ACS Publications. Most Trusted. Most Cited. Most Read
Proxies and Measurement Techniques for Mineral Dust in Antarctic Ice Cores
My Activity

Figure 1Loading Img
    Article

    Proxies and Measurement Techniques for Mineral Dust in Antarctic Ice Cores
    Click to copy article linkArticle link copied!

    View Author Information
    Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany, Department of Environmental Sciences, University of Venice, Venice, Italy, Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland, Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Denmark, Department of Environmental Sciences, University of Milano Biccoca, Italy, School of Earth Sciences and Byrd Polar Research Center, Ohio State University, Columbus, Ohio, Department of Chemistry, University of Florence, Florence, Italy, Laboratoire de Glaciologie et Géophysique de l’Environnement, CNRS, Grenoble, France, Institut für Umweltphysik, University of Heidelberg, Heidelberg, Germany, and British Antarctic Survey, Cambridge, United Kingdom
    * Corresponding author e-mail: [email protected]. Also at: Climate Analysis and Consulting, Germany.
    †Alfred-Wegener-Institute for Polar and Marine Research.
    ‡University of Venice.
    §University of Bern.
    ∥University of Copenhagen.
    ⊥University of Milano Biccoca.
    #Ohio State University.
    ∇University of Florence.
    ○CNRS.
    ◆University of Heidelberg.
    ¶British Antarctic Survey.
    Other Access OptionsSupporting Information (1)

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2008, 42, 15, 5675–5681
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es703078z
    Published July 2, 2008
    Copyright © 2008 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    To improve quantitative interpretation of ice core aeolian dust records, a systematic methodological comparison was made. This involved methods for water-insoluble particle counting (Coulter counter and laser-sensing particle detector), soluble ion analysis (ion chromatography and continuous flow analysis), elemental analysis (inductively coupled plasma mass spectroscopy at pH 1 and after full acid digestion), and water-insoluble elemental analysis (proton induced X-ray emission). Antarctic ice core samples covering the last deglaciation from the EPICA Dome C (EDC) and the EPICA Dronning Maud Land (EDML) cores were used. All methods correlate very well among each other, but the ratios of glacial age to Holocene concentrations, which are typically a factor ∼100, differ between the methods by up to a factor of 2 with insoluble particles showing the largest variability. The recovery of ICP-MS measurements depends on the digestion method and is different for different elements and during different climatic periods. EDC and EDML samples have similar dust composition, which suggests a common dust source or a common mixture of sources for the two sites. The analyzed samples further reveal a change of dust composition during the last deglaciation.

    Copyright © 2008 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 70 publications.

    1. Dylan B. Beard, Giovanni Baccolo, Caroline C. Clason, Geoffrey E. Millward, Edyta Łokas, Elena Di Stefano, Sally Rangecroft, Dariusz Sala, Przemysław Wachniew, William H. Blake. Accumulation of Environmental Radioactivity on the Surface of a High Arctic Ice Cap (Flade Isblink, NE Greenland). Environmental Science & Technology 2024, 58 (38) , 17004-17014. https://doi.org/10.1021/acs.est.3c10755
    2. Elena Barbaro, Matteo Feltracco, Azzurra Spagnesi, Federico Dallo, Jacopo Gabrieli, Fabrizio De Blasi, Daniele Zannoni, Warren R.L. Cairns, Andrea Gambaro, Carlo Barbante. Fast Liquid Chromatography Coupled with Tandem Mass Spectrometry for the Analysis of Vanillic and Syringic Acids in Ice Cores. Analytical Chemistry 2022, 94 (13) , 5344-5351. https://doi.org/10.1021/acs.analchem.1c05412
    3. Claudia Ravasio, Llorenç Cremonesi, Claudio Artoni, Barbara Delmonte, Valter Maggi, Marco A. C. Potenza. Optical Characterization of Mineral Dust from the EAIIST Project with Digital Holography. ACS Earth and Space Chemistry 2021, 5 (10) , 2855-2864. https://doi.org/10.1021/acsearthspacechem.1c00224
    4. Mirko Severi, Silvia Becagli, Rita Traversi, and Roberto Udisti . Recovering Paleo-Records from Antarctic Ice-Cores by Coupling a Continuous Melting Device and Fast Ion Chromatography. Analytical Chemistry 2015, 87 (22) , 11441-11447. https://doi.org/10.1021/acs.analchem.5b02961
    5. William T. Hiscock, Hubertus Fischer, Matthias Bigler, Gideon Gfeller, Daiana Leuenberger, and Olivia Mini . Continuous Flow Analysis of Labile Iron in Ice-Cores. Environmental Science & Technology 2013, 47 (9) , 4416-4425. https://doi.org/10.1021/es3047087
    6. Patrik R. Kaufmann, Urs Federer, Manuel A. Hutterli, Matthias Bigler, Simon Schüpbach, Urs Ruth, Jochen Schmitt and Thomas F. Stocker . An Improved Continuous Flow Analysis System for High-Resolution Field Measurements on Ice Cores. Environmental Science & Technology 2008, 42 (21) , 8044-8050. https://doi.org/10.1021/es8007722
    7. Bess G. Koffman, Karl J. Kreutz. Glaciochemistry. 2025, 233-241. https://doi.org/10.1016/B978-0-323-99931-1.00196-3
    8. Aubry Vanderstraeten, Nadine Mattielli, Goulven G. Laruelle, Stefania Gili, Aloys Bory, Paolo Gabrielli, Sibylle Boxho, Jean-Louis Tison, Steeve Bonneville. Identifying the provenance and quantifying the contribution of dust sources in EPICA Dronning Maud Land ice core (Antarctica) over the last deglaciation (7–27 kyr BP): A high-resolution, quantitative record from a new Rare Earth Element mixing model. Science of The Total Environment 2023, 881 , 163450. https://doi.org/10.1016/j.scitotenv.2023.163450
    9. Bess G. Koffman, Steven L. Goldstein, Gisela Winckler, Michael R. Kaplan, Louise Bolge, Pierre Biscaye. Abrupt Changes in Atmospheric Circulation During the Medieval Climate Anomaly and Little Ice Age Recorded by Sr‐Nd Isotopes in the Siple Dome Ice Core, Antarctica. Paleoceanography and Paleoclimatology 2023, 38 (4) https://doi.org/10.1029/2022PA004543
    10. Aaron Chesler, Dominic Winski, Karl Kreutz, Bess Koffman, Erich Osterberg, David Ferris, Zayta Thundercloud, Joseph Mohan, Jihong Cole-Dai, Mark Wells, Michael Handley, Aaron Putnam, Katherine Anderson, Natalie Harmon. Non-spherical microparticle shape in Antarctica during the last glacial period affects dust volume-related metrics. Climate of the Past 2023, 19 (2) , 477-492. https://doi.org/10.5194/cp-19-477-2023
    11. Niccolò Maffezzoli, Eliza Cook, Willem G. M. van der Bilt, Eivind N. Støren, Daniela Festi, Florian Muthreich, Alistair W. R. Seddon, François Burgay, Giovanni Baccolo, Amalie R. F. Mygind, Troels Petersen, Andrea Spolaor, Sebastiano Vascon, Marcello Pelillo, Patrizia Ferretti, Rafael S. dos Reis, Jefferson C. Simões, Yuval Ronen, Barbara Delmonte, Marco Viccaro, Jørgen Peder Steffensen, Dorthe Dahl-Jensen, Kerim H. Nisancioglu, Carlo Barbante. Detection of ice core particles via deep neural networks. The Cryosphere 2023, 17 (2) , 539-565. https://doi.org/10.5194/tc-17-539-2023
    12. Abhijith U. Venugopal, Nancy A.N. Bertler, Rebecca L. Pyne, Helle A. Kjær, V. Holly L. Winton, Paul A. Mayewski, Giuseppe Cortese. Role of mineral dust in the nitrate preservation during the glacial period: Insights from the RICE ice core. Global and Planetary Change 2022, 209 , 103745. https://doi.org/10.1016/j.gloplacha.2022.103745
    13. Mackenzie M. Grieman, Helene M. Hoffmann, Jack D. Humby, Robert Mulvaney, Christoph Nehrbass-Ahles, Julius Rix, Elizabeth R. Thomas, Rebecca Tuckwell, Eric W. Wolff. Continuous flow analysis methods for sodium, magnesium and calcium detection in the Skytrain ice core. Journal of Glaciology 2022, 68 (267) , 90-100. https://doi.org/10.1017/jog.2021.75
    14. Kouji Adachi, Jack E. Dibb, Eric Scheuer, Joseph M. Katich, Joshua P. Schwarz, Anne E. Perring, Braden Mediavilla, Hongyu Guo, Pedro Campuzano‐Jost, Jose L. Jimenez, James Crawford, Amber J. Soja, Naga Oshima, Mizuo Kajino, Takeshi Kinase, Lawrence Kleinman, Arthur J. Sedlacek, Robert J. Yokelson, Peter R. Buseck. Fine Ash‐Bearing Particles as a Major Aerosol Component in Biomass Burning Smoke. Journal of Geophysical Research: Atmospheres 2022, 127 (2) https://doi.org/10.1029/2021JD035657
    15. Tobias Erhardt, Matthias Bigler, Urs Federer, Gideon Gfeller, Daiana Leuenberger, Olivia Stowasser, Regine Röthlisberger, Simon Schüpbach, Urs Ruth, Birthe Twarloh, Anna Wegner, Kumiko Goto-Azuma, Takayuki Kuramoto, Helle A. Kjær, Paul T. Vallelonga, Marie-Louise Siggaard-Andersen, Margareta E. Hansson, Ailsa K. Benton, Louise G. Fleet, Rob Mulvaney, Elizabeth R. Thomas, Nerilie Abram, Thomas F. Stocker, Hubertus Fischer. High-resolution aerosol concentration data from the Greenland NorthGRIP and NEEM deep ice cores. Earth System Science Data 2022, 14 (3) , 1215-1231. https://doi.org/10.5194/essd-14-1215-2022
    16. Giovanni Baccolo, Barbara Delmonte, P. B. Niles, Giannantonio Cibin, Elena Di Stefano, Dariush Hampai, Lindsay Keller, Valter Maggi, Augusto Marcelli, Joseph Michalski, Christopher Snead, Massimo Frezzotti. Jarosite formation in deep Antarctic ice provides a window into acidic, water-limited weathering on Mars. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-020-20705-z
    17. Bakhat Rawat, Qianggong Zhang, Chhatra Mani Sharma, Lekhendra Tripathee, Aastha Pandey, Kshitiz Kandel, Xuejun Sun, Mingyue Li, Shengnan Li, Shichang Kang. Glacial record of trace metal pollution over the Central Himalayas and its surroundings: Distribution, variation, and anthropogenic signals. Atmospheric Research 2021, 251 , 105428. https://doi.org/10.1016/j.atmosres.2020.105428
    18. W. Davis, W. Davis. Antarctic Winds: Pacemaker of Global Warming, Global Cooling, and the Collapse of Civilizations. Climate 2020, 8 (11) , 130. https://doi.org/10.3390/cli8110130
    19. Luca Lanci, Barbara Delmonte, Maria Cristina Salvatore, Carlo Baroni. Insight Into Provenance and Variability of Atmospheric Dust in Antarctic Ice Cores During the Late Pleistocene From Magnetic Measurements. Frontiers in Earth Science 2020, 8 https://doi.org/10.3389/feart.2020.00258
    20. Barbara Delmonte, Holly Winton, Mélanie Baroni, Giovanni Baccolo, Margareta Hansson, Per Andersson, Carlo Baroni, Maria Cristina Salvatore, Luca Lanci, Valter Maggi. Holocene dust in East Antarctica: Provenance and variability in time and space. The Holocene 2020, 30 (4) , 546-558. https://doi.org/10.1177/0959683619875188
    21. E.W. Heim, J. Dibb, E. Scheuer, P. Campuzano Jost, B.A. Nault, J.L. Jimenez, D. Peterson, C. Knote, M. Fenn, J. Hair, A.J. Beyersdorf, C. Corr, B.E. Anderson. Asian dust observed during KORUS-AQ facilitates the uptake and incorporation of soluble pollutants during transport to South Korea. Atmospheric Environment 2020, 224 , 117305. https://doi.org/10.1016/j.atmosenv.2020.117305
    22. I. Oyabu, Y. Iizuka, K. Kawamura, E. Wolff, M. Severi, R. Ohgaito, A. Abe‐Ouchi, M. Hansson. Compositions of Dust and Sea Salts in the Dome C and Dome Fuji Ice Cores From Last Glacial Maximum to Early Holocene Based on Ice‐Sublimation and Single‐Particle Measurements. Journal of Geophysical Research: Atmospheres 2020, 125 (4) https://doi.org/10.1029/2019JD032208
    23. Llorenç Cremonesi. Introduction. 2020, 1-9. https://doi.org/10.1007/978-3-030-56787-3_1
    24. Llorenç Cremonesi. Mineral Dust. 2020, 55-93. https://doi.org/10.1007/978-3-030-56787-3_4
    25. Anders Svensson, Dorthe Dahl-Jensen, Jørgen Peder Steffensen, Thomas Blunier, Sune O. Rasmussen, Bo M. Vinther, Paul Vallelonga, Emilie Capron, Vasileios Gkinis, Eliza Cook, Helle Astrid Kjær, Raimund Muscheler, Sepp Kipfstuhl, Frank Wilhelms, Thomas F. Stocker, Hubertus Fischer, Florian Adolphi, Tobias Erhardt, Michael Sigl, Amaelle Landais, Frédéric Parrenin, Christo Buizert, Joseph R. McConnell, Mirko Severi, Robert Mulvaney, Matthias Bigler. Bipolar volcanic synchronization of abrupt climate change in Greenland and Antarctic ice cores during the last glacial period. Climate of the Past 2020, 16 (4) , 1565-1580. https://doi.org/10.5194/cp-16-1565-2020
    26. Jan Eichler, Christian Weikusat, Anna Wegner, Birthe Twarloh, Melanie Behrens, Hubertus Fischer, Maria Hörhold, Daniela Jansen, Sepp Kipfstuhl, Urs Ruth, Frank Wilhelms, Ilka Weikusat. Impurity Analysis and Microstructure Along the Climatic Transition From MIS 6 Into 5e in the EDML Ice Core Using Cryo-Raman Microscopy. Frontiers in Earth Science 2019, 7 https://doi.org/10.3389/feart.2019.00020
    27. Biagio Di Mauro, Roberto Garzonio, Micol Rossini, Gianluca Filippa, Paolo Pogliotti, Marta Galvagno, Umberto Morra di Cella, Mirco Migliavacca, Giovanni Baccolo, Massimiliano Clemenza, Barbara Delmonte, Valter Maggi, Marie Dumont, François Tuzet, Matthieu Lafaysse, Samuel Morin, Edoardo Cremonese, Roberto Colombo. Saharan dust events in the European Alps: role in snowmelt and geochemical characterization. The Cryosphere 2019, 13 (4) , 1147-1165. https://doi.org/10.5194/tc-13-1147-2019
    28. Francisco Ardini, Andrea Bazzano, Marco Grotti. Lead isotopic analysis of Antarctic snow by quadrupole ICP-MS using a total-consumption sample introduction system. Journal of Analytical Atomic Spectrometry 2018, 33 (12) , 2124-2132. https://doi.org/10.1039/C8JA00296G
    29. Run Liu, Zhaohui Zhang, Jiachen Shen, Zhihui Wang. Analysis of metal content and vertical stratification of epiphytic mosses along a Karst Mountain highway. Environmental Science and Pollution Research 2018, 25 (29) , 29605-29613. https://doi.org/10.1007/s11356-018-2883-4
    30. G. Baccolo, B. Delmonte, S. Albani, C. Baroni, G. Cibin, M. Frezzotti, D. Hampai, A. Marcelli, M. Revel, M. C. Salvatore, B. Stenni, V. Maggi. Regionalization of the Atmospheric Dust Cycle on the Periphery of the East Antarctic Ice Sheet Since the Last Glacial Maximum. Geochemistry, Geophysics, Geosystems 2018, 19 (9) , 3540-3554. https://doi.org/10.1029/2018GC007658
    31. Salvatore Macis, Giannantonio Cibin, Valter Maggi, Giovanni Baccolo, Dariush Hampai, Barbara Delmonte, Alessandro D’Elia, Augusto Marcelli. Microdrop Deposition Technique: Preparation and Characterization of Diluted Suspended Particulate Samples. Condensed Matter 2018, 3 (3) , 21. https://doi.org/10.3390/condmat3030021
    32. Giovanni Baccolo, Giannantonio Cibin, Barbara Delmonte, Dariush Hampai, Augusto Marcelli, Elena Di Stefano, Salvatore Macis, Valter Maggi. The Contribution of Synchrotron Light for the Characterization of Atmospheric Mineral Dust in Deep Ice Cores: Preliminary Results from the Talos Dome Ice Core (East Antarctica). Condensed Matter 2018, 3 (3) , 25. https://doi.org/10.3390/condmat3030025
    33. Daniel Baggenstos, Jeffrey P. Severinghaus, Robert Mulvaney, Joseph Robert McConnell, Michael Sigl, Olivia Maselli, Jean‐Robert Petit, Benjamin Grente, Eric J. Steig. A Horizontal Ice Core From Taylor Glacier, Its Implications for Antarctic Climate History, and an Improved Taylor Dome Ice Core Time Scale. Paleoceanography and Paleoclimatology 2018, 33 (7) , 778-794. https://doi.org/10.1029/2017PA003297
    34. Marius Folden Simonsen, Llorenç Cremonesi, Giovanni Baccolo, Samuel Bosch, Barbara Delmonte, Tobias Erhardt, Helle Astrid Kjær, Marco Potenza, Anders Svensson, Paul Vallelonga. Particle shape accounts for instrumental discrepancy in ice core dust size distributions. Climate of the Past 2018, 14 (5) , 601-608. https://doi.org/10.5194/cp-14-601-2018
    35. Alexandra M. Lai, Martin M. Shafer, Jack E. Dibb, Chris M. Polashenski, James J. Schauer. Elements and inorganic ions as source tracers in recent Greenland snow. Atmospheric Environment 2017, 164 , 205-215. https://doi.org/10.1016/j.atmosenv.2017.05.048
    36. Gautami Samui, Runa Antony, Kanthanathan Mahalinganathan, Meloth Thamban. Spatial variability and possible sources of acetate and formate in the surface snow of East Antarctica. Journal of Environmental Sciences 2017, 57 , 258-269. https://doi.org/10.1016/j.jes.2017.02.003
    37. Julia Schmale, Mark Flanner, Shichang Kang, Michael Sprenger, Qianggong Zhang, Junming Guo, Yang Li, Margit Schwikowski, Daniel Farinotti. Modulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep40501
    38. Kanthanathan Mahalinganathan, Meloth Thamban. Potential genesis and implications of calcium nitrate in Antarctic snow. The Cryosphere 2016, 10 (2) , 825-836. https://doi.org/10.5194/tc-10-825-2016
    39. Yulan Zhang, Shichang Kang, Qianggong Zhang, Bjorn Grigholm, Susan Kaspari, Qinglong You, Dahe Qin, Paul A. Mayewski, Zhiyuan Cong, Jie Huang, Mika Sillanpää, Feng Chen. A 500year atmospheric dust deposition retrieved from a Mt. Geladaindong ice core in the central Tibetan Plateau. Atmospheric Research 2015, 166 , 1-9. https://doi.org/10.1016/j.atmosres.2015.06.007
    40. T.M. Conway, E.W. Wolff, R. Röthlisberger, R. Mulvaney, H.E. Elderfield. Constraints on soluble aerosol iron flux to the Southern Ocean at the Last Glacial Maximum. Nature Communications 2015, 6 (1) https://doi.org/10.1038/ncomms8850
    41. B. Di Mauro, F. Fava, L. Ferrero, R. Garzonio, G. Baccolo, B. Delmonte, R. Colombo. Mineral dust impact on snow radiative properties in the European Alps combining ground, UAV, and satellite observations. Journal of Geophysical Research: Atmospheres 2015, 120 (12) , 6080-6097. https://doi.org/10.1002/2015JD023287
    42. Zhiyuan Cong, Shichang Kang, Yulan Zhang, Shaopeng Gao, Zhongyan Wang, Bin Liu, Xin Wan. New insights into trace element wet deposition in the Himalayas: amounts, seasonal patterns, and implications. Environmental Science and Pollution Research 2015, 22 (4) , 2735-2744. https://doi.org/10.1007/s11356-014-3496-1
    43. S. Albani, N. M. Mahowald, G. Winckler, R. F. Anderson, L. I. Bradtmiller, B. Delmonte, R. François, M. Goman, N. G. Heavens, P. P. Hesse, S. A. Hovan, S. G. Kang, K. E. Kohfeld, H. Lu, V. Maggi, J. A. Mason, P. A. Mayewski, D. McGee, X. Miao, B. L. Otto-Bliesner, A. T. Perry, A. Pourmand, H. M. Roberts, N. Rosenbloom, T. Stevens, J. Sun. Twelve thousand years of dust: the Holocene global dust cycle constrained by natural archives. Climate of the Past 2015, 11 (6) , 869-903. https://doi.org/10.5194/cp-11-869-2015
    44. Jung-Ho Kang, Heejin Hwang, Sang Bum Hong, Soon Do Hur. Particle Size Distribution Analysis of Mineral Dust in Polar Snow Using a Coulter Counter. Ocean and Polar Research 2014, 36 (4) , 319-326. https://doi.org/10.4217/OPR.2014.36.4.319
    45. Chiara Uglietti, Paolo Gabrielli, John W. Olesik, Anthony Lutton, Lonnie G. Thompson. Large variability of trace element mass fractions determined by ICP-SFMS in ice core samples from worldwide high altitude glaciers. Applied Geochemistry 2014, 47 , 109-121. https://doi.org/10.1016/j.apgeochem.2014.05.019
    46. Paul Vallelonga, Anders Svensson. Ice Core Archives of Mineral Dust. 2014, 463-485. https://doi.org/10.1007/978-94-017-8978-3_18
    47. G. Bertolotti, S. Gialanella. Review: use of conifer needles as passive samplers of inorganic pollutants in air quality monitoring. Analytical Methods 2014, 6 (16) , 6208. https://doi.org/10.1039/C4AY00172A
    48. Bess G. Koffman, Michael J. Handley, Erich C. Osterberg, Mark L. Wells, Karl J. Kreutz. Dependence of ice-core relative trace-element concentration on acidification. Journal of Glaciology 2014, 60 (219) , 103-112. https://doi.org/10.3189/2014JoG13J137
    49. B. G. Koffman, K. J. Kreutz, D. J. Breton, E. J. Kane, D. A. Winski, S. D. Birkel, A. V. Kurbatov, M. J. Handley. Centennial-scale variability of the Southern Hemisphere westerly wind belt in the eastern Pacific over the past two millennia. Climate of the Past 2014, 10 (3) , 1125-1144. https://doi.org/10.5194/cp-10-1125-2014
    50. A. Spolaor, P. Vallelonga, G. Cozzi, J. Gabrieli, C. Varin, N. Kehrwald, P. Zennaro, C. Boutron, C. Barbante. Iron speciation in aerosol dust influences iron bioavailability over glacial‐interglacial timescales. Geophysical Research Letters 2013, 40 (8) , 1618-1623. https://doi.org/10.1002/grl.50296
    51. Andrea Spolaor, Paul Vallelonga, Jacopo Gabrieli, Natalie Kehrwald, Clara Turetta, Giulio Cozzi, Luisa Poto, John M. C. Plane, C. Boutron, Carlo Barbante. Speciation analysis of iodine and bromine at picogram-per-gram levels in polar ice. Analytical and Bioanalytical Chemistry 2013, 405 (2-3) , 647-654. https://doi.org/10.1007/s00216-012-5806-0
    52. A. Spolaor, P. Vallelonga, J. Gabrieli, M. Roman, C. Barbante. Continuous flow analysis method for determination of soluble iron and aluminium in ice cores. Analytical and Bioanalytical Chemistry 2013, 405 (2-3) , 767-774. https://doi.org/10.1007/s00216-012-6166-5
    53. K.J. Kreutz, B.G. Koffman. ICE CORE METHODS | Glaciochemistry. 2013, 326-333. https://doi.org/10.1016/B978-0-444-53643-3.00312-5
    54. Giselle Cerchiaro, Tania Maria Manieri, Fernanda Rodrigues Bertuchi. Analytical methods for copper, zinc and iron quantification in mammalian cells. Metallomics 2013, 5 (10) , 1336. https://doi.org/10.1039/c3mt00136a
    55. M. Legrand, S. Preunkert, B. Jourdain, J. Guilhermet, X. Fa{ï}n, I. Alekhina, J. R. Petit. Water-soluble organic carbon in snow and ice deposited at Alpine, Greenland, and Antarctic sites: a critical review of available data and their atmospheric relevance. Climate of the Past 2013, 9 (5) , 2195-2211. https://doi.org/10.5194/cp-9-2195-2013
    56. E. Capron, A. Landais, D. Buiron, A. Cauquoin, J. Chappellaz, M. Debret, J. Jouzel, M. Leuenberger, P. Martinerie, V. Masson-Delmotte, R. Mulvaney, F. Parrenin, F. Prié. Glacial–interglacial dynamics of Antarctic firn columns: comparison between simulations and ice core air-δ15N measurements. Climate of the Past 2013, 9 (3) , 983-999. https://doi.org/10.5194/cp-9-983-2013
    57. Samuel Albani, Natalie M. Mahowald, Barbara Delmonte, Valter Maggi, Gisela Winckler. Comparing modeled and observed changes in mineral dust transport and deposition to Antarctica between the Last Glacial Maximum and current climates. Climate Dynamics 2012, 38 (9-10) , 1731-1755. https://doi.org/10.1007/s00382-011-1139-5
    58. Lila Rojo, Melanie A. Barnes, Thomas E. Gill. Intercomparison of PIXE and ICP‐AES Analyses of Aeolian Dust from Owens (Dry) Lake, California. Geostandards and Geoanalytical Research 2012, 36 (1) , 83-102. https://doi.org/10.1111/j.1751-908X.2011.00058.x
    59. Andrea Spolaor, Paul Vallelonga, Jacopo Gabrieli, Giulio Cozzi, Claude Boutron, Carlo Barbante. Determination of Fe2+ and Fe3+ species by FIA-CRC-ICP-MS in Antarctic ice samples. J. Anal. At. Spectrom. 2012, 27 (2) , 310-317. https://doi.org/10.1039/C1JA10276A
    60. F. Lambert, M. Bigler, J. P. Steffensen, M. Hutterli, H. Fischer. Centennial mineral dust variability in high-resolution ice core data from Dome C, Antarctica. Climate of the Past 2012, 8 (2) , 609-623. https://doi.org/10.5194/cp-8-609-2012
    61. M. Grotti, F. Soggia, F. Ardini, E. Magi. Major and trace element partitioning between dissolved and particulate phases in Antarctic surface snow. Journal of Environmental Monitoring 2011, 13 (9) , 2511. https://doi.org/10.1039/c1em10215j
    62. Aloys Bory, Eric Wolff, Robert Mulvaney, Emil Jagoutz, Anna Wegner, Urs Ruth, Harry Elderfield. Multiple sources supply eolian mineral dust to the Atlantic sector of coastal Antarctica: Evidence from recent snow layers at the top of Berkner Island ice sheet. Earth and Planetary Science Letters 2010, 291 (1-4) , 138-148. https://doi.org/10.1016/j.epsl.2010.01.006
    63. E.W. Wolff, C. Barbante, S. Becagli, M. Bigler, C.F. Boutron, E. Castellano, M. de Angelis, U. Federer, H. Fischer, F. Fundel, M. Hansson, M. Hutterli, U. Jonsell, T. Karlin, P. Kaufmann, F. Lambert, G.C. Littot, R. Mulvaney, R. Röthlisberger, U. Ruth, M. Severi, M.L. Siggaard-Andersen, L.C. Sime, J.P. Steffensen, T.F. Stocker, R. Traversi, B. Twarloh, R. Udisti, D. Wagenbach, A. Wegner. Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core. Quaternary Science Reviews 2010, 29 (1-2) , 285-295. https://doi.org/10.1016/j.quascirev.2009.06.013
    64. S. Gassó, A. Stein, F. Marino, E. Castellano, R. Udisti, J. Ceratto. A combined observational and modeling approach to study modern dust transport from the Patagonia desert to East Antarctica. Atmospheric Chemistry and Physics 2010, 10 (17) , 8287-8303. https://doi.org/10.5194/acp-10-8287-2010
    65. F. Marino, E. Castellano, S. Nava, M. Chiari, U. Ruth, A. Wegner, F. Lucarelli, R. Udisti, B. Delmonte, V. Maggi. Coherent composition of glacial dust on opposite sides of the East Antarctic Plateau inferred from the deep EPICA ice cores. Geophysical Research Letters 2009, 36 (23) https://doi.org/10.1029/2009GL040732
    66. Paolo Gabrielli, Frederic Planchon, Carlo Barbante, Claude F. Boutron, Jean Robert Petit, Sergey Bulat, Sungmin Hong, Giulio Cozzi, Paolo Cescon. Ultra-low rare earth element content in accreted ice from sub-glacial Lake Vostok, Antarctica. Geochimica et Cosmochimica Acta 2009, 73 (20) , 5959-5974. https://doi.org/10.1016/j.gca.2009.05.050
    67. Yoshinori Iizuka, Takayuki Miyake, Motohiro Hirabayashi, Toshitaka Suzuki, Sumito Matoba, Hideaki Motoyama, Yoshiyuki Fujii, Takeo Hondoh. Constituent elements of insoluble and non-volatile particles during the Last Glacial Maximum exhibited in the Dome Fuji (Antarctica) ice core. Journal of Glaciology 2009, 55 (191) , 552-562. https://doi.org/10.3189/002214309788816696
    68. P. B. Price, R. A. Rohde, R. C. Bay. Fluxes of microbes, organic aerosols, dust, sea-salt Na ions, non-sea-salt Ca ions, and methanesulfonate onto Greenland and Antarctic ice. Biogeosciences 2009, 6 (3) , 479-486. https://doi.org/10.5194/bg-6-479-2009
    69. F. Marino, E. Castellano, D. Ceccato, P. De Deckker, B. Delmonte, G. Ghermandi, V. Maggi, J. R. Petit, M. Revel‐Rolland, R. Udisti. Defining the geochemical composition of the EPICA Dome C ice core dust during the last glacial‐interglacial cycle. Geochemistry, Geophysics, Geosystems 2008, 9 (10) https://doi.org/10.1029/2008GC002023
    70. Carlo Barbante, Giulio Cozzi. Glaciology – Ultratrace Analysis of Samples from Remote Areas. 2000, 1-12. https://doi.org/10.1002/9780470027318.a9243

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2008, 42, 15, 5675–5681
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es703078z
    Published July 2, 2008
    Copyright © 2008 American Chemical Society

    Article Views

    1223

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.