ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Henry's Law Constant for Trichloroethylene between 10 and 95 °C

View Author Information
Department of Environmental Science and Engineering, Technical University of Denmark, Building 115, DK-2800 Lyngby, Denmark, and National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 919 Kerr Research Drive, Ada, Oklahoma 74820
Cite this: Environ. Sci. Technol. 1998, 32, 10, 1433–1437
Publication Date (Web):March 31, 1998
https://doi.org/10.1021/es9707015
Copyright © 1998 American Chemical Society

    Article Views

    2551

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (118 KB)

    Abstract

    Experimental data on air−water partitioning of organic contaminants at temperatures above 40 °C is extremely scarce. We present Henry's law constants for trichloroethylene (TCE) in water between 10 and 95 °C determined using a modification of the Equilibrium Partitioning in Closed System (EPICS) procedure and calculated from vapor pressure and measured aqueous solubility data obtained by a column generator technique. The Henry's law constant for TCE increases by a factor of 20 between 10 and 95 °C, which is a dramatic change in volatility. Our results and a critical review of the thermodynamic equations suggest that the heat (enthalpy) of dissolution decreases with temperature and that Henry's law constants cannot be extrapolated to higher temperatures from the existing literature data. Heat of dissolution may be approximated by a linear function of temperature, leading to a simple equation for Henry's law constant ln kH = AB/T + C ln T that fits the majority of the previously published experimental data. This equation is more precise than previously published equations, is valid for temperatures approaching 100 °C, and will assist in more accurate interpretation of Henry's law constant data for other chemicals of environmental concern.

    *

     Corresponding author phone:  011-45-45251603; fax:  011-45-45932850; e-mail:  [email protected].

     Technical University of Denmark.

     U.S. Environmental Protection Agency.

    Cited By

    This article is cited by 76 publications.

    1. Romain Rodrigues, Stéphanie Betelu, Stéfan Colombano, Guillaume Masselot, Theodore Tzedakis, and Ioannis Ignatiadis . Influence of Temperature and Surfactants on the Solubilization of Hexachlorobutadiene and Hexachloroethane. Journal of Chemical & Engineering Data 2017, 62 (10) , 3252-3260. https://doi.org/10.1021/acs.jced.7b00320
    2. Ruben Spitz Steinberg, Michelle Cruz, Naser G. A. Mahfouz, Yang Qiu, and Robert H. Hurt . Breathable Vapor Toxicant Barriers Based on Multilayer Graphene Oxide. ACS Nano 2017, 11 (6) , 5670-5679. https://doi.org/10.1021/acsnano.7b01106
    3. Krishna Gudena, G. P. Rangaiah, and S. Lakshminarayanan . Optimal Design of a Rotating Packed Bed for VOC Stripping from Contaminated Groundwater. Industrial & Engineering Chemistry Research 2012, 51 (2) , 835-847. https://doi.org/10.1021/ie201218w
    4. Jingjing Zhan, Bhanukiran Sunkara, Jingjian Tang, Yingqing Wang, Jibao He, Gary L. McPherson, and Vijay T. John . Carbothermal Synthesis of Aerosol-Based Adsorptive-Reactive Iron–Carbon Particles for the Remediation of Chlorinated Hydrocarbons. Industrial & Engineering Chemistry Research 2011, 50 (23) , 13021-13029. https://doi.org/10.1021/ie200783z
    5. Kelly E. Fletcher, Jed Costanza, Claribel Cruz-Garcia, Nivedhya S. Ramaswamy, Kurt D. Pennell, and Frank E. Löffler. Effects of Elevated Temperature on Dehalococcoides Dechlorination Performance and DNA and RNA Biomarker Abundance. Environmental Science & Technology 2011, 45 (2) , 712-718. https://doi.org/10.1021/es1023477
    6. K. Lau, T. N. Rogers, and D. J. Chesney . Measuring the Aqueous Henry’s Law Constant at Elevated Temperatures Using an Extended EPICS Technique. Journal of Chemical & Engineering Data 2010, 55 (11) , 5144-5148. https://doi.org/10.1021/je100701w
    7. Bhanukiran Sunkara, Jingjing Zhan, Jibao He, Gary L. McPherson, Gerhard Piringer, and Vijay T. John . Nanoscale Zerovalent Iron Supported on Uniform Carbon Microspheres for the In situ Remediation of Chlorinated Hydrocarbons. ACS Applied Materials & Interfaces 2010, 2 (10) , 2854-2862. https://doi.org/10.1021/am1005282
    8. Fei Chen, Xiaoling Liu, Ronald W. Falta and Lawrence C. Murdoch. Experimental Demonstration of Contaminant Removal from Fractured Rock by Boiling. Environmental Science & Technology 2010, 44 (16) , 6437-6442. https://doi.org/10.1021/es1015923
    9. Jingjing Zhan, Bhanukiran Sunkara, Lynn Le, Vijay T. John, Jibao He, Gary L. McPherson, Gerhard Piringer and Yunfeng Lu . Multifunctional Colloidal Particles for in Situ Remediation of Chlorinated Hydrocarbons. Environmental Science & Technology 2009, 43 (22) , 8616-8621. https://doi.org/10.1021/es901968g
    10. Ryan C. Oesterreich and Robert L. Siegrist . Quantifying Volatile Organic Compounds in Porous Media: Effects of Sampling Method Attributes, Contaminant Characteristics and Environmental Conditions. Environmental Science & Technology 2009, 43 (8) , 2891-2898. https://doi.org/10.1021/es803080c
    11. Jingjing Zhan, Tonghua Zheng, Gerhard Piringer, Christopher Day, Gary L. McPherson, Yunfeng Lu, Kyriakos Papadopoulos and Vijay T. John. Transport Characteristics of Nanoscale Functional Zerovalent Iron/Silica Composites for in Situ Remediation of Trichloroethylene. Environmental Science & Technology 2008, 42 (23) , 8871-8876. https://doi.org/10.1021/es800387p
    12. Jinwook Chung, Rosa Krajmalnik-Brown and Bruce, E. Rittmann . Bioreduction of Trichloroethene Using a Hydrogen-Based Membrane Biofilm Reactor. Environmental Science & Technology 2008, 42 (2) , 477-483. https://doi.org/10.1021/es702422d
    13. Tsutomu Shimotori and, William A. Arnold. Measurement and Estimation of Henry's Law Constants of Chlorinated Ethylenes in Aqueous Surfactant Solutions. Journal of Chemical & Engineering Data 2003, 48 (2) , 253-261. https://doi.org/10.1021/je025553z
    14. Yingjie Qin,, J. P. Sheth, and, K. K. Sirkar. Supported Liquid Membrane-Based Pervaporation for VOC Removal from Water. Industrial & Engineering Chemistry Research 2002, 41 (14) , 3413-3428. https://doi.org/10.1021/ie010901w
    15. Tsutomu Shimotori and, William A. Arnold. Henry's Law Constants of Chlorinated Ethylenes in Aqueous Alcohol Solutions:  Measurement, Estimation, and Thermodynamic Analysis. Journal of Chemical & Engineering Data 2002, 47 (2) , 183-190. https://doi.org/10.1021/je010132n
    16. Rolf Sander. Compilation of Henry's law constants (version 5.0.0) for water as solvent. Atmospheric Chemistry and Physics 2023, 23 (19) , 10901-12440. https://doi.org/10.5194/acp-23-10901-2023
    17. Jiahuan Zheng, Xia Chen, Yan Wang, Qichao Sun, Wenting Sun, Lianying Wu, Yangdong Hu, Weitao Zhang. Research of a Thermodynamic Function (∂p∂x)T, x→0: Temperature Dependence and Relation to Properties at Infinite Dilution. International Journal of Molecular Sciences 2022, 23 (21) , 12998. https://doi.org/10.3390/ijms232112998
    18. . Air Stripping and Aeration. 2022, 1033-1115. https://doi.org/10.1002/9781119820086.ch14
    19. Qing Wang, Siwei Guo, Mukhtiar Ali, Xin Song, Zhiwen Tang, Zhuanxia Zhang, Meng Zhang, Yongming Luo. Thermally enhanced bioremediation: A review of the fundamentals and applications in soil and groundwater remediation. Journal of Hazardous Materials 2022, 433 , 128749. https://doi.org/10.1016/j.jhazmat.2022.128749
    20. jiahuan zheng, Xia Chen, Qichao Sun, Wenting Sun, Lianying Wu, Yangdong Hu, Weitao Zhang. Research of a Thermodynamic Function[[Equation]]: Temperature Dependence and Relation to Properties at Infinite Dilution. SSRN Electronic Journal 2022, 27 https://doi.org/10.2139/ssrn.4109340
    21. Ruxue Liu, Xinru Yang, Jiayin Xie, Xiaoyu Li, Yongsheng Zhao. Experimental Investigation on the Effects of Ethanol-Enhanced Steam Injection Remediation in Nitrobenzene-Contaminated Heterogeneous Aquifers. Applied Sciences 2021, 11 (24) , 12029. https://doi.org/10.3390/app112412029
    22. Kevin G. Mumford, Eric J. Martin, Bernard H. Kueper. Removal of trichloroethene from thin clay lenses by electrical resistance heating: Laboratory experiments and the effects of gas saturation. Journal of Contaminant Hydrology 2021, 243 , 103892. https://doi.org/10.1016/j.jconhyd.2021.103892
    23. Weilai Wang, Fan Zhang, Yunfei Zhang, Lei Xu, Yuansheng Pei, Junfeng Niu. Liquid-phase hydrodechlorination of trichloroethylene driven by nascent H2 under an open system: Hydrogenation activity, solvent effect and sulfur poisoning. Journal of Environmental Sciences 2021, 108 , 96-106. https://doi.org/10.1016/j.jes.2021.02.015
    24. Alexander Schwardt, Andreas Dahmke, Ralf Köber. Henry’s law constants of volatile organic compounds between 0 and 95 °C – Data compilation and complementation in context of urban temperature increases of the subsurface. Chemosphere 2021, 272 , 129858. https://doi.org/10.1016/j.chemosphere.2021.129858
    25. Ovuokenye Omadoko, Dane Scott, Ronald Hickman, Dwight L. Myers. Simple photoreduction of carbon dioxide to formic acid and true quantum yield. Physical Chemistry Chemical Physics 2020, 22 (8) , 4632-4639. https://doi.org/10.1039/C9CP06707H
    26. Zhixin Lyu, Hongfang Ma, Weixin Qian, Haitao Zhang, Weiyong Ying. Measurement and modelling of isothermal solubility of methane in methanol from 213.15 K to 273.15 K. The Journal of Chemical Thermodynamics 2020, 141 , 105917. https://doi.org/10.1016/j.jct.2019.105917
    27. Stéfan Colombano, Hossein Davarzani, Eric D. van Hullebusch, Ioannis Ignatiadis, Huguen Huguenot, Clément Zornig, Dominique Guyonnet. In Situ Thermal Treatments and Enhancements: Theory and Case Study. 2020, 149-209. https://doi.org/10.1007/978-3-030-40348-5_3
    28. Romain Rodrigues, Stéphanie Betelu, Stéfan Colombano, Theodore Tzedakis, Guillaume Masselot, Ioannis Ignatiadis. In Situ Chemical Reduction of Chlorinated Organic Compounds. 2020, 283-398. https://doi.org/10.1007/978-3-030-40348-5_6
    29. Zhe Li, Shunqin Luo, Yang Yang, Jiawei Chen. Highly efficient degradation of trichloroethylene in groundwater based on peroxymonosulfate activation by bentonite supported Fe/Ni bimetallic nanoparticle. Chemosphere 2019, 216 , 499-506. https://doi.org/10.1016/j.chemosphere.2018.10.133
    30. Nicolas Koproch, Andreas Dahmke, Ralf Köber. The aqueous solubility of common organic groundwater contaminants as a function of temperature between 5 and 70 °C. Chemosphere 2019, 217 , 166-175. https://doi.org/10.1016/j.chemosphere.2018.10.153
    31. Xinwei Mao. Bioaugmentation of Chlorinated Ethene-Contaminated Groundwater. 2019, 158-180. https://doi.org/10.1016/B978-0-444-64046-8.00473-0
    32. Gabriela T. Niño de Guzmán, Cathleen J. Hapeman, Patricia D. Millner, Laura L. McConnell, Dana Jackson, David Kindig, Alba Torrents. Using a high-organic matter biowall to treat a trichloroethylene plume at the Beaver Dam Road landfill. Environmental Science and Pollution Research 2018, 25 (9) , 8735-8746. https://doi.org/10.1007/s11356-017-1137-1
    33. Uwe Hiester, Laura Bieber. Dominierende Prozesse bei der thermischen In-situ-Sanierung (TISS) kontaminierter Geringleiter. Grundwasser 2017, 22 (3) , 185-195. https://doi.org/10.1007/s00767-017-0366-z
    34. Yan Ma, Binbin Dong, Xiaosong He, Yi Shi, Mingyue Xu, Xuwen He, Xiaoming Du, Fasheng Li. Quicklime-induced changes of soil properties: Implications for enhanced remediation of volatile chlorinated hydrocarbon contaminated soils via mechanical soil aeration. Chemosphere 2017, 173 , 435-443. https://doi.org/10.1016/j.chemosphere.2017.01.067
    35. Jack C. Parker, Ungtae Kim, Alyson Fortune, Steffen Griepke, James P. Galligan, Amber Bonarrigo. Data Analysis and Modeling to Optimize Thermal Treatment Cost and Performance. Groundwater Monitoring & Remediation 2017, 37 (1) , 51-66. https://doi.org/10.1111/gwmr.12199
    36. Yan Ma, Xiao-Ming Du, Bin-Bin Dong, Yi Shi, Fa-Sheng Li. Quicklime-Enhanced Remediation of Volatile Chlorohydrocarbon-Contaminated Soil in an Abandoned Chemical Plant Site by Mechanical Soil Aeration. 2016, 353-364. https://doi.org/10.1061/9780784480168.035
    37. Steffi Popp, Christof Beyer, Andreas Dahmke, Nicolas Koproch, Ralf Köber, Sebastian Bauer. Temperature-dependent dissolution of residual non-aqueous phase liquids: model development and verification. Environmental Earth Sciences 2016, 75 (11) https://doi.org/10.1007/s12665-016-5743-x
    38. Jonah L. Munholland, Kevin G. Mumford, Bernard H. Kueper. Factors affecting gas migration and contaminant redistribution in heterogeneous porous media subject to electrical resistance heating. Journal of Contaminant Hydrology 2016, 184 , 14-24. https://doi.org/10.1016/j.jconhyd.2015.10.011
    39. Jie Gao, Wei Wang, Adam J. Rondinone, Feng He, Liyuan Liang. Degradation of Trichloroethene with a Novel Ball Milled Fe–C Nanocomposite. Journal of Hazardous Materials 2015, 300 , 443-450. https://doi.org/10.1016/j.jhazmat.2015.07.038
    40. Benjamin G. Petri, Radek Fučík, Tissa H. Illangasekare, Kathleen M. Smits, John A. Christ, Toshihiro Sakaki, Carolyn C. Sauck. Effect of NAPL Source Morphology on Mass Transfer in the Vadose Zone. Groundwater 2015, 53 (5) , 685-698. https://doi.org/10.1111/gwat.12284
    41. Steffi Popp, Christof Beyer, Andreas Dahmke, Sebastian Bauer. Model Development and Numerical Simulation of a Seasonal Heat Storage in a Contaminated Shallow Aquifer. Energy Procedia 2015, 76 , 361-370. https://doi.org/10.1016/j.egypro.2015.07.842
    42. R. D. Hort, A. Revil, J. Munakata‐Marr, D. Mao. Evaluating the potential for quantitative monitoring of in situ chemical oxidation of aqueous‐phase TCE using in‐phase and quadrature electrical conductivity. Water Resources Research 2015, 51 (7) , 5239-5259. https://doi.org/10.1002/2014WR016868
    43. Fei Chen, Ronald W. Falta, Lawrence C. Murdoch. Numerical Analysis of Thermal Remediation in 3D Field‐Scale Fractured Geologic Media. Groundwater 2015, 53 (4) , 572-587. https://doi.org/10.1111/gwat.12241
    44. Yan Ma, Xiaoming Du, Yi Shi, Zhu Xu, Jidun Fang, Zheng Li, Fasheng Li. Low-concentration tailing and subsequent quicklime-enhanced remediation of volatile chlorinated hydrocarbon-contaminated soils by mechanical soil aeration. Chemosphere 2015, 121 , 117-123. https://doi.org/10.1016/j.chemosphere.2014.10.074
    45. S. Ouoba, F. Cherblanc, J. Koulidiati, J.-C. Bénet. A New Experimental Method to Determine the Henry’s Law Constant of a Volatile Organic Compound Adsorbed in Soil. Journal of Chemistry 2015, 2015 , 1-7. https://doi.org/10.1155/2015/479327
    46. R. Sander. Compilation of Henry's law constants (version 4.0) for water as solvent. Atmospheric Chemistry and Physics 2015, 15 (8) , 4399-4981. https://doi.org/10.5194/acp-15-4399-2015
    47. Ram C. Narayan, Giridhar Madras. Simple three parameter equations for correlating liquid phase compositions in subcritical and supercritical systems. The Journal of Supercritical Fluids 2014, 95 , 100-105. https://doi.org/10.1016/j.supflu.2014.08.010
    48. C. Zhao, K.G. Mumford, B.H. Kueper. Laboratory study of non-aqueous phase liquid and water co-boiling during thermal treatment. Journal of Contaminant Hydrology 2014, 164 , 49-58. https://doi.org/10.1016/j.jconhyd.2014.05.008
    49. Jacob Bælum, Charlotte Scheutz, Julie C. Chambon, Christine Mosegaard Jensen, Rikke P. Brochmann, Philip Dennis, Troels Laier, Mette M. Broholm, Poul L. Bjerg, Philip J. Binning, Carsten S. Jacobsen. The impact of bioaugmentation on dechlorination kinetics and on microbial dechlorinating communities in subsurface clay till. Environmental Pollution 2014, 186 , 149-157. https://doi.org/10.1016/j.envpol.2013.11.013
    50. Xiaoling Liu, Lawrence C. Murdoch, Ronald W. Falta, Tianwu Tan. Experimental characterization of CVOC removal from fractured clay during boiling. International Journal of Heat and Mass Transfer 2014, 70 , 764-778. https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.052
    51. Jennifer L. Triplett Kingston, Paul C. Johnson, Bernard H. Kueper, Kevin G. Mumford. In Situ Thermal Treatment of Chlorinated Solvent Source Zones. 2014, 509-557. https://doi.org/10.1007/978-1-4614-6922-3_14
    52. Gorm Heron, John Lachance, Ralph Baker. Removal of PCE DNAPL from Tight Clays Using In Situ Thermal Desorption. Groundwater Monitoring & Remediation 2013, 33 (4) , 31-43. https://doi.org/10.1111/gwmr.12028
    53. Fei Chen, Ronald W. Falta, Lawrence C. Murdoch. Numerical analysis of contaminant removal from fractured rock during boiling. Journal of Contaminant Hydrology 2012, 134-135 , 12-21. https://doi.org/10.1016/j.jconhyd.2012.04.004
    54. A. Erto, A. Lancia. Solubility of benzene in copolymer aqueous solutions for the design of gas absorption unit operations. Chemical Engineering Journal 2012, 187 , 166-171. https://doi.org/10.1016/j.cej.2012.01.116
    55. Yi Shi, Xiaoming Du, Huiying Li, Zhu Xu, Qunhui Wang, Xiaoguang Meng, Fasheng Li. Effects of soil temperature and agitation on the removal of 1,2-dichloroethane from contaminated soil. Science of The Total Environment 2012, 423 , 185-189. https://doi.org/10.1016/j.scitotenv.2012.02.022
    56. Fei Chen, David L. Freedman, Ronald W. Falta, Lawrence C. Murdoch. Henry’s law constants of chlorinated solvents at elevated temperatures. Chemosphere 2012, 86 (2) , 156-165. https://doi.org/10.1016/j.chemosphere.2011.10.004
    57. H. Galindo, S. Revah, F.J. Cervantes, S. Arriaga. Effect of surfactant and oil additions in the biodegradation of hexane and toluene vapours in batch tests. Environmental Technology 2011, 32 (2) , 167-173. https://doi.org/10.1080/09593330.2010.491132
    58. Gregory J. Smith. Coupled Electrokinetic–Thermal Desorption. 2009, 505-535. https://doi.org/10.1002/9780470523650.ch24
    59. Gorm Heron, Ken Parker, Jim Galligan, Thomas C. Holmes. Thermal Treatment of Eight CVOC Source Zones to Near Nondetect Concentrations. Groundwater Monitoring & Remediation 2009, 29 (3) , 56-65. https://doi.org/10.1111/j.1745-6592.2009.01247.x
    60. Hoa T. Pham, Masashi Kitsuneduka, Junko Hara, Koichi Suto, Chihiro Inoue. Trichloroethylene Transformation by Natural Mineral Pyrite: The Deciding Role of Oxygen. Environmental Science & Technology 2008, 42 (19) , 7470-7475. https://doi.org/10.1021/es801310y
    61. Julie M. Burghardt, Bernard H. Kueper. Laboratory Study Evaluating Heating of Tetrachloroethylene Impacted Soil. Ground Water Monitoring & Remediation 2008, 28 (4) , 95-106. https://doi.org/10.1111/j.1745-6592.2008.00214.x
    62. Anne Kirketerp Friis, Julie L. L. Kofoed, Gorm Heron, Hans-Jørgen Albrechtsen, Poul L. Bjerg. Microcosm evaluation of bioaugmentation after field-scale thermal treatment of a TCE-contaminated aquifer. Biodegradation 2007, 18 (6) , 661-674. https://doi.org/10.1007/s10532-006-9098-y
    63. Manuel Alejandro Salaices Avila, Roman Breiter. Estimating the PDMS-Coated, SPME-Fibre/Water- and Fibre/Gas-Partition Coefficients of Chlorinated Ethenes by Headspace-SPME. Chromatographia 2007, 66 (5-6) , 369-376. https://doi.org/10.1365/s10337-007-0332-5
    64. . References. 2007, 1577-1701. https://doi.org/10.1201/9781420009132.bmatt1
    65. M. Truex, T. Powell, K. Lynch. In Situ Dechlorination of TCE during Aquifer Heating. Groundwater Monitoring & Remediation 2007, 27 (2) , 96-105. https://doi.org/10.1111/j.1745-6592.2007.00141.x
    66. Manuel Alejandro Salaices Avila, Roman Breiter, Henry Mott. Development of a simple, accurate SPME-based method for assay of VOCs in column breakthrough experiments. Chemosphere 2007, 66 (1) , 18-29. https://doi.org/10.1016/j.chemosphere.2006.05.069
    67. Gorm Heron, Steven Carroll, Steffen G. Nielsen. Full‐Scale Removal of DNAPL Constituents Using Steam‐Enhanced Extraction and Electrical Resistance Heating. Groundwater Monitoring & Remediation 2005, 25 (4) , 92-107. https://doi.org/10.1111/j.1745-6592.2005.00060.x
    68. Patricia R. Pfeiffer, Angela R. Bielefeldt, Tissa Illangasekare, Bruce Henry. Physical Properties of Vegetable Oil and Chlorinated Ethene Mixtures. Journal of Environmental Engineering 2005, 131 (10) , 1447-1452. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:10(1447)
    69. S. Hoeg, H.F. Schöler, J. Warnatz. Assessment of interfacial mass transfer in water-unsaturated soils during vapor extraction. Journal of Contaminant Hydrology 2004, 74 (1-4) , 163-195. https://doi.org/10.1016/j.jconhyd.2004.02.010
    70. Joel Reza, Arturo Trejo. Temperature dependence of the infinite dilution activity coefficient and Henry's law constant of polycyclic aromatic hydrocarbons in water. Chemosphere 2004, 56 (6) , 537-547. https://doi.org/10.1016/j.chemosphere.2004.04.020
    71. Martin Scheringer. Globale Verteilung. 2004, 1-18. https://doi.org/10.1002/9783527678525.hbuw2000003
    72. Miklós Görgényi, Jo Dewulf, Herman Van Langenhove. Temperature dependence of Henry's law constant in an extended temperature range. Chemosphere 2002, 48 (7) , 757-762. https://doi.org/10.1016/S0045-6535(02)00131-5
    73. Don A Vroblesky, Ted R Campbell. Equilibration times, compound selectivity, and stability of diffusion samplers for collection of ground-water VOC concentrations. Advances in Environmental Research 2001, 5 (1) , 1-12. https://doi.org/10.1016/S1093-0191(00)00036-8
    74. Montgomery. CAS Registry Number Index. 2000https://doi.org/10.1201/9781420032765.bmatt1
    75. Kevin G Knauss, Michael J Dibley, Roald N Leif, Daniel A Mew, Roger D Aines. The aqueous solubility of trichloroethene (TCE) and tetrachloroethene (PCE) as a function of temperature. Applied Geochemistry 2000, 15 (4) , 501-512. https://doi.org/10.1016/S0883-2927(99)00058-X
    76. Johnson R. Haas, Everett L. Shock. Halocarbons in the environment: estimates of thermodynamic properties for aqueous chloroethylene species and their stabilities in natural settings. Geochimica et Cosmochimica Acta 1999, 63 (19-20) , 3429-3441. https://doi.org/10.1016/S0016-7037(99)00276-8

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect