Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Self-Assembly of a Diferrous Triple-Stranded Helicate with Bis(2,2‘-Bipyridine) Ligands: Thermodynamic and Kinetic Intermediates
My Activity
    Article

    Self-Assembly of a Diferrous Triple-Stranded Helicate with Bis(2,2‘-Bipyridine) Ligands: Thermodynamic and Kinetic Intermediates
    Click to copy article linkArticle link copied!

    View Author Information
    Laboratoire de Physico-Chimie Bioinorganique, UMR 7509 du CNRS, Faculté de Chimie, 1 rue Blaise Pascal, 67000 Strasbourg, France, Laboratoire de Spectrométrie de Masse Bioorganique, UMR 7509 du CNRS, Faculté de Chimie, 1 rue Blaise Pascal, 67000 Strasbourg, France, and Laboratoire de Chimie Biomimétique, UMR 5616 du CNRS, 301 rue de la Chimie, 38041 Grenoble, France
    Other Access OptionsSupporting Information (1)

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2000, 39, 25, 5771–5778
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ic000229f
    Published November 15, 2000
    Copyright © 2000 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The protonation and iron(II) coordination properties of a bis(2,2‘-bipyridine) ligand L were investigated in methanol. The protonated forms showed allosteric effects due to the flexibility of the strand. Speciation studies of the corresponding ferrous complexes were carried out as a function of pH and iron(II) concentrations. A combination of electrospray mass spectroscopy, potentiometry, and spectrophotometry allowed the determination in solution of three ferrous complexes, one mononuclear (L2Fe2+) and two dinuclear (L2Fe24+ and L3Fe24+) species. Their structure was deduced from the metal spin state and confirmed by 1H NMR measurements and molecular modeling. The dissociation process of the triple-stranded diferrous helicate L3Fe24+ by OH- revealed two rate-limiting steps. The former leads to the formation of a monoferrous triple-stranded compound via a classical mechanism, which involves hydroxy−ferrous complexes. A similar process was observed in the latter step for the release of the ferrous cation from the mononuclear intermediate. Taking into account the structural, thermodynamic, and kinetic features provided by the present study, we could propose a self-assembling mechanism of the triple-stranded diferrous helicate.

    Copyright © 2000 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Laboratoire de Physico-Chimie Bioinorganique.

    §

     Laboratoire de Spectrométrie de Masse Bioorganique.

     Laboratoire de Chimie Biomimétique.

    *

     To whom correspondence should be addressed. E-mail:  [email protected].

    Supporting Information Available

    Click to copy section linkSection link copied!

    Tables of the 1H NMR data for L3Fe24+ in CD3CN, ESMS data for ferrous complexes, and figures of the absorption spectra of ligand L versus pH, of the dissociation kinetics of the diferrous helicate and of time-resolved spectra during the basic dissociation process of L3Fe24+. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 41 publications.

    1. Paul M. Bogie, Lauren R. Holloway, Yana Lyon, Nicole C. Onishi, Gregory J. O. Beran, Ryan R. Julian, Richard J. Hooley. A Springloaded Metal-Ligand Mesocate Allows Access to Trapped Intermediates of Self-Assembly. Inorganic Chemistry 2018, 57 (7) , 4155-4163. https://doi.org/10.1021/acs.inorgchem.8b00370
    2. L. Lemus, J. Guerrero, J. Costamagna, G. Estiu, G. Ferraudi, A. Graham Lappin, A. Oliver and B. C. Noll . Unfolding of the [Cu2(1,3-bis(9-methyl-1,10-phenanthrolin-2-yl)propane)2]2+ Helicate. Coupling of the Chlorocarbon Dehalogenation to the Unfolding Process. Inorganic Chemistry 2010, 49 (9) , 4023-4035. https://doi.org/10.1021/ic9018986
    3. Vladislav Tomišić, Sylvie Blanc, Mourad Elhabiri, Dominique Expert and Anne-Marie Albrecht-Gary. Iron(III) Uptake and Release by Chrysobactin, a Siderophore of the Phytophatogenic Bacterium Erwinia chrysanthemi. Inorganic Chemistry 2008, 47 (20) , 9419-9430. https://doi.org/10.1021/ic801143e
    4. Zengquan Qin,, Michael C. Jennings, and, Richard J. Puddephatt. Self-Assembly in Palladium(II) and Platinum(II) Chemistry:  The Biomimetic Approach. Inorganic Chemistry 2003, 42 (6) , 1956-1965. https://doi.org/10.1021/ic020322z
    5. Josef Hamacek, Mourad Elhabiri, Boris Le Guennic, Abraham Shanzer, Anne‐Marie Albrecht‐Gary. Metal‐Mediated Interactions in Homo‐ and Heterobimetallic Edifices with Lanthanides: A Study in Solution. European Journal of Inorganic Chemistry 2022, 2022 (26) https://doi.org/10.1002/ejic.202200235
    6. Yutaro Yamasaki, Hidemi Shio, Tomoko Amimoto, Ryo Sekiya, Takeharu Haino. Majority‐Rules Effect and Allostery in Molecular Recognition of Calix[4]arene‐Based Triple‐Stranded Metallohelicates. Chemistry – A European Journal 2018, 24 (34) , 8558-8568. https://doi.org/10.1002/chem.201800997
    7. Davood Zare, Yan Suffren, Homayoun Nozary, Andreas Hauser, Claude Piguet. Controlling Lanthanide Exchange in Triple‐Stranded Helicates: A Way to Optimize Molecular Light‐Upconversion. Angewandte Chemie 2017, 129 (46) , 14804-14809. https://doi.org/10.1002/ange.201709156
    8. Davood Zare, Yan Suffren, Homayoun Nozary, Andreas Hauser, Claude Piguet. Controlling Lanthanide Exchange in Triple‐Stranded Helicates: A Way to Optimize Molecular Light‐Upconversion. Angewandte Chemie International Edition 2017, 56 (46) , 14612-14617. https://doi.org/10.1002/anie.201709156
    9. Daishi Fujita, Hiroyuki Yokoyama, Yoshihiro Ueda, Sota Sato, Makoto Fujita. Geometrically Restricted Intermediates in the Self‐Assembly of an M 12 L 24 Cuboctahedral Complex. Angewandte Chemie International Edition 2015, 54 (1) , 155-158. https://doi.org/10.1002/anie.201409216
    10. Daishi Fujita, Hiroyuki Yokoyama, Yoshihiro Ueda, Sota Sato, Makoto Fujita. Geometrically Restricted Intermediates in the Self‐Assembly of an M 12 L 24 Cuboctahedral Complex. Angewandte Chemie 2015, 127 (1) , 157-160. https://doi.org/10.1002/ange.201409216
    11. Serin L. Dabb, Nicholas C. Fletcher. mer and fac isomerism in tris chelate diimine metal complexes. Dalton Transactions 2015, 44 (10) , 4406-4422. https://doi.org/10.1039/C4DT03535F
    12. Josef Hamacek. Self‐Assembly Principles of Helicates. 2013, 91-123. https://doi.org/10.1002/9781118517413.ch3
    13. Jérémy Brandel, Nicolas Humbert, Mourad Elhabiri, Isabelle J. Schalk, Gaëtan L. A. Mislin, Anne-Marie Albrecht-Gary. Pyochelin, a siderophore of Pseudomonas aeruginosa: Physicochemical characterization of the iron(iii), copper(ii) and zinc(ii) complexes. Dalton Transactions 2012, 41 (9) , 2820. https://doi.org/10.1039/c1dt11804h
    14. Boris Brusilowskij, Egor V. Dzyuba, Ralf W. Troff, Christoph A. Schalley. Effects of subtle differences in ligand constitution and conformation in metallo-supramolecular self-assembled polygons. Dalton Transactions 2011, 40 (45) , 12089. https://doi.org/10.1039/c1dt10621j
    15. Markus Tonigold, Dirk Volkmer. Comparative solvolytic stabilities of copper(II) nanoballs and dinuclear Cu(II) paddle wheel units. Inorganica Chimica Acta 2010, 363 (15) , 4220-4229. https://doi.org/10.1016/j.ica.2010.06.022
    16. Claude Piguet, Jean-Claude G. Bünzli. Chapter 247 Self-Assembled Lanthanide Helicates. 2010, 301-553. https://doi.org/10.1016/S0168-1273(10)40007-0
    17. Claude Piguet. Five thermodynamic describers for addressing serendipity in the self-assembly of polynuclear complexes in solution. Chemical Communications 2010, 46 (34) , 6209. https://doi.org/10.1039/c0cc00811g
    18. Markus Tonigold, Julia Hitzbleck, Stefan Bahnmüller, Gerhard Langstein, Dirk Volkmer. Copper(II) Nanoballs as monomers for polyurethane coatings: synthesis, urethane derivatization and kinetic stability. Dalton Transactions 2009, 385 (8) , 1363. https://doi.org/10.1039/b811004b
    19. Virginia M. Cangelosi, Timothy G. Carter, Lev N. Zakharov, Darren W. Johnson. Observation of reaction intermediates and kinetic mistakes in a remarkably slow self-assembly reaction. Chemical Communications 2009, 97 (37) , 5606. https://doi.org/10.1039/b914750k
    20. Mourad Elhabiri, Anne-Marie Albrecht-Gary. Supramolecular edifices and switches based on metals. Coordination Chemistry Reviews 2008, 252 (10-11) , 1079-1092. https://doi.org/10.1016/j.ccr.2007.09.014
    21. Christopher R.K. Glasson, Leonard F. Lindoy, George V. Meehan. Recent developments in the d-block metallo-supramolecular chemistry of polypyridyls. Coordination Chemistry Reviews 2008, 252 (8-9) , 940-963. https://doi.org/10.1016/j.ccr.2007.10.013
    22. Douglas A. Vander Griend, Daniel Kwabena Bediako, Michael J. DeVries, Nathan A. DeJong, Lee P. Heeringa. Detailed Spectroscopic, Thermodynamic, and Kinetic Characterization of Nickel(II) Complexes with 2,2‘-Bipyridine and 1,10-Phenanthroline Attained via Equilibrium-Restricted Factor Analysis. Inorganic Chemistry 2008, 47 (2) , 656-662. https://doi.org/10.1021/ic700553d
    23. Raghavendra Kikkeri, Hassan Traboulsi, Nicolas Humbert, Elzbieta Gumienna-Kontecka, Rina Arad-Yellin, Galina Melman, Mourad Elhabiri, Anne-Marie Albrecht-Gary, Abraham Shanzer. Toward Iron Sensors:  Bioinspired Tripods Based on Fluorescent Phenol-oxazoline Coordination Sites. Inorganic Chemistry 2007, 46 (7) , 2485-2497. https://doi.org/10.1021/ic061952u
    24. Valerio B. Di Marco, G. Giorgio Bombi. Electrospray mass spectrometry (ESI‐MS) in the study of metal–ligand solution equilibria. Mass Spectrometry Reviews 2006, 25 (3) , 347-379. https://doi.org/10.1002/mas.20070
    25. Markus Albrecht, Sabrina Dehn, Roland Fröhlich. A Nonanuclear Gallium( III ) Cluster: An Intermediate in the Formation of Dinuclear Triple‐Stranded Helicates?. Angewandte Chemie International Edition 2006, 45 (17) , 2792-2794. https://doi.org/10.1002/anie.200600123
    26. Markus Albrecht, Sabrina Dehn, Roland Fröhlich. Die Struktur eines neunkernigen Gallium( III )‐hydroxid‐Clusters – eine Zwischenstufe bei der Bildung eines zweikernigen dreisträngigen Helicats?. Angewandte Chemie 2006, 118 (17) , 2858-2860. https://doi.org/10.1002/ange.200600123
    27. Sandrine Goetz, Paul E. Kruger. A new twist in anion binding: metallo-helicate hosts for anionic guests. Dalton Transactions 2006, 97 (10) , 1277. https://doi.org/10.1039/b514580e
    28. Jitendra K. Bera, John Bacsa, Kim R. Dunbar. Self‐Assembled Inorganic Architectures. 2005https://doi.org/10.1002/9781119951438.eibc0265
    29. Jitendra K. Bera, John Bacsa, Kim R. Dunbar. Self‐Assembled Inorganic Architectures. 2005https://doi.org/10.1002/0470862106.ia283
    30. Nicholas J. Blundell, John Burgess, Colin D. Hubbard. Solvation and reactivity of a helical binuclear iron(II) complex with a tetradentate Schiff-base ligand. Transition Metal Chemistry 2005, 30 (2) , 148-155. https://doi.org/10.1007/s11243-004-2235-8
    31. Mathias Düggeli, Tobias Christen, Alexander von Zelewsky. Protonation Behaviour of Chiral Tetradentate Polypyridines Derived from α‐Pinene. Chemistry – A European Journal 2005, 11 (1) , 185-194. https://doi.org/10.1002/chem.200400295
    32. Mourad Elhabiri, Josef Hamacek, Nicolas Humbert, Jean-Claude G. Bünzli, Anne-Marie Albrecht-Gary. Proton-assisted dissociation of a triple-stranded dinuclear europium helicate. New J. Chem. 2004, 28 (9) , 1096-1099. https://doi.org/10.1039/B405934D
    33. Mourad Elhabiri, Josef Hamacek, Jean‐Claude G. Bünzli, Anne‐Marie Albrecht‐Gary. Lanthanide Homobimetallic Triple‐Stranded Helicates: Insight into the Self‐Assembly Mechanism. European Journal of Inorganic Chemistry 2004, 2004 (1) , 51-62. https://doi.org/10.1002/ejic.200300549
    34. Takuya Yamamoto, Atta M. Arif, Peter J. Stang. Dynamic Equilibrium of a Supramolecular Dimeric Rhomboid and Trimeric Hexagon and Determination of Its Thermodynamic Constants. Journal of the American Chemical Society 2003, 125 (40) , 12309-12317. https://doi.org/10.1021/ja0302984
    35. Josef Hamacek, Sylvie Blanc, Mourad Elhabiri, Emmanuelle Leize, Alain Van Dorsselaer, Claude Piguet, Anne-Marie Albrecht-Gary. Self-Assembly Mechanism of a Bimetallic Europium Triple-Stranded Helicate. Journal of the American Chemical Society 2003, 125 (6) , 1541-1550. https://doi.org/10.1021/ja028861q
    36. C. Pettinari, F. Marchetti, A. Drozdov. Higher Denticity Ligands. 2003, 211-251. https://doi.org/10.1016/B0-08-043748-6/01062-8
    37. M.V. Twigg, J. Burgess. Iron. 2003, 403-553. https://doi.org/10.1016/B0-08-043748-6/04208-0
    38. R.M. Yeh, A.V. Davis, K.N. Raymond. Supramolecular Systems: Self-assembly. 2003, 327-355. https://doi.org/10.1016/B0-08-043748-6/06194-6
    39. JOHN BURGESS, COLIN D. HUBBARD. LIGAND SUBSTITUTION REACTIONS. 2003, 71-155. https://doi.org/10.1016/S0898-8838(03)54002-8
    40. Anna V. Davis, Robert M. Yeh, Kenneth N. Raymond. Supramolecular assembly dynamics. Proceedings of the National Academy of Sciences 2002, 99 (8) , 4793-4796. https://doi.org/10.1073/pnas.052018299
    41. Guido D Frey, Zöe R Bell, John C Jeffery, Michael D Ward. Complexes of ruthenium(III) and chromium(III) with a new tetradentate N2O2-donor ligand: crystal structures, redox properties and spectroelectrochemistry. Polyhedron 2001, 20 (26-27) , 3231-3237. https://doi.org/10.1016/S0277-5387(01)00938-X

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2000, 39, 25, 5771–5778
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ic000229f
    Published November 15, 2000
    Copyright © 2000 American Chemical Society

    Article Views

    552

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.