Synthesis and Structural Characterization of Double Metal Cyanides of Iron and Zinc: Catalyst Precursors for the Copolymerization of Carbon Dioxide and Epoxides
Abstract

Several synthetic approaches for the preparation of double metal cyanide (DMC) derivatives of iron(II) and zinc(II) are described. These include (1) metathesis reactions of ZnCl2 or ZnI2 with KCpFe(CN)2CO in aqueous solution, (2) reactions of KCpFe(CN)2CO and its phosphine-substituted analogues with Zn(CH3CN)4(BF4)2 and subsequent displacement of acetonitrile at the zinc centers by the addition of a neutral (phosphine) or anionic (phenoxide) ligand, and (3) reactions of the protonated HCpFe(CN)2(phosphine) complexes with Zn(N(SiMe3)2)2, followed by the addition of phenols. All structures are based on a diamond-shaped planar arrangement of the Fe2(CN)4Zn2 core with various appended ligands at the metal sites. Although attempts to replace the iodide ligands in [CpFe(μ-CN)2PPh3ZnI(THF)]2 with acetate using silver acetate failed, two novel cationic mixed-metal cyanide salts based on the [CpFe(PPh3)(μ-CN)2Zn(NC5H5)]22+ framework were isolated from pyridine solution and their structures were defined by X-ray crystallography. The anionic ligand bound to zinc in these derivatives, which serve as an anionic polymerization initiator, was shown to be central to the catalytic copolymerization reaction of CO2/epoxide to provide polycarbonates and cyclic carbonates. The structurally stabilized phosphine-strapped complexes [CpFe(μ-CN)2Zn(X)THF]2(μ-dppp), where X = I or phenolate, were shown to be thermally stable under the conditions (80 °C) of the copolymerization reaction by in situ infrared spectroscopy. Both of these derivatives were proposed to serve as mimics for the heterogeneous DMC catalysts in the patent literature, with the derivative where the initiator is a phenolate being more active for the production of polycarbonates.
*
To whom correspondence should be addressed. E-mail: [email protected]. Fax: (979) 845-0158.
Cited By
This article is cited by 55 publications.
- Hiroki Asaba, Takanori Iwasaki, Masahiro Hatazawa, Jingyuan Deng, Haruki Nagae, Kazushi Mashima, Kyoko Nozaki. Alternating Copolymerization of CO2 and Cyclohexene Oxide Catalyzed by Cobalt–Lanthanide Mixed Multinuclear Complexes. Inorganic Chemistry 2020, 59 (12) , 7928-7933. https://doi.org/10.1021/acs.inorgchem.0c01156
- Xing-Hong Zhang, Ren-Jian Wei, Ying−Ying Zhang, Bin-Yang Du, and Zhi-Qiang Fan . Carbon Dioxide/Epoxide Copolymerization via a Nanosized Zinc–Cobalt(III) Double Metal Cyanide Complex: Substituent Effects of Epoxides on Polycarbonate Selectivity, Regioselectivity and Glass Transition Temperatures. Macromolecules 2015, 48 (3) , 536-544. https://doi.org/10.1021/ma5023742
- Donald J. Darensbourg, Stephanie J. Wilson, and Andrew D. Yeung . Oxygen/Sulfur Scrambling During the Copolymerization of Cyclopentene Oxide and Carbon Disulfide: Selectivity for Copolymer vs Cyclic [Thio]carbonates. Macromolecules 2013, 46 (20) , 8102-8110. https://doi.org/10.1021/ma4015438
- Koji Nakano, Kazuki Kobayashi, Takahiro Ohkawara, Hideyuki Imoto, and Kyoko Nozaki . Copolymerization of Epoxides with Carbon Dioxide Catalyzed by Iron–Corrole Complexes: Synthesis of a Crystalline Copolymer. Journal of the American Chemical Society 2013, 135 (23) , 8456-8459. https://doi.org/10.1021/ja4028633
- Kiyoshi Nishioka, Hidetoshi Goto, and Hiroshi Sugimoto . Dual Catalyst System for Asymmetric Alternating Copolymerization of Carbon Dioxide and Cyclohexene Oxide with Chiral Aluminum Complexes: Lewis Base as Catalyst Activator and Lewis Acid as Monomer Activator. Macromolecules 2012, 45 (20) , 8172-8192. https://doi.org/10.1021/ma301696d
- Payal Tyagi, Devender Singh, Neeti Malik, Sumit Kumar, Rajender Singh Malik. Metal catalyst for CO2 capture and conversion into cyclic carbonate: Progress and challenges. Materials Today 2023, 65 , 133-165. https://doi.org/10.1016/j.mattod.2023.02.029
- Frances N. Singer, Antoine Buchard. Mechanisms in Heterobimetallic Reactivity. 2022, 133-199. https://doi.org/10.1002/9781119448877.ch4
- Charles W. Machan. Introduction to the Organometallic Chemistry of Carbon Dioxide. 2022, 474-501. https://doi.org/10.1016/B978-0-12-820206-7.00063-9
- Francesca Milocco, Giulia Chiarioni, Paolo P. Pescarmona. Heterogeneous catalysts for the conversion of CO2 into cyclic and polymeric carbonates. 2022, 151-187. https://doi.org/10.1016/bs.acat.2022.07.001
- Lea Grefe, Esteban Mejía. Earth-abundant bimetallic and multimetallic catalysts for Epoxide/CO2 ring-opening copolymerization. Tetrahedron 2021, 98 , 132433. https://doi.org/10.1016/j.tet.2021.132433
- Kori A. Andrea, Francesca M. Kerton. Iron-catalyzed reactions of CO2 and epoxides to yield cyclic and polycarbonates. Polymer Journal 2021, 53 (1) , 29-46. https://doi.org/10.1038/s41428-020-00395-6
- Christophe Fliedel, Samuel Dagorne, Erwan Le Roux. Metal Complexes as Catalysts/Moderators for Polymerization Reactions. 2021, 410-464. https://doi.org/10.1016/B978-0-08-102688-5.00089-1
- R.B. Lincoln. DMC catalysts. 2020https://doi.org/10.1002/9783527809080.cataz05651
- Sjoerd Harder. Polymerization of Alkenes and Polar Monomers by Early Main Group Metal Complexes. 2020, 31-57. https://doi.org/10.1002/9783527818020.ch2
- Tan-Lai Yu, Yan-Mei Guo, Guo-Xing Wu, Xu-Feng Yang, Mei Xue, Yun-Long Fu, Ming-Sheng Wang. Recent progress of d10 iodoargentate(I)/iodocuprate(I) hybrids: Structural diversity, directed synthesis, and photochromic/thermochromic properties. Coordination Chemistry Reviews 2019, 397 , 91-111. https://doi.org/10.1016/j.ccr.2019.06.006
- Francesco Della Monica, Antonio Buonerba, Carmine Capacchione. Homogeneous Iron Catalysts in the Reaction of Epoxides with Carbon Dioxide. Advanced Synthesis & Catalysis 2019, 361 (2) , 265-282. https://doi.org/10.1002/adsc.201801281
- Yusheng Qin, Xianhong Wang. Conversion of CO2 into Polymers. 2019, 323-347. https://doi.org/10.1007/978-1-4939-9060-3_1013
- Haruki Nagae, Ryota Aoki, Shin‐nosuke Akutagawa, Julian Kleemann, Risa Tagawa, Tobias Schindler, Gyeongshin Choi, Thomas P. Spaniol, Hayato Tsurugi, Jun Okuda, Kazushi Mashima. Lanthanoidkomplexe mit Trizink‐Kronenether als Katalysatoren für die alternierende Copolymerisation von Epoxid und CO 2 : eine durch Carboxylat‐Anionen kontrollierte Telomerisierung. Angewandte Chemie 2018, 130 (9) , 2518-2522. https://doi.org/10.1002/ange.201709218
- Haruki Nagae, Ryota Aoki, Shin‐nosuke Akutagawa, Julian Kleemann, Risa Tagawa, Tobias Schindler, Gyeongshin Choi, Thomas P. Spaniol, Hayato Tsurugi, Jun Okuda, Kazushi Mashima. Lanthanide Complexes Supported by a Trizinc Crown Ether as Catalysts for Alternating Copolymerization of Epoxide and CO 2 : Telomerization Controlled by Carboxylate Anions. Angewandte Chemie International Edition 2018, 57 (9) , 2492-2496. https://doi.org/10.1002/anie.201709218
- Yusheng Qin, Xianhong Wang. Conversion of CO2 into Polymers. 2018, 1-25. https://doi.org/10.1007/978-1-4939-2493-6_1013-1
- Ying‐Ying Zhang, Xing‐Hong Zhang. Copolymerization of C1 Building Blocks with Epoxides. 2017, 279-313. https://doi.org/10.1002/9783527340200.ch12
- Qingyang Meng, Ruihua Cheng, Jiajia Li, Tingting Wang, Boping Liu. Copolymerization of CO2 and propylene oxide using ZnGA/DMC composite catalyst for high molecular weight poly(propylene carbonate). Journal of CO2 Utilization 2016, 16 , 86-96. https://doi.org/10.1016/j.jcou.2016.06.011
- Swarup Ghosh, P.K.S. Antharjanam, Debashis Chakraborty. Magnesium complexes of the N, O polydentate scaffold: Synthesis, structural characterization and polymerization studies. Polymer 2015, 70 , 38-51. https://doi.org/10.1016/j.polymer.2015.06.001
- Charles Romain, Arnaud Thevenon, Prabhjot K. Saini, Charlotte K. Williams. Dinuclear Metal Complex-Mediated Formation of CO2-Based Polycarbonates. 2015, 101-141. https://doi.org/10.1007/3418_2015_95
- Qiu-Yan Chen, Xian Cheng, Tao Wang, Zi-Hao Yu, Chong Zhang, Shu-Kun Lin, Hao-Hong Li, Zhi-Rong Chen. A Low-dimensional Viologen/Iodoargentate Hybrid [(BV) 2 (Ag 5 I 9 )] n : Structure, Properties, and Theoretical Study. Zeitschrift für anorganische und allgemeine Chemie 2014, 640 (2) , 439-443. https://doi.org/10.1002/zaac.201300257
- P. K. Saini, C. Romain, C. K. Williams. Dinuclear metal catalysts: improved performance of heterodinuclear mixed catalysts for CO 2 –epoxide copolymerization. Chem. Commun. 2014, 50 (32) , 4164-4167. https://doi.org/10.1039/C3CC49158G
- Jobi Kodiyan Varghese, Dong Sik Park, Jong Yeob Jeon, Bun Yeoul Lee. Double metal cyanide catalyst prepared using H 3 Co(CN) 6 for high carbonate fraction and molecular weight control in carbon dioxide/propylene oxide copolymerization. Journal of Polymer Science Part A: Polymer Chemistry 2013, 51 (22) , 4811-4818. https://doi.org/10.1002/pola.26905
- Matthew D. Jones. Carbon Dioxide in the Manufacture of Plastics. 2012, 482-502. https://doi.org/10.1039/BK9781849734073-00482
- Yonggang Gao, Yusheng Qin, Xiaojiang Zhao, Fosong Wang, Xianhong Wang. Selective synthesis of oligo(carbonate-ether) diols from copolymerization of CO2 and propylene oxide under zinc-cobalt double metal cyanide complex. Journal of Polymer Research 2012, 19 (5) https://doi.org/10.1007/s10965-012-9878-5
- Zhen‐Zhen Yang, Liang‐Nian He, An‐Hua Liu, Yu‐Nong Li. Catalytic Fixation of Carbon Dioxide Into Fuel and Chemicals. 2012, 1-27. https://doi.org/10.1002/0471238961.catahe.a01
- Siou-Wei Ou, Wei-Yi Lu, Hsuan-Ying Chen. Tris(1,2-dimethoxyethane-κ 2 O , O ′)iodidocalcium iodide. Acta Crystallographica Section E Structure Reports Online 2012, 68 (2) , m172-m172. https://doi.org/10.1107/S160053681200075X
- Jobi Kodiyan Varghese, Anish Cyriac, Bun Yeoul Lee. Incorporation of ether linkage in CO2/propylene oxide copolymerization by dual catalysis. Polyhedron 2012, 32 (1) , 90-95. https://doi.org/10.1016/j.poly.2011.05.022
- Donald J. Darensbourg, Stephanie J. Wilson. What's new with CO2? Recent advances in its copolymerization with oxiranes. Green Chemistry 2012, 14 (10) , 2665. https://doi.org/10.1039/c2gc35928f
- Zhifeng Li, Yusheng Qin, Xiaojiang Zhao, Fosong Wang, Suobo Zhang, Xianhong Wang. Synthesis and stabilization of high-molecular-weight poly(propylene carbonate) from ZnCo-based double metal cyanide catalyst. European Polymer Journal 2011, 47 (11) , 2152-2157. https://doi.org/10.1016/j.eurpolymj.2011.08.004
- Graham N. Newton, Masayuki Nihei, Hiroki Oshio. Cyanide‐Bridged Molecular Squares – The Building Units of Prussian Blue. European Journal of Inorganic Chemistry 2011, 2011 (20) , 3031-3042. https://doi.org/10.1002/ejic.201100407
- Antoine Buchard, Michael R. Kember, Karl G. Sandeman, Charlotte K. Williams. A bimetallic iron( iii ) catalyst for CO 2 /epoxide coupling. Chem. Commun. 2011, 47 (1) , 212-214. https://doi.org/10.1039/C0CC02205E
- Michael R. Kember, Antoine Buchard, Charlotte K. Williams. Catalysts for CO 2 /epoxide copolymerisation. Chem. Commun. 2011, 47 (1) , 141-163. https://doi.org/10.1039/C0CC02207A
- Yusheng Qin, Xianhong Wang. Carbon dioxide‐based copolymers: Environmental benefits of PPC, an industrially viable catalyst. Biotechnology Journal 2010, 5 (11) , 1164-1180. https://doi.org/10.1002/biot.201000134
- Duan Jintang, Wang Jiajun, Feng Lianfang, Wang Long, Gu Xueping. Pressure dependence of the CO 2 /propylene oxide copolymerization catalyzed by zinc glutarate. Journal of Applied Polymer Science 2010, 118 (1) , 366-371. https://doi.org/10.1002/app.32399
- Qilong Zhao, Xiao-Juan Yang, Chuandong Jia, Biao Wu. Three hydrogen-bonded nanotubular zinc(II) complexes of N-(9-anthracenyl)-N′-(4-pyridyl)-urea. Inorganic Chemistry Communications 2010, 13 (7) , 873-877. https://doi.org/10.1016/j.inoche.2010.04.018
- Matthew D. Jones. Heterogeneous Initiators for Sustainable Polymerization Processes. 2010, 385-412. https://doi.org/10.1007/978-90-481-3696-4_11
- Manju Mamparambath Dharman, Jeong-In Yu, Ji-Yeon Ahn, Dae-Won Park. Selective production of cyclic carbonate over polycarbonate using a double metal cyanide–quaternary ammonium salt catalyst system. Green Chemistry 2009, 11 (11) , 1754. https://doi.org/10.1039/b916875n
- Xue-Ke Sun, Xing-Hong Zhang, Fei Liu, Shang Chen, Bin-Yang Du, Qi Wang, Zhi-Qiang Fan, Guo-Rong Qi. Alternating copolymerization of carbon dioxide and cyclohexene oxide catalyzed by silicon dioxide/ZnCoIII double metal cyanide complex hybrid catalysts with a nanolamellar structure. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46 (9) , 3128-3139. https://doi.org/10.1002/pola.22666
- Xing-Hong Zhang, Zheng-Jiang Hua, Shang Chen, Fei Liu, Xue-Ke Sun, Guo-Rong Qi. Role of zinc chloride and complexing agents in highly active double metal cyanide catalysts for ring-opening polymerization of propylene oxide. Applied Catalysis A: General 2007, 325 (1) , 91-98. https://doi.org/10.1016/j.apcata.2007.03.014
- L. J. Gao, M. Xiao, S. J. Wang, F. G. Du, Y. Z. Meng. Copolymerization of carbon dioxide and propylene oxide with zinc glutarate as catalyst in the presence of compounds containing active hydrogen. Journal of Applied Polymer Science 2007, 104 (1) , 15-20. https://doi.org/10.1002/app.25587
- Dongxian Wang, Guangjin Zhang, Yongcheng Zhang, Yongjian Gao, Yuhua Zhao, Changyue Zhou, Qingyun Zhang, Xinkui Wang. Synthesis, characterization, and properties of novel polyetherester polyols and developed polyurethanes. Journal of Applied Polymer Science 2007, 103 (1) , 417-424. https://doi.org/10.1002/app.24871
- Nicholas J. Robertson, Zengquan Qin, Gregory C. Dallinger, Emil B. Lobkovsky, Stephen Lee, Geoffrey W. Coates. Two-dimensional double metal cyanide complexes: highly active catalysts for the homopolymerization of propylene oxide and copolymerization of propylene oxide and carbon dioxide. Dalton Transactions 2006, 181 (45) , 5390. https://doi.org/10.1039/b607963f
- Thomas C. W. Mak, Xiao‐Li Zhao. Silver: Inorganic & Coordination ChemistryBased in part on the article Silver: Inorganic & Coordination Chemistry by W. Ewen Smith which appeared in the Encyclopedia of Inorganic Chemistry, First Edition .. 2005https://doi.org/10.1002/9781119951438.eibc0205
- Thomas C. W. Mak, Xiao‐Li Zhao. Silver: Inorganic & Coordination ChemistryBased in part on the article Silver: Inorganic & Coordination Chemistry by W. Ewen Smith which appeared in the Encyclopedia of Inorganic Chemistry, First Edition .. 2005https://doi.org/10.1002/0470862106.ia221
- Donald J. Darensbourg, Way-Zen Lee, Andrea L. Phelps. The synthesis and characterization of iron cyanide building blocks: [K]2[CpFe(CN)3] and its pentamethylcyclopentadienyl (Cp*) analog. Inorganica Chimica Acta 2005, 358 (13) , 4095-4098. https://doi.org/10.1016/j.ica.2005.06.027
- Geoffrey W. Coates, David R. Moore. Diskrete Metallkatalysatoren zur Copolymerisation von CO2 mit Epoxiden: Entdeckung, Reaktivität, Optimierung, Mechanismus. Angewandte Chemie 2004, 116 (48) , 6784-6806. https://doi.org/10.1002/ange.200460442
- Geoffrey W. Coates, David R. Moore. Discrete Metal-Based Catalysts for the Copolymerization of CO2 and Epoxides: Discovery, Reactivity, Optimization, and Mechanism. Angewandte Chemie International Edition 2004, 43 (48) , 6618-6639. https://doi.org/10.1002/anie.200460442
- Shang Chen, Guo-Rong Qi, Zheng-Jiang Hua, Hong-Qiang Yan. Double metal cyanide complex based on Zn3[Co(CN)6]2 as highly active catalyst for copolymerization of carbon dioxide and cyclohexene oxide. Journal of Polymer Science Part A: Polymer Chemistry 2004, 42 (20) , 5284-5291. https://doi.org/10.1002/pola.20334
- Shang Chen, Zhengjiang Hua, Zhuo Fang, Guorong Qi. Copolymerization of carbon dioxide and propylene oxide with highly effective zinc hexacyanocobaltate(III)-based coordination catalyst. Polymer 2004, 45 (19) , 6519-6524. https://doi.org/10.1016/j.polymer.2004.07.044
- Donald.J. Darensbourg, Andrea L. Phelps. Mixed metal cyanide complexes derived from the CpCo(CN)3− anion. Inorganica Chimica Acta 2004, 357 (5) , 1603-1607. https://doi.org/10.1016/j.ica.2003.11.016