Understanding the phytotoxic impact of Al3+, nano-size, and bulk Al2O3 on growth and physiology of maize (Zea mays L.) in aqueous and soil media. Chemosphere 2022, 300 , 134555. https://doi.org/10.1016/j.chemosphere.2022.134555
    45. Lingrui Liu, Hai Nian, Tengxiang Lian. Plants and rhizospheric environment: Affected by zinc oxide nanoparticles (ZnO NPs). A review. Plant Physiology and Biochemistry 2022, 185 , 91-100. https://doi.org/10.1016/j.plaphy.2022.05.032
    46. T. Devasena, B. Iffath, R. Renjith Kumar, Natarajan Muninathan, Kuppusamy Baskaran, T. Srinivasan, Shani T. John, . Insights on the Dynamics and Toxicity of Nanoparticles in Environmental Matrices. Bioinorganic Chemistry and Applications 2022, 2022 , 1-21. https://doi.org/10.1155/2022/4348149
    47. Hongda Sun, Qingqing Peng, Jiao Guo, Haoyue Zhang, Junrui Bai, Hui Mao. Effects of short-term soil exposure of different doses of ZnO nanoparticles on the soil environment and the growth and nitrogen fixation of alfalfa. Environmental Pollution 2022, 240 , 119817. https://doi.org/10.1016/j.envpol.2022.119817
    48. Hui Sun, Yunteng Cao, Doyoon Kim, Benedetto Marelli. Biomaterials Technology for AgroFood Resilience. Advanced Functional Materials 2022, 32 (30) https://doi.org/10.1002/adfm.202201930
    49. Yinglin Liu, Xuesong Cao, Le Yue, Chuanxi Wang, Mengna Tao, Zhenyu Wang, Baoshan Xing. Foliar-applied cerium oxide nanomaterials improve maize yield under salinity stress: Reactive oxygen species homeostasis and rhizobacteria regulation. Environmental Pollution 2022, 299 , 118900. https://doi.org/10.1016/j.envpol.2022.118900
    50. Ayushi Priyam, Natasha Yadav, Pallavolu M. Reddy, Luis O.B. Afonso, Aaron G. Schultz, Pushplata Prasad Singh. Fertilizing benefits of biogenic phosphorous nanonutrients on Solanum lycopersicum in soils with variable pH. Heliyon 2022, 8 (3) , e09144. https://doi.org/10.1016/j.heliyon.2022.e09144
    51. Umra Aqeel, Tariq Aftab, M. Masroor A. Khan, M. Naeem, M. Nasir Khan. A comprehensive review of impacts of diverse nanoparticles on growth, development and physiological adjustments in plants under changing environment. Chemosphere 2022, 291 , 132672. https://doi.org/10.1016/j.chemosphere.2021.132672
    52. Manviri Rani, Keshu, Jyoti Yadav, Meenu, Uma Shanker. Environmental, legal, health, and safety issues of green nanomaterials. 2022, 567-594. https://doi.org/10.1016/B978-0-12-823137-1.00020-8
    53. Astrid Avellan, Sónia M. Rodrigues, Bruno P. Morais, Benjamin Therrien, Yilin Zhang, Sandra Rodrigues, Gregory V. Lowry. Biological Barriers, Processes, and Transformations at the Soil–Plant–Atmosphere Interfaces Driving the Uptake, Translocation, and Bioavailability of Inorganic Nanoparticles to Plants. 2022, 123-152. https://doi.org/10.1007/978-3-030-94155-0_4
    54. Xingmao Ma, Xiaoxuan Wang. Multigenerational exposure of plants to engineered nanoparticles (ENPs). 2022, 195-207. https://doi.org/10.1016/B978-0-323-85032-2.00002-6
    55. Luca Marchiol, Laura Pilotto, Daniel Lizzi, Guido Fellet. Spontaneous plant species responses to engineered nanoparticles. 2022, 83-118. https://doi.org/10.1016/B978-0-323-85032-2.00006-3
    56. Kirill Azarin, Alexander Usatov, Tatiana Minkina, Andrey Plotnikov, Alexandra Kasyanova, Aleksei Fedorenko, Nadezhda Duplii, Evgeniy Vechkanov, Vishnu D. Rajput, Saglara Mandzhieva, Saud Alamri. Effects of ZnO nanoparticles and its bulk form on growth, antioxidant defense system and expression of oxidative stress related genes in Hordeum vulgare L. Chemosphere 2022, 287 , 132167. https://doi.org/10.1016/j.chemosphere.2021.132167
    57. M. GHORBANPOUR, A. MOVAHEDI, M. HATAMI, K. KARIMAN, F. BOVAND, M.A. SHAHID. Insights into nanoparticle-induced changes in plant photosynthesis. Photosynthetica 2021, 59 (4) , 570-586. https://doi.org/10.32615/ps.2021.049
    58. Ali Raza Khan, Wardah Azhar, Junyu Wu, Zaid Ulhassan, Abdul Salam, Syed Hassan Raza Zaidi, Shuaiqi Yang, Ge Song, Yinbo Gan. Ethylene participates in zinc oxide nanoparticles induced biochemical, molecular and ultrastructural changes in rice seedlings. Ecotoxicology and Environmental Safety 2021, 226 , 112844. https://doi.org/10.1016/j.ecoenv.2021.112844
    59. Sanghamitra Majumdar, Arturo A. Keller. Omics to address the opportunities and challenges of nanotechnology in agriculture. Critical Reviews in Environmental Science and Technology 2021, 51 (22) , 2595-2636. https://doi.org/10.1080/10643389.2020.1785264
    60. Zhiyuan Lv, Hongda Sun, Wei Du, Ruoyi Li, Hui Mao, Peter M. Kopittke. Interaction of different-sized ZnO nanoparticles with maize (Zea mays): Accumulation, biotransformation and phytotoxicity. Science of The Total Environment 2021, 796 , 148927. https://doi.org/10.1016/j.scitotenv.2021.148927
    61. Bilal Ahmed, Asfa Rizvi, Asad Syed, Abdallah M. Elgorban, Mohammad Saghir Khan, Hind A. AL-Shwaiman, Javed Musarrat, Jintae Lee. Differential responses of maize (Zea mays) at the physiological, biomolecular, and nutrient levels when cultivated in the presence of nano or bulk ZnO or CuO or Zn2+ or Cu2+ ions. Journal of Hazardous Materials 2021, 419 , 126493. https://doi.org/10.1016/j.jhazmat.2021.126493
    62. Miguel A. Gomez‐Gonzalez, Mohamed A. Koronfel, Huw Pullin, Julia E. Parker, Paul D. Quinn, Maria D. Inverno, Thomas B. Scott, Fang Xie, Nikolaos Voulvoulis, Marian L. Yallop, Mary P. Ryan, Alexandra E. Porter. Nanoscale Chemical Imaging of Nanoparticles under Real‐World Wastewater Treatment Conditions. Advanced Sustainable Systems 2021, 5 (7) https://doi.org/10.1002/adsu.202100023
    63. Preeyaporn Koedrith, Md. Mujibur Rahman, Yu Jin Jang, Dong Yeop Shin, Young Rok Seo. Nanoparticles: Weighing the Pros and Cons from an Eco-genotoxicological Perspective. Journal of Cancer Prevention 2021, 26 (2) , 83-97. https://doi.org/10.15430/JCP.2021.26.2.83
    64. Gobinath Chandrakasan, Manuel Toledano Ayala, Juan Fernando García Trejo, Gabriel Marcus, David L. Carroll. Mapping and distribution of speciation changes of metals from nanoparticles in environmental matrices using synchrotron radiation techniques. Environmental Nanotechnology, Monitoring & Management 2021, 76 , 100491. https://doi.org/10.1016/j.enmm.2021.100491
    65. Guadalupe de la Rosa, Edgar Vázquez-Núñez, Carlos Molina-Guerrero, Alma H. Serafín-Muñoz, Ileana Vera-Reyes. Interactions of nanomaterials and plants at the cellular level: current knowledge and relevant gaps. Nanotechnology for Environmental Engineering 2021, 6 (1) https://doi.org/10.1007/s41204-020-00100-1
    66. Chaonan Dong, Chunlei Jiao, Changjian Xie, Yabo Liu, Wenhe Luo, Shixian Fan, Yuhui Ma, Xiao He, Aijun Lin, Zhiyong Zhang. Effects of ceria nanoparticles and CeCl3 on growth, physiological and biochemical parameters of corn (Zea mays) plants grown in soil. NanoImpact 2021, 22 , 100311. https://doi.org/10.1016/j.impact.2021.100311
    67. Prashant K. Sharma, Akhilesh S. Raghubanshi, Kavita Shah. Examining the uptake and bioaccumulation of molybdenum nanoparticles and their effect on antioxidant activities in growing rice seedlings. Environmental Science and Pollution Research 2021, 28 (11) , 13439-13453. https://doi.org/10.1007/s11356-020-11511-7
    68. Yu. V. Venzhik, I. E. Moshkov, L. A. Dykman. Influence of Nanoparticles of Metals and Their Oxides on the Photosynthetic Apparatus of Plants. Biology Bulletin 2021, 48 (2) , 140-155. https://doi.org/10.1134/S106235902102014X
    69. Guilherme Henrique Gonçalves de Almeida, Rita de Cássia Siqueira-Soares, Thatiane Rodrigues Mota, Dyoni Matias de Oliveira, Josielle Abrahão, Marcela de Paiva Foletto-Felipe, Wanderley Dantas dos Santos, Osvaldo Ferrarese-Filho, Rogério Marchiosi. Aluminum oxide nanoparticles affect the cell wall structure and lignin composition slightly altering the soybean growth. Plant Physiology and Biochemistry 2021, 159 , 335-346. https://doi.org/10.1016/j.plaphy.2020.12.028
    70. Daniel Lizzi, Alessandro Mattiello, Alessio Adamiano, Guido Fellet, Emanuele Gava, Luca Marchiol. Influence of Cerium Oxide Nanoparticles on Two Terrestrial Wild Plant Species. Plants 2021, 10 (2) , 335. https://doi.org/10.3390/plants10020335
    71. Gaurav Chugh, Kadambot H. M. Siddique, Zakaria M. Solaiman. Nanobiotechnology for Agriculture: Smart Technology for Combating Nutrient Deficiencies with Nanotoxicity Challenges. Sustainability 2021, 13 (4) , 1781. https://doi.org/10.3390/su13041781
    72. Aurang Zeb, Weitao Liu, Jiani Wu, Jiapan Lian, Yuhang Lian. Knowledge domain and emerging trends in nanoparticles and plants interaction research: A scientometric analysis. NanoImpact 2021, 21 , 100278. https://doi.org/10.1016/j.impact.2020.100278
    73. Monika Nehra, Neeraj Dilbaghi, Giovanna Marrazza, Ajeet Kaushik, Christian Sonne, Ki-Hyun Kim, Sandeep Kumar. Emerging nanobiotechnology in agriculture for the management of pesticide residues. Journal of Hazardous Materials 2021, 401 , 123369. https://doi.org/10.1016/j.jhazmat.2020.123369
    74. Swati Rawat, Jesus Cantu, Suzanne A. Apodaca, Yi Wang, Chaoyi Deng, Martha L. Lopez-Moreno, Jose R. Peralta-Videa, Jorge L. Gardea-Torresdey. Effects of Engineered Nanoparticles at Various Growth Stages of Crop Plants. 2021, 209-229. https://doi.org/10.1007/978-3-030-65792-5_8
    75. J.M. Rajwade, M.D. Oak, K.M. Paknikar. Zinc nanostructure applications in agriculture. 2021, 285-321. https://doi.org/10.1016/B978-0-12-822836-4.00016-1
    76. Stephen J. Evans, Paul M. Vecchiarelli, Martin J. D. Clift, Shareen H. Doak, Jamie R. Lead. Overview of Nanotoxicology in Humans and the Environment; Developments, Challenges and Impacts. 2021, 1-40. https://doi.org/10.1007/978-3-030-79808-6_1
    77. Réka Szőllősi, Árpád Molnár, Gábor Feigl, Dóra Oláh, Márk Papp, Zsuzsanna Kolbert. Physiology of Zinc Oxide Nanoparticles in Plants. 2021, 95-127. https://doi.org/10.1007/978-3-030-36740-4_4
    78. Shalini Dhiman, Palak Bakshi, Nitika Kapoor, Priyanka Sharma, Sukhmeen Kaur Kohli, Bilal Ahmad Mir, Renu Bhardwaj. Nanoparticle-Induced Oxidative Stress in Plant. 2021, 269-313. https://doi.org/10.1007/978-3-030-36740-4_12
    79. Khaled F. M. Salem, Maysaa T. Alloosh, Maysoun M. Saleh, Lina M. Alnaddaf, Abdulsalam K. Almuhammady, Jameel M. Al-Khayri. Utilization of Nanofertilizers in Crop Tolerance to Abiotic Stress. 2021, 261-289. https://doi.org/10.1007/978-3-030-73606-4_11
    80. Ilona Plaksenkova, Inese Kokina, Anastasija Petrova, Marija Jermaļonoka, Vjačeslavs Gerbreders, Marina Krasovska, . The Impact of Zinc Oxide Nanoparticles on Cytotoxicity, Genotoxicity, and miRNA Expression in Barley (Hordeum vulgare L.) Seedlings. The Scientific World Journal 2020, 2020 , 1-13. https://doi.org/10.1155/2020/6649746
    81. Gabriel Ibrahin Tovar, Sarah Briceño, Jorge Suarez, Saul Flores, Gema González. Biogenic synthesis of iron oxide nanoparticles using Moringa oleifera and chitosan and its evaluation on corn germination. Environmental Nanotechnology, Monitoring & Management 2020, 14 , 100350. https://doi.org/10.1016/j.enmm.2020.100350
    82. Qumber Abbas, Balal Yousaf, Habib Ullah, Muhammad Ubaid Ali, Yong Sik Ok, Jörg Rinklebe. Environmental transformation and nano-toxicity of engineered nano-particles (ENPs) in aquatic and terrestrial organisms. Critical Reviews in Environmental Science and Technology 2020, 50 (23) , 2523-2581. https://doi.org/10.1080/10643389.2019.1705721
    83. Haleema Saleem, Syed Javaid Zaidi. Recent Developments in the Application of Nanomaterials in Agroecosystems. Nanomaterials 2020, 10 (12) , 2411. https://doi.org/10.3390/nano10122411
    84. Ali Daryabeigi Zand, Alireza Mikaeili Tabrizi, Azar Vaezi Heir. The influence of association of plant growth-promoting rhizobacteria and zero-valent iron nanoparticles on removal of antimony from soil by Trifolium repens. Environmental Science and Pollution Research 2020, 27 (34) , 42815-42829. https://doi.org/10.1007/s11356-020-10252-x
    85. Ali Daryabeigi Zand, Alireza Mikaeili Tabrizi, Azar Vaezi Heir. Incorporation of biochar and nanomaterials to assist remediation of heavy metals in soil using plant species. Environmental Technology & Innovation 2020, 20 , 101134. https://doi.org/10.1016/j.eti.2020.101134
    86. Elżbieta Skiba, Monika Pietrzak, Magdalena Gapińska, Wojciech M. Wolf. Metal Homeostasis and Gas Exchange Dynamics in Pisum sativum L. Exposed to Cerium Oxide Nanoparticles. International Journal of Molecular Sciences 2020, 21 (22) , 8497. https://doi.org/10.3390/ijms21228497
    87. John-Paul Fox, Jonathan D. Capen, Weilan Zhang, Xingmao Ma, Lorenzo Rossi. Effects of cerium oxide nanoparticles and cadmium on corn (Zea mays L.) seedlings physiology and root anatomy. NanoImpact 2020, 20 , 100264. https://doi.org/10.1016/j.impact.2020.100264
    88. Weitao Liu, Aurang Zeb, Jiapan Lian, Jiani Wu, Hongxia Xiong, Jingchun Tang, Shunan Zheng. Interactions of metal-based nanoparticles (MBNPs) and metal-oxide nanoparticles (MONPs) with crop plants: a critical review of research progress and prospects. Environmental Reviews 2020, 28 (3) , 294-310. https://doi.org/10.1139/er-2019-0085
    89. Ali Daryabeigi Zand, Alireza Mikaeili Tabrizi, Azar Vaezi Heir. Co-application of biochar and titanium dioxide nanoparticles to promote remediation of antimony from soil by Sorghum bicolor: metal uptake and plant response. Heliyon 2020, 6 (8) , e04669. https://doi.org/10.1016/j.heliyon.2020.e04669
    90. Ali Daryabeigi Zand, Alireza Mikaeili Tabrizi, Azar Vaezi Heir. Application of titanium dioxide nanoparticles to promote phytoremediation of Cd-polluted soil: contribution of PGPR inoculation. Bioremediation Journal 2020, 24 (2-3) , 171-189. https://doi.org/10.1080/10889868.2020.1799929
    91. Mustafa R. Al-Shaheen, Rasmi M. Hamad, Maath.M AL Abdaly, Omar H. Al- Rawi. Assessment the impact of iron nanoparticles and dry yeast extract on the corn (Zea maize L.). Journal of Physics: Conference Series 2020, 1535 (1) , 012052. https://doi.org/10.1088/1742-6596/1535/1/012052
    92. Yuhui Ma, Changjian Xie, Xiao He, Boxin Zhang, Jie Yang, Minghui Sun, Wenhe Luo, Sheng Feng, Junzhe Zhang, Guohua Wang, Zhiyong Zhang. Effects of Ceria Nanoparticles and CeCl 3 on Plant Growth, Biological and Physiological Parameters, and Nutritional Value of Soil Grown Common Bean ( Phaseolus vulgaris ). Small 2020, 16 (21) , 1907435. https://doi.org/10.1002/smll.201907435
    93. Jing Hu, Xinyi Wu, Fan Wu, Weixiao Chen, Xinyu Zhang, Jason C. White, Junli Li, Yi Wan, Junfeng Liu, Xilong Wang. TiO 2 nanoparticle exposure on lettuce ( Lactuca sativa L.): dose-dependent deterioration of nutritional quality. Environmental Science: Nano 2020, 7 (2) , 501-513. https://doi.org/10.1039/C9EN01215J
    94. V. Ananthi, K. Mohanrasu, T. Boobalan, K. Anand, M. Sudhakar, Anil Chuturgoon, V. Balasubramanian, R. Yuvakkumar, A. Arun. An Overview of Nanotoxicological Effects Towards Plants, Animals, Microorganisms and Environment. 2020, 113-146. https://doi.org/10.1007/978-3-030-36260-7_5
    95. Yu. V. Venzhik, S. Yu. Shchyogolev, L. A. Dykman. Ultrastructural Reorganization of Chloroplasts during Plant Adaptation to Abiotic Stress Factors. Russian Journal of Plant Physiology 2019, 66 (6) , 850-863. https://doi.org/10.1134/S102144371906013X
    96. Hakwon Yoon, Yu-Gyeong Kang, Yoon-Seok Chang, Jae-Hwan Kim. Effects of Zerovalent Iron Nanoparticles on Photosynthesis and Biochemical Adaptation of Soil-Grown Arabidopsis thaliana. Nanomaterials 2019, 9 (11) , 1543. https://doi.org/10.3390/nano9111543
    97. Yiming Su, Vanessa Ashworth, Caroline Kim, Adeyemi S. Adeleye, Philippe Rolshausen, Caroline Roper, Jason White, David Jassby. Delivery, uptake, fate, and transport of engineered nanoparticles in plants: a critical review and data analysis. Environmental Science: Nano 2019, 6 (8) , 2311-2331. https://doi.org/10.1039/C9EN00461K
    98. Hira Zafar, Bilal Haider Abbasi, Muhammad Zia. Physiological and antioxidative response of Brassica nigra (L.) to ZnO nanoparticles grown in culture media and soil. Toxicological & Environmental Chemistry 2019, 101 (3-6) , 281-299. https://doi.org/10.1080/02772248.2019.1691555
    99. Manoj Shrivastava, Akansha Srivastav, Sonu Gandhi, Sunita Rao, Appan Roychoudhury, Alesh Kumar, R.K. Singhal, Sandeep Kumar Jha, S.D. Singh. Monitoring of engineered nanoparticles in soil-plant system: A review. Environmental Nanotechnology, Monitoring & Management 2019, 11 , 100218. https://doi.org/10.1016/j.enmm.2019.100218
    100. Carlos Tamez, Mariana Hernandez-Molina, Jose A. Hernandez-Viezcas, Jorge L. Gardea-Torresdey. Uptake, transport, and effects of nano-copper exposure in zucchini (Cucurbita pepo). Science of The Total Environment 2019, 665 , 100-106. https://doi.org/10.1016/j.scitotenv.2019.02.029
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect