Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Henry's Law Constants of Some β-, γ-, and δ-Hydroxy Alkyl Nitrates of Atmospheric Interest
My Activity
CONTENT TYPES

Figure 1Loading Img
    Article

    Henry's Law Constants of Some β-, γ-, and δ-Hydroxy Alkyl Nitrates of Atmospheric Interest
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Environmental Sciences, Weizmann Institute, Rehovot 76100, Israel
    Other Access Options

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2000, 34, 7, 1197–1203
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es990558a
    Published February 19, 2000
    Copyright © 2000 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Organic nitrates form via the photodegradation of hydrocarbons in the troposphere in the presence of NO and NO2. This process competes with the chemical cycle leading to ozone production since it sequesters both nitrogen oxides and organic radicals. Hydroxy nitrates form via the atmospheric reactions of alkanes and alkenes and are thought to be an important nitrogen oxides reservoir. In this study, new synthetic methods to produce β-, γ-, and δ-hydroxy nitrates of atmospheric interest were developed. NMR and IR spectroscopies were used to characterize these compounds. Henry's law coefficients of C4 and C5 hydroxy nitrates at 291 ± 2 K were measured using a dynamic equilibrium system. The solubility decreases with the organic chain length and increases with increasing distance between the nitrooxy and hydroxy groups. Due to their large Henry's law coefficients these species will partition into droplets in the presence of clouds and fogs. Measurements of the OH reaction and photolysis rate coefficients are needed for an accurate assessment of the atmospheric lifetimes of these compounds.

    Copyright © 2000 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     Corresponding author phone:  972-8-934-4237; fax:  972-8-934-4124; e-mail:  [email protected].

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 39 publications.

    1. Yuchen Wang, Masayuki Takeuchi, Siyuan Wang, Sergey A. Nizkorodov, Stefan France, Gamze Eris, Nga Lee Ng. Photolysis of Gas-Phase Atmospherically Relevant Monoterpene-Derived Organic Nitrates. The Journal of Physical Chemistry A 2023, 127 (4) , 987-999. https://doi.org/10.1021/acs.jpca.2c04307
    2. Yuchen Wang, Ivan R. Piletic, Masayuki Takeuchi, Tianchang Xu, Stefan France, Nga Lee Ng. Synthesis and Hydrolysis of Atmospherically Relevant Monoterpene-Derived Organic Nitrates. Environmental Science & Technology 2021, 55 (21) , 14595-14606. https://doi.org/10.1021/acs.est.1c05310
    3. Yuchen Wang, Rongbiao Tong, Jian Zhen Yu. Chemical Synthesis of Multifunctional Air Pollutants: Terpene-Derived Nitrooxy Organosulfates. Environmental Science & Technology 2021, 55 (13) , 8573-8582. https://doi.org/10.1021/acs.est.1c00348
    4. Geoffrey K. Yeh, Megan S. Claflin, and Paul J. Ziemann . Products and Mechanism of the Reaction of 1-Pentadecene with NO3 Radicals and the Effect of a −ONO2 Group on Alkoxy Radical Decomposition. The Journal of Physical Chemistry A 2015, 119 (43) , 10684-10696. https://doi.org/10.1021/acs.jpca.5b07468
    5. Barbara Nozière, Markus Kalberer, Magda Claeys, James Allan, Barbara D’Anna, Stefano Decesari, Emanuela Finessi, Marianne Glasius, Irena Grgić, Jacqueline F. Hamilton, Thorsten Hoffmann, Yoshiteru Iinuma, Mohammed Jaoui, Ariane Kahnt, Christopher J. Kampf, Ivan Kourtchev, Willy Maenhaut, Nicholas Marsden, Sanna Saarikoski, Jürgen Schnelle-Kreis, Jason D. Surratt, Sönke Szidat, Rafal Szmigielski, and Armin Wisthaler . The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges. Chemical Reviews 2015, 115 (10) , 3919-3983. https://doi.org/10.1021/cr5003485
    6. A. E. Perring, S. E. Pusede, and R. C. Cohen . An Observational Perspective on the Atmospheric Impacts of Alkyl and Multifunctional Nitrates on Ozone and Secondary Organic Aerosol. Chemical Reviews 2013, 113 (8) , 5848-5870. https://doi.org/10.1021/cr300520x
    7. Jian Ma and Purnendu K. Dasgupta , Bingcheng Yang . Rapid Nondestructive Spectrometric Measurement of Temperature-Dependent Gas−Liquid Solubility Equilibria. Analytical Chemistry 2011, 83 (3) , 1157-1161. https://doi.org/10.1021/ac102947j
    8. Jian Ma and Purnendu K. Dasgupta, William Blackledge and Gerry R. Boss. Temperature Dependence of Henry’s Law Constant for Hydrogen Cyanide. Generation of Trace Standard Gaseous Hydrogen Cyanide. Environmental Science & Technology 2010, 44 (8) , 3028-3034. https://doi.org/10.1021/es1001192
    9. Yasmine Katrib,, Stéphane Le Calvé, and, Philippe Mirabel. Uptake Measurements of Dibasic Esters by Water Droplets and Determination of Their Henry's Law Constants. The Journal of Physical Chemistry A 2003, 107 (51) , 11433-11439. https://doi.org/10.1021/jp0368132
    10. Keren Treves and, Yinon Rudich. The Atmospheric Fate of C3−C6 Hydroxyalkyl Nitrates. The Journal of Physical Chemistry A 2003, 107 (39) , 7809-7817. https://doi.org/10.1021/jp035064l
    11. Keren Treves,, Lea Shragina, and, Yinon Rudich. Rate Coefficients for the Reactions of Cl Atoms with a Series of C3−C6 Hydroxyalkyl Nitrates at 296 ± 2 K. The Journal of Physical Chemistry A 2002, 106 (24) , 5902-5907. https://doi.org/10.1021/jp020088y
    12. Sami Y. Sheikheldin,, Terence J. Cardwell,, Robert W. Cattrall,, Maria D. Luque de Castro, and, Spas D. Kolev. Determination of Henry's Law Constants of Phenols by Pervaporation-Flow Injection Analysis. Environmental Science & Technology 2001, 35 (1) , 178-181. https://doi.org/10.1021/es001406e
    13. Sahir Gagan, Kumar Sarang, Krzysztof J. Rudzinski, Ruizhe Liu, Rafal Szmigielski, Yue Zhang. Synthetic strategies for oxidation products from biogenic volatile organic compounds in the atmosphere: A review. Atmospheric Environment 2023, 312 , 120017. https://doi.org/10.1016/j.atmosenv.2023.120017
    14. Mary Alice Upshur, Ariana Gray Bé, Jingyi Luo, Jonathan G. Varelas, Franz M. Geiger, Regan J. Thomson. Organic synthesis in the study of terpene-derived oxidation products in the atmosphere. Natural Product Reports 2023, 40 (4) , 890-921. https://doi.org/10.1039/D2NP00064D
    15. Rolf Sander. Compilation of Henry's law constants (version 5.0.0) for water as solvent. Atmospheric Chemistry and Physics 2023, 23 (19) , 10901-12440. https://doi.org/10.5194/acp-23-10901-2023
    16. Rui Li, Xiaotong Jiang, Xinfeng Wang, Tianshu Chen, Lin Du, Likun Xue, Xinhui Bi, Mingjin Tang, Wenxing Wang. Determination of Semivolatile Organic Nitrates in Ambient Atmosphere by Gas Chromatography/Electron Ionization–Mass Spectrometry. Atmosphere 2019, 10 (2) , 88. https://doi.org/10.3390/atmos10020088
    17. Rui Li, Xinfeng Wang, Rongrong Gu, Chunying Lu, Fanping Zhu, Likun Xue, Huijun Xie, Lin Du, Jianmin Chen, Wenxing Wang. Identification and semi-quantification of biogenic organic nitrates in ambient particulate matters by UHPLC/ESI-MS. Atmospheric Environment 2018, 176 , 140-147. https://doi.org/10.1016/j.atmosenv.2017.12.038
    18. Nga Lee Ng, Steven S. Brown, Alexander T. Archibald, Elliot Atlas, Ronald C. Cohen, John N. Crowley, Douglas A. Day, Neil M. Donahue, Juliane L. Fry, Hendrik Fuchs, Robert J. Griffin, Marcelo I. Guzman, Hartmut Herrmann, Alma Hodzic, Yoshiteru Iinuma, José L. Jimenez, Astrid Kiendler-Scharr, Ben H. Lee, Deborah J. Luecken, Jingqiu Mao, Robert McLaren, Anke Mutzel, Hans D. Osthoff, Bin Ouyang, Benedicte Picquet-Varrault, Ulrich Platt, Havala O. T. Pye, Yinon Rudich, Rebecca H. Schwantes, Manabu Shiraiwa, Jochen Stutz, Joel A. Thornton, Andreas Tilgner, Brent J. Williams, Rahul A. Zaveri. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol. Atmospheric Chemistry and Physics 2017, 17 (3) , 2103-2162. https://doi.org/10.5194/acp-17-2103-2017
    19. Dian E. Romonosky, Lucas Q. Nguyen, Dorit Shemesh, Tran B. Nguyen, Scott A. Epstein, David B.C. Martin, Christopher D. Vanderwal, R. Benny Gerber, Sergey A. Nizkorodov. Absorption spectra and aqueous photochemistry of β-hydroxyalkyl nitrates of atmospheric interest. Molecular Physics 2015, 113 (15-16) , 2179-2190. https://doi.org/10.1080/00268976.2015.1017020
    20. R. Sander. Compilation of Henry's law constants (version 4.0) for water as solvent. Atmospheric Chemistry and Physics 2015, 15 (8) , 4399-4981. https://doi.org/10.5194/acp-15-4399-2015
    21. E. C. Browne, P. J. Wooldridge, K.-E. Min, R. C. Cohen. On the role of monoterpene chemistry in the remote continental boundary layer. Atmospheric Chemistry and Physics 2014, 14 (3) , 1225-1238. https://doi.org/10.5194/acp-14-1225-2014
    22. E. C. Browne, K.-E. Min, P. J. Wooldridge, E. Apel, D. R. Blake, W. H. Brune, C. A. Cantrell, M. J. Cubison, G. S. Diskin, J. L. Jimenez, A. J. Weinheimer, P. O. Wennberg, A. Wisthaler, R. C. Cohen. Observations of total RONO2 over the boreal forest: NOx sinks and HNO3 sources. Atmospheric Chemistry and Physics 2013, 13 (9) , 4543-4562. https://doi.org/10.5194/acp-13-4543-2013
    23. Y. Xie, F. Paulot, W. P. L. Carter, C. G. Nolte, D. J. Luecken, W. T. Hutzell, P. O. Wennberg, R. C. Cohen, R. W. Pinder. Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality. Atmospheric Chemistry and Physics 2013, 13 (16) , 8439-8455. https://doi.org/10.5194/acp-13-8439-2013
    24. S.‐W. Kim, M. C. Barth, M. Trainer. Influence of fair‐weather cumulus clouds on isoprene chemistry. Journal of Geophysical Research: Atmospheres 2012, 117 (D10) https://doi.org/10.1029/2011JD017099
    25. T. A. M. Pugh, M. Cain, J. Methven, O. Wild, S. R. Arnold, E. Real, K. S. Law, K. M. Emmerson, S. M. Owen, J. A. Pyle, C. N. Hewitt, A. R. MacKenzie. A Lagrangian model of air-mass photochemistry and mixing using a trajectory ensemble: the Cambridge Tropospheric Trajectory model of Chemistry And Transport (CiTTyCAT) version 4.2. Geoscientific Model Development 2012, 5 (1) , 193-221. https://doi.org/10.5194/gmd-5-193-2012
    26. T. A. M. Pugh, A. R. MacKenzie, C. N. Hewitt, B. Langford, P. M. Edwards, K. L. Furneaux, D. E. Heard, J. R. Hopkins, C. E. Jones, A. Karunaharan, J. Lee, G. Mills, P. Misztal, S. Moller, P. S. Monks, L. K. Whalley. Simulating atmospheric composition over a South-East Asian tropical rainforest: performance of a chemistry box model. Atmospheric Chemistry and Physics 2010, 10 (1) , 279-298. https://doi.org/10.5194/acp-10-279-2010
    27. A. W. Rollins, J. L. Fry, J. F. Hunter, J. H. Kroll, D. R. Worsnop, S. W. Singaram, R. C. Cohen. Elemental analysis of aerosol organic nitrates with electron ionization high-resolution mass spectrometry. Atmospheric Measurement Techniques 2010, 3 (1) , 301-310. https://doi.org/10.5194/amt-3-301-2010
    28. D. Taraborrelli, M. G. Lawrence, T. M. Butler, R. Sander, J. Lelieveld. Mainz Isoprene Mechanism 2 (MIM2): an isoprene oxidation mechanism for regional and global atmospheric modelling. Atmospheric Chemistry and Physics 2009, 9 (8) , 2751-2777. https://doi.org/10.5194/acp-9-2751-2009
    29. Paul B. Shepson. Organic Nitrates. 2007, 269-291. https://doi.org/10.1002/9780470988657.ch7
    30. Akinori Ito, Sanford Sillman, Joyce E. Penner. Effects of additional nonmethane volatile organic compounds, organic nitrates, and direct emissions of oxygenated organic species on global tropospheric chemistry. Journal of Geophysical Research: Atmospheres 2007, 112 (D6) https://doi.org/10.1029/2005JD006556
    31. Cassandra Volpe Horii, J. William Munger, Steven C. Wofsy, Mark Zahniser, David Nelson, J. Barry McManus. Atmospheric reactive nitrogen concentration and flux budgets at a Northeastern U.S. forest site. Agricultural and Forest Meteorology 2006, 136 (3-4) , 159-174. https://doi.org/10.1016/j.agrformet.2006.03.005
    32. Cassandra Volpe Horii, J. William Munger, Steven C. Wofsy, Mark Zahniser, David Nelson, J. Barry McManus. Atmospheric reactive nitrogen concentration and flux budgets at a Northeastern U.S. forest site. Agricultural and Forest Meteorology 2005, 133 (1-4) , 210-225. https://doi.org/10.1016/j.agrformet.2004.08.009
    33. Valérie Feigenbrugel, Stéphane Le Calvé, Philippe Mirabel. Temperature dependence of Henry's law constants of metolachlor and diazinon. Chemosphere 2004, 57 (4) , 319-327. https://doi.org/10.1016/j.chemosphere.2004.05.013
    34. Zhiyong Xie, Stéphane Le Calvé, Valérie Feigenbrugel, Thomas G. Preuß, Ralph Vinken, Ralf Ebinghaus, Wolfgang Ruck. Henry's law constants measurements of the nonylphenol isomer 4(3′,5′-dimethyl-3′-heptyl)-phenol, tertiary octylphenol and γ-hexachlorocyclohexane between 278 and 298 K. Atmospheric Environment 2004, 38 (29) , 4859-4868. https://doi.org/10.1016/j.atmosenv.2004.05.013
    35. R. S. Rosen, E. C. Wood, P. J. Wooldridge, J. A. Thornton, D. A. Day, W. Kuster, E. J. Williams, B. T. Jobson, R. C. Cohen. Observations of total alkyl nitrates during Texas Air Quality Study 2000: Implications for O 3 and alkyl nitrate photochemistry. Journal of Geophysical Research: Atmospheres 2004, 109 (D7) https://doi.org/10.1029/2003JD004227
    36. Céline Gautier, Stéphane Le Calvé, Philippe Mirabel. Henry's law constants measurements of alachlor and dichlorvos between 283 and 298K. Atmospheric Environment 2003, 37 (17) , 2347-2353. https://doi.org/10.1016/S1352-2310(03)00155-9
    37. Rolf von Kuhlmann, Mark G. Lawrence, Paul J. Crutzen, Philip J. Rasch. A model for studies of tropospheric ozone and nonmethane hydrocarbons: Model description and ozone results. Journal of Geophysical Research: Atmospheres 2003, 108 (D9) https://doi.org/10.1029/2002JD002893
    38. Keren Treves, Lea Shragina, Yinon Rudich. Measurement of octanol–air partition coefficients using solid-phase microextraction (SPME)—application to hydroxy alkyl nitrates. Atmospheric Environment 2001, 35 (33) , 5843-5854. https://doi.org/10.1016/S1352-2310(01)00276-X
    39. M. S. Chiappero, F. E. Malanca, G. A. Argüello, S. Nishida, K. Takahashi, Y. Matsumi, M. D. Hurley, T. J. Wallington. New Kinetic and Spectroscopic Measurements in the CF3Ox + NOx System. , 213-221. https://doi.org/10.1007/1-4020-4232-9_18

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2000, 34, 7, 1197–1203
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es990558a
    Published February 19, 2000
    Copyright © 2000 American Chemical Society

    Article Views

    497

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.