ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Synthesis and Structural Characterization of Double Metal Cyanides of Iron and Zinc:  Catalyst Precursors for the Copolymerization of Carbon Dioxide and Epoxides

View Author Information
Department of Chemistry, Texas A&M University, College Station, Texas 77843
Cite this: Inorg. Chem. 2003, 42, 24, 7809–7818
Publication Date (Web):November 1, 2003
https://doi.org/10.1021/ic0347900
Copyright © 2003 American Chemical Society

    Article Views

    1581

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (282 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Several synthetic approaches for the preparation of double metal cyanide (DMC) derivatives of iron(II) and zinc(II) are described. These include (1) metathesis reactions of ZnCl2 or ZnI2 with KCpFe(CN)2CO in aqueous solution, (2) reactions of KCpFe(CN)2CO and its phosphine-substituted analogues with Zn(CH3CN)4(BF4)2 and subsequent displacement of acetonitrile at the zinc centers by the addition of a neutral (phosphine) or anionic (phenoxide) ligand, and (3) reactions of the protonated HCpFe(CN)2(phosphine) complexes with Zn(N(SiMe3)2)2, followed by the addition of phenols. All structures are based on a diamond-shaped planar arrangement of the Fe2(CN)4Zn2 core with various appended ligands at the metal sites. Although attempts to replace the iodide ligands in [CpFe(μ-CN)2PPh3ZnI(THF)]2 with acetate using silver acetate failed, two novel cationic mixed-metal cyanide salts based on the [CpFe(PPh3)(μ-CN)2Zn(NC5H5)]22+ framework were isolated from pyridine solution and their structures were defined by X-ray crystallography. The anionic ligand bound to zinc in these derivatives, which serve as an anionic polymerization initiator, was shown to be central to the catalytic copolymerization reaction of CO2/epoxide to provide polycarbonates and cyclic carbonates. The structurally stabilized phosphine-strapped complexes [CpFe(μ-CN)2Zn(X)THF]2(μ-dppp), where X = I or phenolate, were shown to be thermally stable under the conditions (80 °C) of the copolymerization reaction by in situ infrared spectroscopy. Both of these derivatives were proposed to serve as mimics for the heterogeneous DMC catalysts in the patent literature, with the derivative where the initiator is a phenolate being more active for the production of polycarbonates.

    *

     To whom correspondence should be addressed. E-mail: [email protected]. Fax:  (979) 845-0158.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Complete details of the X-ray diffraction study of complexes 8, 10a,b, and 11 (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 55 publications.

    1. Hiroki Asaba, Takanori Iwasaki, Masahiro Hatazawa, Jingyuan Deng, Haruki Nagae, Kazushi Mashima, Kyoko Nozaki. Alternating Copolymerization of CO2 and Cyclohexene Oxide Catalyzed by Cobalt–Lanthanide Mixed Multinuclear Complexes. Inorganic Chemistry 2020, 59 (12) , 7928-7933. https://doi.org/10.1021/acs.inorgchem.0c01156
    2. Xing-Hong Zhang, Ren-Jian Wei, Ying−Ying Zhang, Bin-Yang Du, and Zhi-Qiang Fan . Carbon Dioxide/Epoxide Copolymerization via a Nanosized Zinc–Cobalt(III) Double Metal Cyanide Complex: Substituent Effects of Epoxides on Polycarbonate Selectivity, Regioselectivity and Glass Transition Temperatures. Macromolecules 2015, 48 (3) , 536-544. https://doi.org/10.1021/ma5023742
    3. Donald J. Darensbourg, Stephanie J. Wilson, and Andrew D. Yeung . Oxygen/Sulfur Scrambling During the Copolymerization of Cyclopentene Oxide and Carbon Disulfide: Selectivity for Copolymer vs Cyclic [Thio]carbonates. Macromolecules 2013, 46 (20) , 8102-8110. https://doi.org/10.1021/ma4015438
    4. Koji Nakano, Kazuki Kobayashi, Takahiro Ohkawara, Hideyuki Imoto, and Kyoko Nozaki . Copolymerization of Epoxides with Carbon Dioxide Catalyzed by Iron–Corrole Complexes: Synthesis of a Crystalline Copolymer. Journal of the American Chemical Society 2013, 135 (23) , 8456-8459. https://doi.org/10.1021/ja4028633
    5. Kiyoshi Nishioka, Hidetoshi Goto, and Hiroshi Sugimoto . Dual Catalyst System for Asymmetric Alternating Copolymerization of Carbon Dioxide and Cyclohexene Oxide with Chiral Aluminum Complexes: Lewis Base as Catalyst Activator and Lewis Acid as Monomer Activator. Macromolecules 2012, 45 (20) , 8172-8192. https://doi.org/10.1021/ma301696d
    6. Payal Tyagi, Devender Singh, Neeti Malik, Sumit Kumar, Rajender Singh Malik. Metal catalyst for CO2 capture and conversion into cyclic carbonate: Progress and challenges. Materials Today 2023, 65 , 133-165. https://doi.org/10.1016/j.mattod.2023.02.029
    7. Frances N. Singer, Antoine Buchard. Mechanisms in Heterobimetallic Reactivity. 2022, 133-199. https://doi.org/10.1002/9781119448877.ch4
    8. Charles W. Machan. Introduction to the Organometallic Chemistry of Carbon Dioxide. 2022, 474-501. https://doi.org/10.1016/B978-0-12-820206-7.00063-9
    9. Francesca Milocco, Giulia Chiarioni, Paolo P. Pescarmona. Heterogeneous catalysts for the conversion of CO2 into cyclic and polymeric carbonates. 2022, 151-187. https://doi.org/10.1016/bs.acat.2022.07.001
    10. Lea Grefe, Esteban Mejía. Earth-abundant bimetallic and multimetallic catalysts for Epoxide/CO2 ring-opening copolymerization. Tetrahedron 2021, 98 , 132433. https://doi.org/10.1016/j.tet.2021.132433
    11. Kori A. Andrea, Francesca M. Kerton. Iron-catalyzed reactions of CO2 and epoxides to yield cyclic and polycarbonates. Polymer Journal 2021, 53 (1) , 29-46. https://doi.org/10.1038/s41428-020-00395-6
    12. Christophe Fliedel, Samuel Dagorne, Erwan Le Roux. Metal Complexes as Catalysts/Moderators for Polymerization Reactions. 2021, 410-464. https://doi.org/10.1016/B978-0-08-102688-5.00089-1
    13. R.B. Lincoln. DMC catalysts. 2020https://doi.org/10.1002/9783527809080.cataz05651
    14. Sjoerd Harder. Polymerization of Alkenes and Polar Monomers by Early Main Group Metal Complexes. 2020, 31-57. https://doi.org/10.1002/9783527818020.ch2
    15. Tan-Lai Yu, Yan-Mei Guo, Guo-Xing Wu, Xu-Feng Yang, Mei Xue, Yun-Long Fu, Ming-Sheng Wang. Recent progress of d10 iodoargentate(I)/iodocuprate(I) hybrids: Structural diversity, directed synthesis, and photochromic/thermochromic properties. Coordination Chemistry Reviews 2019, 397 , 91-111. https://doi.org/10.1016/j.ccr.2019.06.006
    16. Francesco Della Monica, Antonio Buonerba, Carmine Capacchione. Homogeneous Iron Catalysts in the Reaction of Epoxides with Carbon Dioxide. Advanced Synthesis & Catalysis 2019, 361 (2) , 265-282. https://doi.org/10.1002/adsc.201801281
    17. Yusheng Qin, Xianhong Wang. Conversion of CO2 into Polymers. 2019, 323-347. https://doi.org/10.1007/978-1-4939-9060-3_1013
    18. Haruki Nagae, Ryota Aoki, Shin‐nosuke Akutagawa, Julian Kleemann, Risa Tagawa, Tobias Schindler, Gyeongshin Choi, Thomas P. Spaniol, Hayato Tsurugi, Jun Okuda, Kazushi Mashima. Lanthanoidkomplexe mit Trizink‐Kronenether als Katalysatoren für die alternierende Copolymerisation von Epoxid und CO 2 : eine durch Carboxylat‐Anionen kontrollierte Telomerisierung. Angewandte Chemie 2018, 130 (9) , 2518-2522. https://doi.org/10.1002/ange.201709218
    19. Haruki Nagae, Ryota Aoki, Shin‐nosuke Akutagawa, Julian Kleemann, Risa Tagawa, Tobias Schindler, Gyeongshin Choi, Thomas P. Spaniol, Hayato Tsurugi, Jun Okuda, Kazushi Mashima. Lanthanide Complexes Supported by a Trizinc Crown Ether as Catalysts for Alternating Copolymerization of Epoxide and CO 2 : Telomerization Controlled by Carboxylate Anions. Angewandte Chemie International Edition 2018, 57 (9) , 2492-2496. https://doi.org/10.1002/anie.201709218
    20. Yusheng Qin, Xianhong Wang. Conversion of CO2 into Polymers. 2018, 1-25. https://doi.org/10.1007/978-1-4939-2493-6_1013-1
    21. Ying‐Ying Zhang, Xing‐Hong Zhang. Copolymerization of C1 Building Blocks with Epoxides. 2017, 279-313. https://doi.org/10.1002/9783527340200.ch12
    22. Qingyang Meng, Ruihua Cheng, Jiajia Li, Tingting Wang, Boping Liu. Copolymerization of CO2 and propylene oxide using ZnGA/DMC composite catalyst for high molecular weight poly(propylene carbonate). Journal of CO2 Utilization 2016, 16 , 86-96. https://doi.org/10.1016/j.jcou.2016.06.011
    23. Swarup Ghosh, P.K.S. Antharjanam, Debashis Chakraborty. Magnesium complexes of the N, O polydentate scaffold: Synthesis, structural characterization and polymerization studies. Polymer 2015, 70 , 38-51. https://doi.org/10.1016/j.polymer.2015.06.001
    24. Charles Romain, Arnaud Thevenon, Prabhjot K. Saini, Charlotte K. Williams. Dinuclear Metal Complex-Mediated Formation of CO2-Based Polycarbonates. 2015, 101-141. https://doi.org/10.1007/3418_2015_95
    25. Qiu-Yan Chen, Xian Cheng, Tao Wang, Zi-Hao Yu, Chong Zhang, Shu-Kun Lin, Hao-Hong Li, Zhi-Rong Chen. A Low-dimensional Viologen/Iodoargentate Hybrid [(BV) 2 ­(Ag 5 I 9 )] n : Structure, Properties, and Theoretical Study. Zeitschrift für anorganische und allgemeine Chemie 2014, 640 (2) , 439-443. https://doi.org/10.1002/zaac.201300257
    26. P. K. Saini, C. Romain, C. K. Williams. Dinuclear metal catalysts: improved performance of heterodinuclear mixed catalysts for CO 2 –epoxide copolymerization. Chem. Commun. 2014, 50 (32) , 4164-4167. https://doi.org/10.1039/C3CC49158G
    27. Jobi Kodiyan Varghese, Dong Sik Park, Jong Yeob Jeon, Bun Yeoul Lee. Double metal cyanide catalyst prepared using H 3 Co(CN) 6 for high carbonate fraction and molecular weight control in carbon dioxide/propylene oxide copolymerization. Journal of Polymer Science Part A: Polymer Chemistry 2013, 51 (22) , 4811-4818. https://doi.org/10.1002/pola.26905
    28. Matthew D. Jones. Carbon Dioxide in the Manufacture of Plastics. 2012, 482-502. https://doi.org/10.1039/BK9781849734073-00482
    29. Yonggang Gao, Yusheng Qin, Xiaojiang Zhao, Fosong Wang, Xianhong Wang. Selective synthesis of oligo(carbonate-ether) diols from copolymerization of CO2 and propylene oxide under zinc-cobalt double metal cyanide complex. Journal of Polymer Research 2012, 19 (5) https://doi.org/10.1007/s10965-012-9878-5
    30. Zhen‐Zhen Yang, Liang‐Nian He, An‐Hua Liu, Yu‐Nong Li. Catalytic Fixation of Carbon Dioxide Into Fuel and Chemicals. 2012, 1-27. https://doi.org/10.1002/0471238961.catahe.a01
    31. Siou-Wei Ou, Wei-Yi Lu, Hsuan-Ying Chen. Tris(1,2-dimethoxyethane-κ 2 O , O ′)iodidocalcium iodide. Acta Crystallographica Section E Structure Reports Online 2012, 68 (2) , m172-m172. https://doi.org/10.1107/S160053681200075X
    32. Jobi Kodiyan Varghese, Anish Cyriac, Bun Yeoul Lee. Incorporation of ether linkage in CO2/propylene oxide copolymerization by dual catalysis. Polyhedron 2012, 32 (1) , 90-95. https://doi.org/10.1016/j.poly.2011.05.022
    33. Donald J. Darensbourg, Stephanie J. Wilson. What's new with CO2? Recent advances in its copolymerization with oxiranes. Green Chemistry 2012, 14 (10) , 2665. https://doi.org/10.1039/c2gc35928f
    34. Zhifeng Li, Yusheng Qin, Xiaojiang Zhao, Fosong Wang, Suobo Zhang, Xianhong Wang. Synthesis and stabilization of high-molecular-weight poly(propylene carbonate) from ZnCo-based double metal cyanide catalyst. European Polymer Journal 2011, 47 (11) , 2152-2157. https://doi.org/10.1016/j.eurpolymj.2011.08.004
    35. Graham N. Newton, Masayuki Nihei, Hiroki Oshio. Cyanide‐Bridged Molecular Squares – The Building Units of Prussian Blue. European Journal of Inorganic Chemistry 2011, 2011 (20) , 3031-3042. https://doi.org/10.1002/ejic.201100407
    36. Antoine Buchard, Michael R. Kember, Karl G. Sandeman, Charlotte K. Williams. A bimetallic iron( iii ) catalyst for CO 2 /epoxide coupling. Chem. Commun. 2011, 47 (1) , 212-214. https://doi.org/10.1039/C0CC02205E
    37. Michael R. Kember, Antoine Buchard, Charlotte K. Williams. Catalysts for CO 2 /epoxide copolymerisation. Chem. Commun. 2011, 47 (1) , 141-163. https://doi.org/10.1039/C0CC02207A
    38. Yusheng Qin, Xianhong Wang. Carbon dioxide‐based copolymers: Environmental benefits of PPC, an industrially viable catalyst. Biotechnology Journal 2010, 5 (11) , 1164-1180. https://doi.org/10.1002/biot.201000134
    39. Duan Jintang, Wang Jiajun, Feng Lianfang, Wang Long, Gu Xueping. Pressure dependence of the CO 2 /propylene oxide copolymerization catalyzed by zinc glutarate. Journal of Applied Polymer Science 2010, 118 (1) , 366-371. https://doi.org/10.1002/app.32399
    40. Qilong Zhao, Xiao-Juan Yang, Chuandong Jia, Biao Wu. Three hydrogen-bonded nanotubular zinc(II) complexes of N-(9-anthracenyl)-N′-(4-pyridyl)-urea. Inorganic Chemistry Communications 2010, 13 (7) , 873-877. https://doi.org/10.1016/j.inoche.2010.04.018
    41. Matthew D. Jones. Heterogeneous Initiators for Sustainable Polymerization Processes. 2010, 385-412. https://doi.org/10.1007/978-90-481-3696-4_11
    42. Manju Mamparambath Dharman, Jeong-In Yu, Ji-Yeon Ahn, Dae-Won Park. Selective production of cyclic carbonate over polycarbonate using a double metal cyanide–quaternary ammonium salt catalyst system. Green Chemistry 2009, 11 (11) , 1754. https://doi.org/10.1039/b916875n
    43. Xue-Ke Sun, Xing-Hong Zhang, Fei Liu, Shang Chen, Bin-Yang Du, Qi Wang, Zhi-Qiang Fan, Guo-Rong Qi. Alternating copolymerization of carbon dioxide and cyclohexene oxide catalyzed by silicon dioxide/ZnCoIII double metal cyanide complex hybrid catalysts with a nanolamellar structure. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46 (9) , 3128-3139. https://doi.org/10.1002/pola.22666
    44. Xing-Hong Zhang, Zheng-Jiang Hua, Shang Chen, Fei Liu, Xue-Ke Sun, Guo-Rong Qi. Role of zinc chloride and complexing agents in highly active double metal cyanide catalysts for ring-opening polymerization of propylene oxide. Applied Catalysis A: General 2007, 325 (1) , 91-98. https://doi.org/10.1016/j.apcata.2007.03.014
    45. L. J. Gao, M. Xiao, S. J. Wang, F. G. Du, Y. Z. Meng. Copolymerization of carbon dioxide and propylene oxide with zinc glutarate as catalyst in the presence of compounds containing active hydrogen. Journal of Applied Polymer Science 2007, 104 (1) , 15-20. https://doi.org/10.1002/app.25587
    46. Dongxian Wang, Guangjin Zhang, Yongcheng Zhang, Yongjian Gao, Yuhua Zhao, Changyue Zhou, Qingyun Zhang, Xinkui Wang. Synthesis, characterization, and properties of novel polyetherester polyols and developed polyurethanes. Journal of Applied Polymer Science 2007, 103 (1) , 417-424. https://doi.org/10.1002/app.24871
    47. Nicholas J. Robertson, Zengquan Qin, Gregory C. Dallinger, Emil B. Lobkovsky, Stephen Lee, Geoffrey W. Coates. Two-dimensional double metal cyanide complexes: highly active catalysts for the homopolymerization of propylene oxide and copolymerization of propylene oxide and carbon dioxide. Dalton Transactions 2006, 181 (45) , 5390. https://doi.org/10.1039/b607963f
    48. Thomas C. W. Mak, Xiao‐Li Zhao. Silver: Inorganic & Coordination ChemistryBased in part on the article Silver: Inorganic & Coordination Chemistry by W. Ewen Smith which appeared in the Encyclopedia of Inorganic Chemistry, First Edition .. 2005https://doi.org/10.1002/9781119951438.eibc0205
    49. Thomas C. W. Mak, Xiao‐Li Zhao. Silver: Inorganic & Coordination ChemistryBased in part on the article Silver: Inorganic & Coordination Chemistry by W. Ewen Smith which appeared in the Encyclopedia of Inorganic Chemistry, First Edition .. 2005https://doi.org/10.1002/0470862106.ia221
    50. Donald J. Darensbourg, Way-Zen Lee, Andrea L. Phelps. The synthesis and characterization of iron cyanide building blocks: [K]2[CpFe(CN)3] and its pentamethylcyclopentadienyl (Cp*) analog. Inorganica Chimica Acta 2005, 358 (13) , 4095-4098. https://doi.org/10.1016/j.ica.2005.06.027
    51. Geoffrey W. Coates, David R. Moore. Diskrete Metallkatalysatoren zur Copolymerisation von CO2 mit Epoxiden: Entdeckung, Reaktivität, Optimierung, Mechanismus. Angewandte Chemie 2004, 116 (48) , 6784-6806. https://doi.org/10.1002/ange.200460442
    52. Geoffrey W. Coates, David R. Moore. Discrete Metal-Based Catalysts for the Copolymerization of CO2 and Epoxides: Discovery, Reactivity, Optimization, and Mechanism. Angewandte Chemie International Edition 2004, 43 (48) , 6618-6639. https://doi.org/10.1002/anie.200460442
    53. Shang Chen, Guo-Rong Qi, Zheng-Jiang Hua, Hong-Qiang Yan. Double metal cyanide complex based on Zn3[Co(CN)6]2 as highly active catalyst for copolymerization of carbon dioxide and cyclohexene oxide. Journal of Polymer Science Part A: Polymer Chemistry 2004, 42 (20) , 5284-5291. https://doi.org/10.1002/pola.20334
    54. Shang Chen, Zhengjiang Hua, Zhuo Fang, Guorong Qi. Copolymerization of carbon dioxide and propylene oxide with highly effective zinc hexacyanocobaltate(III)-based coordination catalyst. Polymer 2004, 45 (19) , 6519-6524. https://doi.org/10.1016/j.polymer.2004.07.044
    55. Donald.J. Darensbourg, Andrea L. Phelps. Mixed metal cyanide complexes derived from the CpCo(CN)3− anion. Inorganica Chimica Acta 2004, 357 (5) , 1603-1607. https://doi.org/10.1016/j.ica.2003.11.016

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect