ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Organo-Iodine Formation in Soils and Aquifer Sediments at Ambient Concentrations

View Author Information
Laboratory for Environmental and Oceanographic Research, Department of Marine Sciences, Texas A&M University, 5007 Avenue U, Galveston, Texas 77551, and Savannah River National Laboratory, Aiken, SC 29803
* Corresponding author e-mail: [email protected]
†Texas A&M University.
‡Savannah River National Laboratory.
Cite this: Environ. Sci. Technol. 2009, 43, 19, 7258–7264
Publication Date (Web):June 11, 2009
https://doi.org/10.1021/es900795k
Copyright © 2009 American Chemical Society

    Article Views

    1053

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (1 MB)
    Supporting Info (1)»

    Abstract

    One of the key risk drivers at radioactive waste disposal facilities is radioiodine, especially 129I. As iodine mobility varies greatly with iodine speciation, experiments with 129I-contaminated aquifer sediments from the Savannah River Site located in Aiken, SC, were carried out to test iodine interactions with soils and aquifer sediments. Using tracer 125I and stable 127I additions, it was shown that such interactions were highly dependent on I concentrations added to sediment suspensions, contact time with the sediment, and organic carbon (OC) content, resulting in an empirical particle−water partition coefficient (Kd) that was an inverse power function of the added I concentration. However, Kd values of organically bound 127I were 3 orders of magnitude higher than those determined after 1−2 weeks of tracer equilibration, approaching those of OC. Under ambient conditions, organo-iodine (OI) was a major fraction (67%) of the total iodine in the dissolved phase and by implication of the particulate phase. As the total concentration of amended I increased, the fraction of detectable dissolved OI decreased. This trend, attributed to OC becoming the limiting factor in the aquifer sediment, explains why at elevated I concentrations OI is often not detected.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Chemical characterization of the groundwater and aquifer sediments used in this study is provided in Tables S1 and S2, while Table S3 shows the partition coefficient (Kd) data corresponding to Figure 1a, and Table S4 provides iodine speciation information related to the Kd study. Table S5 contains the iodine speciation details of water leachate solutions of Figure 3, Table S6 provides iodine speciation of the peroxide-treated surface sediment study, and Table S7 shows an additional experiment that details the iodine speciation of water leachate solutions that had been in contact with the surface sediment for 1 and 14 days. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 76 publications.

    1. Ilana Szlamkowicz, Jordan Stanberry, Kathleen Lugo, Zachary Murphy, Mismel Ruiz Garcia, Lucy Hunley, Nikolla P. Qafoku, Vasileios Anagnostopoulos. Role of Manganese Oxides in Controlling Subsurface Metals and Radionuclides Mobility: A Review. ACS Earth and Space Chemistry 2023, 7 (1) , 1-10. https://doi.org/10.1021/acsearthspacechem.2c00113
    2. Elsa A. Cordova, Vanessa Garayburu-Caruso, Carolyn I. Pearce, Kirk J. Cantrell, Joseph W. Morad, Elizabeth C. Gillispie, Brian J. Riley, Ferdinan Cintron Colon, Tatiana G. Levitskaia, Sarah A. Saslow, Odeta Qafoku, Charles T. Resch, Mark J. Rigali, Jim E. Szecsody, Steve M. Heald, Mahalingam Balasubramanian, Peter Meyers, Vicky L. Freedman. Hybrid Sorbents for 129I Capture from Contaminated Groundwater. ACS Applied Materials & Interfaces 2020, 12 (23) , 26113-26126. https://doi.org/10.1021/acsami.0c01527
    3. Olivier S. Humphrey, Scott D. Young, Neil M. J. Crout, Elizabeth H. Bailey, E. Louise Ander, Michael J. Watts. Short-Term Iodine Dynamics in Soil Solution. Environmental Science & Technology 2020, 54 (3) , 1443-1450. https://doi.org/10.1021/acs.est.9b02296
    4. Dien Li, Chen Xu, Chris M. Yeager, Peng Lin, Wei Xing, Kathleen A. Schwehr, Ning Chen, Zachary Arthur, Daniel I. Kaplan, Peter H. Santschi. Molecular Interaction of Aqueous Iodine Species with Humic Acid Studied by I and C K-Edge X-ray Absorption Spectroscopy. Environmental Science & Technology 2019, 53 (21) , 12416-12424. https://doi.org/10.1021/acs.est.9b03682
    5. Volker Hormann, Helmut W. Fischer. A Simple Compartment Model for the Dynamical Behavior of Medically Derived 131I in a Municipal Wastewater Treatment Plant. Environmental Science & Technology 2018, 52 (16) , 9235-9242. https://doi.org/10.1021/acs.est.8b01553
    6. Chen Xu, Saijin Zhang, Daniel I. Kaplan, Yi-Fang Ho, Kathleen A. Schwehr, Kimberly A. Roberts, Hongmei Chen, Nicole DiDonato, Matthew Athon, Patrick G. Hatcher, and Peter H. Santschi . Evidence for Hydroxamate Siderophores and Other N-Containing Organic Compounds Controlling 239,240Pu Immobilization and Remobilization in a Wetland Sediment. Environmental Science & Technology 2015, 49 (19) , 11458-11467. https://doi.org/10.1021/acs.est.5b02310
    7. Saijin Zhang, Yi-Fang Ho, Danielle Creeley, Kimberly A. Roberts, Chen Xu, Hsiu-Ping Li, Kathleen A. Schwehr, Daniel I. Kaplan, Chris M. Yeager, and Peter H. Santschi . Temporal Variation of Iodine Concentration and Speciation (127I and 129I) in Wetland Groundwater from the Savannah River Site, USA. Environmental Science & Technology 2014, 48 (19) , 11218-11226. https://doi.org/10.1021/es502003q
    8. Sungwook Choung, Minkyung Kim, Jung-Seok Yang, Min-Gyu Kim, and Wooyong Um . Effects of Radiation and Temperature on Iodide Sorption by Surfactant-Modified Bentonite. Environmental Science & Technology 2014, 48 (16) , 9684-9691. https://doi.org/10.1021/es501661z
    9. Sungwook Choung, Wooyong Um, Minkyung Kim, and Min-Gyu Kim . Uptake Mechanism for Iodine Species to Black Carbon. Environmental Science & Technology 2013, 47 (18) , 10349-10355. https://doi.org/10.1021/es401570a
    10. Kelly P. Grogan and Timothy A. DeVol . Development of a Novel Method for the Determination of Aqueous Inorganic 129I Speciation. Analytical Chemistry 2013, 85 (9) , 4658-4665. https://doi.org/10.1021/ac4003084
    11. Miharu Seki, Jun-ichi Oikawa, Taro Taguchi, Toshihiko Ohnuki, Yasuyuki Muramatsu, Kazunori Sakamoto, and Seigo Amachi . Laccase-Catalyzed Oxidation of Iodide and Formation of Organically Bound Iodine in Soils. Environmental Science & Technology 2013, 47 (1) , 390-397. https://doi.org/10.1021/es303228n
    12. Hsiu-Ping Li, Chris M. Yeager, Robin Brinkmeyer, Saijin Zhang, Yi-Fang Ho, Chen Xu, Whitney L. Jones, Kathleen A. Schwehr, Shigeyoshi Otosaka, Kimberly A. Roberts, Daniel I. Kaplan, and Peter H. Santschi . Bacterial Production of Organic Acids Enhances H2O2-Dependent Iodide Oxidation. Environmental Science & Technology 2012, 46 (9) , 4837-4844. https://doi.org/10.1021/es203683v
    13. Chen Xu, Eric J Miller, Saijin Zhang, Hsiu-Ping Li, Yi-Fang Ho, Kathleen A Schwehr, Daniel I. Kaplan, Shigeyoshi Otosaka, Kimberly A Roberts, Robin Brinkmeyer, Chris M. Yeager, and Peter H. Santschi . Sequestration and Remobilization of Radioiodine (129I) by Soil Organic Matter and Possible Consequences of the Remedial Action at Savannah River Site. Environmental Science & Technology 2011, 45 (23) , 9975-9983. https://doi.org/10.1021/es201343d
    14. S. Zhang, J. Du, C. Xu, K. A. Schwehr, Y.-F. Ho, H.-P. Li, K. A. Roberts, D. I. Kaplan, R. Brinkmeyer, C. M. Yeager, Hyun-shik Chang, and P. H. Santschi . Concentration-Dependent Mobility, Retardation, and Speciation of Iodine in Surface Sediment from the Savannah River Site. Environmental Science & Technology 2011, 45 (13) , 5543-5549. https://doi.org/10.1021/es1040442
    15. Kelly P. Grogan and Timothy A. DeVol . Online Detection of Radioactive Iodine in Aqueous Systems through the Use of Scintillating Anion Exchange Resin. Analytical Chemistry 2011, 83 (7) , 2582-2588. https://doi.org/10.1021/ac102880c
    16. Yoko S. Shimamoto, Yoshio Takahashi, and Yasuko Terada . Formation of Organic Iodine Supplied as Iodide in a Soil−Water System in Chiba, Japan. Environmental Science & Technology 2011, 45 (6) , 2086-2092. https://doi.org/10.1021/es1032162
    17. Daniel I. Kaplan, Kimberly A. Roberts, Kathy A. Schwehr, Michael S. Lilley, Robin Brinkmeyer, Miles E. Denham, David DiPrete, Hsiu-Ping Li, Brian A. Powell, Chen Xu, Chris M. Yeager, Saijin Zhang, and Peter H. Santschi . Evaluation of a Radioiodine Plume Increasing in Concentration at the Savannah River Site. Environmental Science & Technology 2011, 45 (2) , 489-495. https://doi.org/10.1021/es103314n
    18. Patricia M. Fox, Douglas B. Kent and James A. Davis. Redox Transformations and Transport of Cesium and Iodine (−1, 0, +5) in Oxidizing and Reducing Zones of a Sand and Gravel Aquifer. Environmental Science & Technology 2010, 44 (6) , 1940-1946. https://doi.org/10.1021/es902865s
    19. Yue Zhang, Han Cao, Min Wang, Ziwei Zou, Pingfan Zhou, Xiangxue Wang, Jie Jin. A review of iodine in plants with biofortification: Uptake, accumulation, transportation, function, and toxicity. Science of The Total Environment 2023, 878 , 163203. https://doi.org/10.1016/j.scitotenv.2023.163203
    20. Shaun D. Hemming, Jamie M. Purkis, Phillip E. Warwick, Andrew B. Cundy. Current and emerging technologies for the remediation of difficult-to-measure radionuclides at nuclear sites. Environmental Science: Processes & Impacts 2023, 8 https://doi.org/10.1039/D3EM00190C
    21. Marine Roulier, Loïc Carasco, Daniel Orjollet, Maïté Bueno, Florence Pannier, Isabelle Le Hécho, Manuel Nicolas, Frédéric Coppin. Iodine distribution and volatilization in contrasting forms of forest humus during a laboratory incubation experiment. Journal of Environmental Radioactivity 2022, 248 , 106872. https://doi.org/10.1016/j.jenvrad.2022.106872
    22. Yves Thiry, Taku Tanaka, Maïté Bueno, Paulina Pisarek, Marine Roulier, Hervé Gallard, Arnaud Legout, Manuel Nicolas. Recycling and persistence of iodine 127 and 129 in forested environments: A modelling approach. Science of The Total Environment 2022, 831 , 154901. https://doi.org/10.1016/j.scitotenv.2022.154901
    23. Daniel I. Kaplan, Ralph Nichols, Chen Xu, Peng Lin, Chris Yeager, Peter H. Santschi. Large seasonal fluctuations of groundwater radioiodine speciation and concentrations in a riparian wetland in South Carolina. Science of The Total Environment 2022, 816 , 151548. https://doi.org/10.1016/j.scitotenv.2021.151548
    24. Jiangkai Xue, Yamin Deng, Yipeng Luo, Yao Du, Yijun Yang, Yihan Cheng, Xianjun Xie, Yiqun Gan, Yanxin Wang. Unraveling the impact of iron oxides-organic matter complexes on iodine mobilization in alluvial-lacustrine aquifers from central Yangtze River Basin. Science of The Total Environment 2022, 814 , 151930. https://doi.org/10.1016/j.scitotenv.2021.151930
    25. Chen Xu, Peng Lin, Ravindranath Garimella, Dien Li, Wei Xing, Nicole E. Patterson, Daniel I. Kaplan, Chris M. Yeager, Patrick G. Hatcher, Peter H. Santschi. 1H-13C heteronuclear single quantum coherence NMR evidence for iodination of natural organic matter influencing organo-iodine mobility in the environment. Science of The Total Environment 2022, 814 , 152546. https://doi.org/10.1016/j.scitotenv.2021.152546
    26. Wenhao Wei, Athena Nghiem, Rui Ma, Ziyong Sun, Xulong Gong, Aiguo Zhou, Henning Prommer. Factors controlling iodine enrichment in a coastal plain aquifer in the North Jiangsu Yishusi Plain, China. Journal of Contaminant Hydrology 2021, 243 , 103894. https://doi.org/10.1016/j.jconhyd.2021.103894
    27. Yuhi Satoh, Shoko Imai. Flux and pathway of iodine dissolution from brackish lake sediment in the northeast of Japan. Science of The Total Environment 2021, 789 , 147942. https://doi.org/10.1016/j.scitotenv.2021.147942
    28. Yuhi Satoh, Shoko Imai. Evaluation of radioiodine (129I) dissolution from sediment of a brackish lake beside a spent nuclear fuel reprocessing plant in Japan. Journal of Environmental Radioactivity 2021, 233 , 106608. https://doi.org/10.1016/j.jenvrad.2021.106608
    29. Chenjing Zhu, Junxia Li, Xianjun Xie. 大同盆地地下水中碳硫同位素组成特征及其对碘迁移富集的指示. Earth Science-Journal of China University of Geosciences 2021, 46 (12) , 4480. https://doi.org/10.3799/dqkx.2021.090
    30. Junxia Li, Yuting Wang, Xiaobin Xue, Xianjun Xie, Matthew G. Siebecker, Donald L. Sparks, Yanxin Wang. Mechanistic insights into iodine enrichment in groundwater during the transformation of iron minerals in aquifer sediments. Science of The Total Environment 2020, 745 , 140922. https://doi.org/10.1016/j.scitotenv.2020.140922
    31. Jim E. Szecsody, Hilary P. Emerson, Carolyn I. Pearce, Brandy N. Gartman, C. Tom Resch, Silvina A. Di Pietro. In situ reductive dissolution to remove Iodine-129 from aquifer sediments. Journal of Environmental Radioactivity 2020, 216 , 106182. https://doi.org/10.1016/j.jenvrad.2020.106182
    32. Robert C. Moore, Carolyn I. Pearce, Joseph W. Morad, Sayandev Chatterjee, Tatiana G. Levitskaia, Robert M. Asmussen, Amanda R. Lawter, James J. Neeway, Nikolla P. Qafoku, Mark J. Rigali, Sarah A. Saslow, Jim E. Szecsody, Praveen K. Thallapally, Guohui Wang, Vicky L. Freedman. Iodine immobilization by materials through sorption and redox-driven processes: A literature review. Science of The Total Environment 2020, 716 , 132820. https://doi.org/10.1016/j.scitotenv.2019.06.166
    33. Yuhi Satoh, Shoko Imai. Evaluation of dissolution flux of iodine from brackish lake sediments under different temperature and oxygenic conditions. Science of The Total Environment 2020, 707 , 135920. https://doi.org/10.1016/j.scitotenv.2019.135920
    34. Zelong Zhang, Léa Gustin, Weiwei Xie, Jie Lian, Kalliat T. Valsaraj, Jianwei Wang. Effect of solution chemistry on the iodine release from iodoapatite in aqueous environments. Journal of Nuclear Materials 2019, 525 , 161-170. https://doi.org/10.1016/j.jnucmat.2019.07.034
    35. O. S. Humphrey, S. D. Young, E. H. Bailey, N. M. J. Crout, E. L. Ander, E. M. Hamilton, M. J. Watts. Iodine uptake, storage and translocation mechanisms in spinach (Spinacia oleracea L.). Environmental Geochemistry and Health 2019, 41 (5) , 2145-2156. https://doi.org/10.1007/s10653-019-00272-z
    36. Yuhi Satoh, Shigeki Wada, Takeo Hama. Vertical and seasonal variations of dissolved iodine concentration in coastal seawater on the northwestern Pacific coast of central Japan. Continental Shelf Research 2019, 188 , 103966. https://doi.org/10.1016/j.csr.2019.103966
    37. Eva Duborská, Martin Urík, Jana Kubová. Interaction with soil enhances the toxic effect of iodide and iodate on barley ( Hordeum vulgare L.) compared to artificial culture media during initial growth stage. Archives of Agronomy and Soil Science 2018, 64 (1) , 46-57. https://doi.org/10.1080/03650340.2017.1328104
    38. O. S. Humphrey, S. D. Young, E. H. Bailey, N. M. J. Crout, E. L. Ander, M. J. Watts. Iodine soil dynamics and methods of measurement: a review. Environmental Science: Processes & Impacts 2018, 20 (2) , 288-310. https://doi.org/10.1039/C7EM00491E
    39. Volker Hormann, Helmut W. Fischer. The physicochemical distribution of 131I in a municipal wastewater treatment plant. Journal of Environmental Radioactivity 2017, 178-179 , 55-62. https://doi.org/10.1016/j.jenvrad.2017.07.008
    40. P.H. Santschi, C. Xu, S. Zhang, K.A. Schwehr, R. Grandbois, D.I. Kaplan, C.M. Yeager. Iodine and plutonium association with natural organic matter: A review of recent advances. Applied Geochemistry 2017, 85 , 121-127. https://doi.org/10.1016/j.apgeochem.2016.11.009
    41. P.H. Santschi, C. Xu, S. Zhang, K.A. Schwehr, P. Lin, C.M. Yeager, D.I. Kaplan. Recent advances in the detection of specific natural organic compounds as carriers for radionuclides in soil and water environments, with examples of radioiodine and plutonium. Journal of Environmental Radioactivity 2017, 171 , 226-233. https://doi.org/10.1016/j.jenvrad.2017.02.023
    42. Yusuke Unno, Hirofumi Tsukada, Akira Takeda, Yuichi Takaku, Shun'ichi Hisamatsu. Soil-soil solution distribution coefficient of soil organic matter is a key factor for that of radioiodide in surface and subsurface soils. Journal of Environmental Radioactivity 2017, 169-170 , 131-136. https://doi.org/10.1016/j.jenvrad.2017.01.016
    43. Mervi Söderlund, Juhani Virkanen, Hanna Aromaa, Nadezda Gracheva, Jukka Lehto. Sorption and speciation of iodine in boreal forest soil. Journal of Radioanalytical and Nuclear Chemistry 2017, 311 (1) , 549-564. https://doi.org/10.1007/s10967-016-5022-z
    44. Chris M. Yeager, Seigo Amachi, Russell Grandbois, Daniel I. Kaplan, Chen Xu, Kathy A. Schwehr, Peter H. Santschi. Microbial Transformation of Iodine: From Radioisotopes to Iodine Deficiency. 2017, 83-136. https://doi.org/10.1016/bs.aambs.2017.07.002
    45. Matthew N. Herod, Tianjiao Li, André Pellerin, William E. Kieser, Ian D. Clark. The seasonal fluctuations and accumulation of iodine-129 in relation to the hydrogeochemistry of the Wolf Creek Research Basin, a discontinuous permafrost watershed. Science of The Total Environment 2016, 569-570 , 1212-1223. https://doi.org/10.1016/j.scitotenv.2016.06.196
    46. H.E. Bowley, S.D. Young, E.L. Ander, N.M.J. Crout, M.J. Watts, E.H. Bailey. Iodine binding to humic acid. Chemosphere 2016, 157 , 208-214. https://doi.org/10.1016/j.chemosphere.2016.05.028
    47. Akira Takeda, Hirofumi Tsukada, Yuichi Takaku, Naoya Satta, Mitsuhisa Baba, Toshihiro Shibata, Hidenao Hasegawa, Yusuke Unno, Shun’ichi Hisamatsu. Determination of Iodide, Iodate and Total Iodine in Natural Water Samples by HPLC with Amperometric and Spectrophotometric Detection, and Off-line UV Irradiation. Analytical Sciences 2016, 32 (8) , 839-845. https://doi.org/10.2116/analsci.32.839
    48. Chen Xu, Saijin Zhang, Yuko Sugiyama, Nobuhito Ohte, Yi-Fang Ho, Nobuhide Fujitake, Daniel I. Kaplan, Chris M. Yeager, Kathleen Schwehr, Peter H. Santschi. Role of natural organic matter on iodine and 239,240Pu distribution and mobility in environmental samples from the northwestern Fukushima Prefecture, Japan. Journal of Environmental Radioactivity 2016, 153 , 156-166. https://doi.org/10.1016/j.jenvrad.2015.12.022
    49. Matt N. Herod, Martin Suchy, R. Jack Cornett, W. E. Kieser, Ian D. Clark, Gwyn Graham. The atmospheric transport of iodine‐129 from F ukushima to B ritish C olumbia, C anada and its deposition and transport into groundwater. Water Resources Research 2015, 51 (12) , 9628-9645. https://doi.org/10.1002/2015WR017325
    50. Kanna Shiroyama, Yasutaka Kawasaki, Yusuke Unno, Seigo Amachi. A putative multicopper oxidase, IoxA, is involved in iodide oxidation by Roseovarius sp. strain A-2. Bioscience, Biotechnology, and Biochemistry 2015, 79 (11) , 1898-1905. https://doi.org/10.1080/09168451.2015.1052767
    51. A. Takeda, H. Tsukada, M. Takahashi, Y. Takaku, S. Hisamatsu. Changes in the chemical form of exogenous iodine in forest soils and their extracts. Radiation Protection Dosimetry 2015, 167 (1-3) , 181-186. https://doi.org/10.1093/rpd/ncv240
    52. Fabiola Guido-Garcia, Gareth T. W. Law, Jonathan R. Lloyd, Paul Lythgoe, Katherine Morris. Bioreduction of iodate in sediment microcosms. Mineralogical Magazine 2015, 79 (6) , 1343-1351. https://doi.org/10.1180/minmag.2015.079.6.10
    53. Sixuan He, Mingquan Yan, Gregory V. Korshin. Spectroscopic examination of effects of iodide on the chloramination of natural organic matter. Water Research 2015, 70 , 449-457. https://doi.org/10.1016/j.watres.2014.12.024
    54. Tao Wu, Hai Wang, Qing Zheng, Jin Ying Li. Effect of organic matter on 125I diffusion in bentonite. Journal of Radioanalytical and Nuclear Chemistry 2015, 303 (1) , 255-260. https://doi.org/10.1007/s10967-014-3333-5
    55. Chen Xu, Daniel I. Kaplan, Saijin Zhang, Matthew Athon, Yi-Fang Ho, Hsiu-Ping Li, Chris M. Yeager, Kathleen A. Schwehr, Russell Grandbois, Dawn Wellman, Peter H. Santschi. Radioiodine sorption/desorption and speciation transformation by subsurface sediments from the Hanford Site. Journal of Environmental Radioactivity 2015, 139 , 43-55. https://doi.org/10.1016/j.jenvrad.2014.09.012
    56. Stephen Razafindratsima, Olivier Péron, Anne Piscitelli, Claire Gégout, Vincent Schneider, Florent Barbecot, Eric Giffaut, Jean-Charles Robinet, Pierre Le Cointe, Gilles Montavon. Transport properties of iodide in a sandy aquifer: Hydrogeological modelling and field tracer tests. Journal of Hydrology 2015, 520 , 61-68. https://doi.org/10.1016/j.jhydrol.2014.11.021
    57. Kathleen A. Schwehr, Shigeyoshi Otosaka, Silke Merchel, Daniel I. Kaplan, Saijin Zhang, Chen Xu, Hsiu-Ping Li, Yi-Fang Ho, Chris M. Yeager, Peter H. Santschi. Speciation of iodine isotopes inside and outside of a contaminant plume at the Savannah River Site. Science of The Total Environment 2014, 497-498 , 671-678. https://doi.org/10.1016/j.scitotenv.2014.07.006
    58. D. I. Kaplan, M. E. Denham, S. Zhang, C. Yeager, C. Xu, K. A. Schwehr, H. P. Li, Y. F. Ho, D. Wellman, P. H. Santschi. Radioiodine Biogeochemistry and Prevalence in Groundwater. Critical Reviews in Environmental Science and Technology 2014, 44 (20) , 2287-2335. https://doi.org/10.1080/10643389.2013.828273
    59. Hyun-shik Chang, Chen Xu, Kathy A. Schwehr, Saijin Zhang, Daniel I. Kaplan, John C. Seaman, Chris Yeager, Peter H. Santschi. Model of radioiodine speciation and partitioning in organic-rich and organic-poor soils from the Savannah River Site. Journal of Environmental Chemical Engineering 2014, 2 (3) , 1321-1330. https://doi.org/10.1016/j.jece.2014.03.009
    60. Hilary P. Emerson, Chen Xu, Yi-Fang Ho, S. Zhang, Kathleen A. Schwehr, Michael Lilley, Daniel I. Kaplan, Peter H. Santschi, Brian A. Powell. Geochemical controls of iodine uptake and transport in Savannah River Site subsurface sediments. Applied Geochemistry 2014, 45 , 105-113. https://doi.org/10.1016/j.apgeochem.2014.03.002
    61. Daniel I. Kaplan, Saijin Zhang, Kimberly A. Roberts, Kathy Schwehr, Chen Xu, Danielle Creeley, Yi-Fang Ho, Hsiu-Ping Li, Chris M. Yeager, Peter H. Santschi. Radioiodine concentrated in a wetland. Journal of Environmental Radioactivity 2014, 131 , 57-61. https://doi.org/10.1016/j.jenvrad.2013.09.001
    62. Ethan M. Cox, Yuji Arai. Environmental Chemistry and Toxicology of Iodine. 2014, 47-96. https://doi.org/10.1016/B978-0-12-802139-2.00002-0
    63. Junxia Li, Yanxin Wang, Wei Guo, Xianjun Xie, Liping Zhang, Yaqing Liu, Shuqiong Kong. Iodine mobilization in groundwater system at Datong basin, China: Evidence from hydrochemistry and fluorescence characteristics. Science of The Total Environment 2014, 468-469 , 738-745. https://doi.org/10.1016/j.scitotenv.2013.08.092
    64. Maoyi Luo, Xiaolin Hou, Weijian Zhou, Chaohui He, Ning Chen, Qi Liu, Luoyuan Zhang. Speciation and migration of 129I in soil profiles. Journal of Environmental Radioactivity 2013, 118 , 30-39. https://doi.org/10.1016/j.jenvrad.2012.11.011
    65. Chen Xu, Hongmei Chen, Yuko Sugiyama, Saijin Zhang, Hsiu-Ping Li, Yi-Fang Ho, Chia-ying Chuang, Kathleen A. Schwehr, Daniel I. Kaplan, Chris Yeager, Kimberly A. Roberts, Patrick G. Hatcher, Peter H. Santschi. Novel molecular-level evidence of iodine binding to natural organic matter from Fourier transform ion cyclotron resonance mass spectrometry. Science of The Total Environment 2013, 449 , 244-252. https://doi.org/10.1016/j.scitotenv.2013.01.064
    66. Junxia Li, Yanxin Wang, Xianjun Xie, Liping Zhang, Wei Guo. Hydrogeochemistry of high iodine groundwater: a case study at the Datong Basin, northern China. Environmental Science: Processes & Impacts 2013, 15 (4) , 848. https://doi.org/10.1039/c3em30841c
    67. Chen Xu, Junyan Zhong, Patrick G. Hatcher, Saijin Zhang, Hsiu-Ping Li, Yi-Fang Ho, Kathleen A. Schwehr, Daniel I. Kaplan, Kimberly A. Roberts, Robin Brinkmeyer, Chris M. Yeager, Peter H. Santschi. Molecular environment of stable iodine and radioiodine (129I) in natural organic matter: Evidence inferred from NMR and binding experiments at environmentally relevant concentrations. Geochimica et Cosmochimica Acta 2012, 97 , 166-182. https://doi.org/10.1016/j.gca.2012.08.030
    68. Mio Suzuki, Yoshifumi Eda, Shiaki Ohsawa, Yu Kanesaki, Hirofumi Yoshikawa, Kan Tanaka, Yasuyuki Muramatsu, Jun Yoshikawa, Ikuo Sato, Takaaki Fujii, Seigo Amachi. Iodide Oxidation by a Novel Multicopper Oxidase from the Alphaproteobacterium Strain Q-1. Applied and Environmental Microbiology 2012, 78 (11) , 3941-3949. https://doi.org/10.1128/AEM.00084-12
    69. Q.H. Hu, J.E. Moran, J.Y. Gan. Sorption, degradation, and transport of methyl iodide and other iodine species in geologic media. Applied Geochemistry 2012, 27 (3) , 774-781. https://doi.org/10.1016/j.apgeochem.2011.12.022
    70. John C. Seaman, Kimberly A. Roberts. Radionuclide Fate and Transport in Terrestrial Environments. 2012, 8597-8634. https://doi.org/10.1007/978-1-4419-0851-3_281
    71. Chen Xu, Saijin Zhang, Yi-Fang Ho, Eric J. Miller, Kimberly A. Roberts, Hsiu-Ping Li, Kathleen A. Schwehr, Shigeyoshi Otosaka, Daniel I. Kaplan, Robin Brinkmeyer, Chris M. Yeager, Peter H. Santschi. Is soil natural organic matter a sink or source for mobile radioiodine (129I) at the Savannah River Site?. Geochimica et Cosmochimica Acta 2011, 75 (19) , 5716-5735. https://doi.org/10.1016/j.gca.2011.07.011
    72. Shigeyoshi Otosaka, Kathleen A. Schwehr, Daniel I. Kaplan, Kimberly A. Roberts, Saijin Zhang, Chen Xu, Hsiu-Ping Li, Yi-Fang Ho, Robin Brinkmeyer, Chris M. Yeager, Peter H. Santschi. Factors controlling mobility of 127I and 129I species in an acidic groundwater plume at the Savannah River Site. Science of The Total Environment 2011, 409 (19) , 3857-3865. https://doi.org/10.1016/j.scitotenv.2011.05.018
    73. Syed Abbas Hosseini, Syed Ali Hosseini. Ecology of Soils Polluted with Radio Nuclides: A Review. Asian Journal of Applied Sciences 2011, 4 (6) , 596-602. https://doi.org/10.3923/ajaps.2011.596.602
    74. S. A. Kulyukhin, A. N. Kamenskaya, N. A. Konovalova. Chemistry of radioactive iodine in aqueous media: Basic and applied aspects. Radiochemistry 2011, 53 (2) , 123-141. https://doi.org/10.1134/S1066362211020020
    75. Hsiu-Ping Li, Robin Brinkmeyer, Whitney L. Jones, Saijin Zhang, Chen Xu, Kathy A. Schwehr, Peter H. Santschi, Daniel I. Kaplan, Chris M. Yeager. Iodide Accumulation by Aerobic Bacteria Isolated from Subsurface Sediments of a 129 I-Contaminated Aquifer at the Savannah River Site, South Carolina. Applied and Environmental Microbiology 2011, 77 (6) , 2153-2160. https://doi.org/10.1128/AEM.02164-10
    76. S.A. Hosseini, M.I. Qureshi. The Effect of Physical Property Variation on Radio Iodine Adsorption in Soils. Asian Journal of Applied Sciences 2010, 4 (1) , 81-88. https://doi.org/10.3923/ajaps.2011.81.88

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect