ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Lipid Peroxidation Induced by Expandable Clay Minerals

View Author Information
Facultad de Química, Universidad Nacional Autónoma de México, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacan, Mexico, DF 04510, Mexico, Departamento de Procesos y Tecnología, División de Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana, Unidad Cuajimalpa (UAM-C), Artificios No. 40, 6° Piso, C.P. 01120 México, NASA Astrobiology Institute, and Earth Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720
* Corresponding author phone: (52) (55) 26 36 38 00extension 3827; fax: (52) (55) 26 36 38 00 extension 3832; e-mail: [email protected]
†Facultad de Química, Universidad Nacional Autónoma de México
‡Instituto de Química, Universidad Nacional Autónoma de México.
§Universidad Autónoma Metropolitana.
⊥NASA Astrobiology Institute.
⊥Lawrence Berkeley National Laboratory.
Cite this: Environ. Sci. Technol. 2009, 43, 19, 7550–7555
Publication Date (Web):August 21, 2009
https://doi.org/10.1021/es9007917
Copyright © 2009 American Chemical Society

    Article Views

    534

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Small-sized environmental particles such as 2:1 phyllosilicates induce oxidative stress, a primary indicator of cell damage and toxicity. Herein, potential hazards of clay particle uptake are addressed. This paper reports that the content and distribution of structural Fe influence the ability of expandable clay minerals to induce lipid peroxidation (LP), a major indicator of oxidative stress, in biological matrices. Three smectite clays, hectorite (SHCa-1) and two nontronites (NAu-1) and (NAu-2) containing varying total content and coordination environment of structural Fe, were selected. Screening and monitoring of LP was conducted using a thiobarbituric acid reactive substances (TBARS) assay. The higher content of TBARS in nontronites than that in SHCa-1 suspensions was explained because structural Fe contributes to LP. The observed lack of correlation between TBARS content and the extent of Fe dissolution indicated that the formation of TBARS is surface controlled. Results showing a high TBARS content in SHCa-1 but not in nontronite supernatant solutions was explained because the former contains distinct, soluble chemical component(s) that could (i) induce LP by its (their) own right and (ii) whose chemical affinity for organic ligands used as inhibitors is weak. Clays serve as stronger inductors than 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) but are much weaker than FeSO4. The outcome of this work shows that LP is clay surface-controlled and dependent on clay structural composition.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional considerations on the effect of the clay type and surface area on TBARS production, and figures normalized to clay specific surface area. This information is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 33 publications.

    1. Dongyi Guo, Qingyin Xia, Qiang Zeng, Xi Wang, Hailiang Dong. Antibacterial Mechanisms of Reduced Iron-Containing Smectite–Illite Clay Minerals. Environmental Science & Technology 2021, 55 (22) , 15256-15265. https://doi.org/10.1021/acs.est.1c04367
    2. Qingyin Xia, Xi Wang, Qiang Zeng, Dongyi Guo, Zihua Zhu, Hongyu Chen, Hailiang Dong. Mechanisms of Enhanced Antibacterial Activity by Reduced Chitosan-Intercalated Nontronite. Environmental Science & Technology 2020, 54 (8) , 5207-5217. https://doi.org/10.1021/acs.est.9b07185
    3. Wenhui Hu, Weiguo Hou, Hailiang Dong, Hongyu Chen, Qingyin Xia, Yuxuan Sun. Enhancement of biogenic methane production from subbituminous coal by reduced iron-bearing clay mineral. International Journal of Coal Geology 2021, 248 , 103862. https://doi.org/10.1016/j.coal.2021.103862
    4. Sören Thiele-Bruhn. The role of soils in provision of genetic, medicinal and biochemical resources. Philosophical Transactions of the Royal Society B: Biological Sciences 2021, 376 (1834) , 20200183. https://doi.org/10.1098/rstb.2020.0183
    5. Javier García-Tojal, Eneko Iriarte, Susana Palmero, María R. Pedrosa, Carlos Rad, Silvia Sanllorente, María Cruz Zuluaga, Mónica Cavia-Saiz, Dolores Rivero-Perez, Pilar Muñiz. Phyllosilicate-content influence on the spectroscopic properties and antioxidant capacity of Iberian Cretaceous clays. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2021, 251 , 119472. https://doi.org/10.1016/j.saa.2021.119472
    6. Luis Zárate-Reyes, Stephan Kaufhold, Kristian Ufer, Javiera Cervini-Silva. Viability inhibition of antibiotic resistant bacteria by layered and fibrous clay minerals, and the roles of membrane type and clayey barium and chromium. Applied Clay Science 2021, 202 , 105967. https://doi.org/10.1016/j.clay.2020.105967
    7. Huijun Zhu, James Njuguna, Muhammad Adeel Irfan. Clay minerals and solutions for green environment and human health. 2021, 211-223. https://doi.org/10.1016/B978-0-12-820505-1.00010-9
    8. Víctor A. Castro-Torres, Nadia J. Jacobo-Herrera, Lidia Díaz-Sánchez, Leticia Rocha-Zavaleta, Patricia García-López, Mariano Martínez-Vázquez. Synthesis and cytotoxic evaluation of halogenated furanones. Monatshefte für Chemie - Chemical Monthly 2020, 151 (12) , 1841-1849. https://doi.org/10.1007/s00706-020-02708-0
    9. Marina Fomina, Iryna Skorochod. Microbial Interaction with Clay Minerals and Its Environmental and Biotechnological Implications. Minerals 2020, 10 (10) , 861. https://doi.org/10.3390/min10100861
    10. Lütfiye Yıldız Ozer, Ahmed Yusuf, Joao M. Uratani, Belén Cabal, Luis A. Díaz, Ramón Torrecillas, José S. Moya, Jorge Rodríguez, Giovanni Palmisano. Water microbial disinfection via supported nAg/Kaolin in a fixed-bed reactor configuration. Applied Clay Science 2020, 184 , 105387. https://doi.org/10.1016/j.clay.2019.105387
    11. Lynda B. Williams. NATURAL ANTIBACTERIAL CLAYS: HISTORICAL USES AND MODERN ADVANCES. Clays and Clay Minerals 2019, 67 (1) , 7-24. https://doi.org/10.1007/s42860-018-0002-8
    12. Javiera Cervini-Silva, Eduardo Palacios, Virginia Gómez-Vidales. Nontronite as natural source and growth template for (nano)maghemite [γ-Fe 2 O 3 ] and (nano)Wüstite [Fe 1−x O]. Applied Clay Science 2018, 156 , 178-186. https://doi.org/10.1016/j.clay.2018.02.009
    13. Luis Zarate-Reyes, Cynthia Lopez-Pacheco, Antonio Nieto-Camacho, Eduardo Palacios, Virginia Gómez-Vidales, Stephan Kaufhold, Kristian Ufer, Eduardo García Zepeda, Javiera Cervini-Silva. Antibacterial clay against gram-negative antibiotic resistant bacteria. Journal of Hazardous Materials 2018, 342 , 625-632. https://doi.org/10.1016/j.jhazmat.2017.08.078
    14. , Xi Zhang, Jianlei Liu, Hao Jing. Coating Effect of Whey Protein and Xylose Maillard Reaction Products on Walnut Lipid Peroxidation. ETP International Journal of Food Engineering 2018, 21 , 58-65. https://doi.org/10.18178/ijfe.4.1.58-65
    15. Keith D. Morrison, Stanley N. Williams, Lynda B. Williams. The Anatomy of an Antibacterial Clay Deposit: A New Economic Geology. Economic Geology 2017, 112 (7) , 1551-1570. https://doi.org/10.5382/econgeo.2017.4521
    16. Lynda B. Williams. Geomimicry: harnessing the antibacterial action of clays. Clay Minerals 2017, 52 (1) , 1-24. https://doi.org/10.1180/claymin.2017.052.1.01
    17. Sandra Carolina Londono, Lynda B. Williams. Unraveling the antibacterial mode of action of a clay from the Colombian Amazon. Environmental Geochemistry and Health 2016, 38 (2) , 363-379. https://doi.org/10.1007/s10653-015-9723-y
    18. Javiera Cervini-Silva, Antonio Nieto Camacho, Eduardo Palacios, Paz del Angel, Martin Pentrak, Linda Pentrakova, Stephan Kaufhold, Kristian Ufer, María Teresa Ramírez-Apan, Virginia Gómez-Vidales, Daniela Rodríguez Montaño, Ascención Montoya, Joseph W. Stucki, Benny K.G. Theng. Anti-inflammatory, antibacterial, and cytotoxic activity by natural matrices of nano-iron(hydr)oxide/halloysite. Applied Clay Science 2016, 120 , 101-110. https://doi.org/10.1016/j.clay.2015.10.004
    19. Martha Navid Mendoza-Rodríguez, Leobardo González-Barraza, Lisbet Argüelles-Martínez, Iván Hernández-Ramírez, Margarita Cervantes-Rodríguez, Omar Rodríguez-Salazar, Oscar Antonio Aguilar-Paredes, Daniel Méndez-Iturbide. Capacidad antioxidante del fruto silvestre pipisco (Jaltomata procumbens), y su aplicación en la preparación de una salsa. Mexican Journal of Biotechnology 2016, 1 (2) , 83-96. https://doi.org/10.29267/mxjb.2016.1.2.83
    20. Javiera Cervini-Silva, Antonio Nieto-Camacho, Virginia Gómez-Vidales. Oxidative stress inhibition and oxidant activity by fibrous clays. Colloids and Surfaces B: Biointerfaces 2015, 133 , 32-35. https://doi.org/10.1016/j.colsurfb.2015.05.042
    21. Jose Antonio Banderas Tarabay, Margarita Cervantes Rodriguez, Miriam Grada Sanchez, Marlen Espindola Lozano, Estela Cuevas Romero, Arturo Navarro Ocana, Daniel Mendez Iturbide. Antioxidant-mediated protective effect of hawthorn (Crataegus mexicana) peel extract in erythrocytes against oxidative damage. African Journal of Food Science 2015, 9 (4) , 208-222. https://doi.org/10.5897/AJFS2015.1269
    22. Sara Maisanaba, Silvia Pichardo, María Puerto, Daniel Gutiérrez-Praena, Ana M. Cameán, Angeles Jos. Toxicological evaluation of clay minerals and derived nanocomposites: A review. Environmental Research 2015, 138 , 233-254. https://doi.org/10.1016/j.envres.2014.12.024
    23. Javiera Cervini-Silva, Antonio-Nieto-Camacho, Virginia Gomez-Vidales, María Teresa Ramirez-Apan, Eduardo Palacios, Ascención Montoya, Stephan Kaufhold, Zeanal Abidin, Benny K.G. Theng. Lipid peroxidation and cytotoxicity induced by respirable volcanic ash. Journal of Hazardous Materials 2014, 274 , 237-246. https://doi.org/10.1016/j.jhazmat.2014.04.015
    24. H. Zhu, J. Njuguna. Nanolayered silicates/clay minerals: uses and effects on health. 2014, 133-146. https://doi.org/10.1533/9780857096678.3.133
    25. J. Cervini-Silva, A. Nieto-Camacho, H. Cornejo-Garrido, P. d. Angel, N. Maya, E. Palacios, J. A. Montoya, V. Gomez-Vidales, M. T. Ramirez-Apan. Biological dissolution and activity of the Allende meteorite. Geological Society of America Bulletin 2013, 125 (11-12) , 1865-1873. https://doi.org/10.1130/B30791.1
    26. Javiera Cervini-Silva, Antonio Nieto-Camacho, Virginia Gomez-Vidales, María Teresa Ramírez-Apán. Oxidative stress induced by arsenopyrite and the role of desferrioxamine-B as radical scavenger. Chemosphere 2013, 90 (6) , 1779-1784. https://doi.org/10.1016/j.chemosphere.2012.08.005
    27. Gilma Granados-Oliveros, Virginia Gómez-Vidales, Antonio Nieto-Camacho, José Antonio Morales-Serna, Jorge Cárdenas, Manuel Salmón. Photoproduction of H 2 O 2 and hydroxyl radicals catalysed by natural and super acid-modified montmorillonite and its oxidative role in the peroxidation of lipids. RSC Adv. 2013, 3 (3) , 937-944. https://doi.org/10.1039/C2RA22393G
    28. K. David A. Huchzermeyer. Prevalence of pansteatitis in African sharptooth catfish, Clarias gariepinus (Burchell), in the Kruger National Park, South Africa. Journal of the South African Veterinary Association 2012, 83 (1) https://doi.org/10.4102/jsava.v83i1.916
    29. Hilda Cornejo-Garrido, Antonio Nieto-Camacho, Virginia Gómez-Vidales, María Teresa Ramírez-Apan, Paz del Angel, José Ascención Montoya, Mariana Domínguez-López, Daria Kibanova, Javiera Cervini-Silva. The anti-inflammatory properties of halloysite. Applied Clay Science 2012, 57 , 10-16. https://doi.org/10.1016/j.clay.2011.12.001
    30. Hilda Cornejo-Garrido, Daria Kibanova, Antonio Nieto-Camacho, José Guzmán, Teresa Ramírez-Apan, Pilar Fernández-Lomelín, Maria Laura Garduño, Javiera Cervini-Silva. Oxidative stress, cytoxicity, and cell mortality induced by nano-sized lead in aqueous suspensions. Chemosphere 2011, 84 (10) , 1329-1335. https://doi.org/10.1016/j.chemosphere.2011.05.018
    31. K D A Huchzermeyer, D Govender, D J Pienaar, A R Deacon. Steatitis in wild sharptooth catfish, Clarias gariepinus (Burchell), in the Olifants and Lower Letaba Rivers in the Kruger National Park, South Africa. Journal of Fish Diseases 2011, 34 (7) , 489-498. https://doi.org/10.1111/j.1365-2761.2011.01267.x
    32. Daria Kibanova, Antonio Nieto-Camacho, Teresa Ramírez-Apan, Javiera Cervini-Silva. Determination of lipid peroxidation and cytotoxicity in calcium, magnesium, titanium and hectorite (SHCa-1) suspensions. Chemosphere 2011, 82 (3) , 418-423. https://doi.org/10.1016/j.chemosphere.2010.09.069
    33. Javiera Cervini-Silva, Jessica Hernández-Pineda, María Teresa Rivas-Valdés, Hilda Cornejo-Garrido, José Guzmán, Pilar Fernández-Lomelín, Luz Maria Del Razo. Arsenic(III) methylation in betaine–nontronite clay–water suspensions under environmental conditions. Journal of Hazardous Materials 2010, 178 (1-3) , 450-454. https://doi.org/10.1016/j.jhazmat.2010.01.102

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect