ACS Publications. Most Trusted. Most Cited. Most Read
Sulfido-Bridged Dinuclear Molybdenum−Copper Complexes Related to the Active Site of CO Dehydrogenase:  [(dithiolate)Mo(O)S2Cu(SAr)]2- (dithiolate = 1,2-S2C6H4, 1,2-S2C6H2-3,6-Cl2, 1,2-S2C2H4)
My Activity
    Article

    Sulfido-Bridged Dinuclear Molybdenum−Copper Complexes Related to the Active Site of CO Dehydrogenase:  [(dithiolate)Mo(O)S2Cu(SAr)]2- (dithiolate = 1,2-S2C6H4, 1,2-S2C6H2-3,6-Cl2, 1,2-S2C2H4)
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, Graduate School of Science and Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
    Other Access OptionsSupporting Information (2)

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2005, 44, 17, 6034–6043
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ic050294v
    Published July 29, 2005
    Copyright © 2005 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The [MoCu] carbon monoxide dehydrogenase (CODH) is a Cu-containing molybdo-flavoprotein, the active site of which contains a pterin-dithiolene cofactor bound to a sulfido-bridged dinuclear Mo−Cu complex. In this paper, the synthesis and characterization of dinuclear Mo−Cu complexes relevant to the active site of [MoCu]-CODH are described. Reaction of [MoO2S2]2- with CuCN affords the dinuclear complex [O2MoS2Cu(CN)]2- (1), in which the CN- ligand can be replaced with various aryl thiolates to give rise to a series of dinuclear complexes [O2MoS2Cu(SAr)]2- (Ar = Ph (2), o-Tol (3), and p-Tol (4)). An alternative synthesis of complex 2 is the reaction of [MoO2S2]2- with [Cu(SPh)3]2-. Similarly, [O2MoS2Cu(PPh3)]- (5), [O2MoS2Cu(dppe)]- (dppe = 1,2-bis(diphenylphosphino)ethane) (6), and [O2MoS2Cu(triphos)]- (triphos = 1,1,1-tris[(diphenylphosphino)methyl]ethane) (7) were prepared from the reactions of [MoO2S2]2- with the Cu(I) phosphine complexes. Treatment of 1, 2, 4, or 5 with dithiols (1,2-(SH)2C6H4, 1,2-(SH)2C6H2-3,6-Cl2, and 1,2-(SH)2C2H4), in acetonitrile, leads to the replacement of a molybdenum-bound oxo ligand to yield [(dithiolate)Mo(O)S2CuL]2- (L = CN, SAr; dithiolate = 1,2-S2C6H4, 1,2-S2C6H2-3,6-Cl2, or 1,2-S2C2H4) (813) or [(1,2-S2C6H4)Mo(O)S2Cu(PPh3)]- (14) complexes.

    Copyright © 2005 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     To whom corresponce should be addressed. E-mail:  i45100a@ nucc.cc.nagoya-u.ac.jp. Fax:  Int.code +81-52-789-2943.

    Supporting Information Available

    Click to copy section linkSection link copied!

    Crystallographic data for 2 and 79 (CIF) or 36, 10, 12, and 13 (CIF and PDF), and cyclic voltammogram of 811. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 56 publications.

    1. Umesh I. Kaluarachchige Don, Zsolt Palmer, Cassandra L. Ward, Richard L. Lord, Stanislav Groysman. Combining [MoVIO3] and [M0(CO)3] (M = Mo, Cr) Fragments within the Same Complex: Synthesis and Reactivity of the Single Oxo-Bridged Heterobimetallics Supported by Xanthene-Based Heterodinucleating Ligands. Inorganic Chemistry 2023, 62 (37) , 15063-15075. https://doi.org/10.1021/acs.inorgchem.3c01929
    2. Yun Li, Maria Gomez-Mingot, Thibault Fogeron, Marc Fontecave. Carbon Dioxide Reduction: A Bioinspired Catalysis Approach. Accounts of Chemical Research 2021, 54 (23) , 4250-4261. https://doi.org/10.1021/acs.accounts.1c00461
    3. Umesh I. Kaluarachchige Don, Sudheer S. Kurup, Thilini S. Hollingsworth, Cassandra L. Ward, Richard L. Lord, Stanislav Groysman. Synthesis and Cu(I)/Mo(VI) Reactivity of a Bifunctional Heterodinucleating Ligand on a Xanthene Platform. Inorganic Chemistry 2021, 60 (19) , 14655-14666. https://doi.org/10.1021/acs.inorgchem.1c01735
    4. Dibbendu Ghosh, Soumen Sinhababu, Bernard D. Santarsiero, Neal P. Mankad. A W/Cu Synthetic Model for the Mo/Cu Cofactor of Aerobic CODH Indicates That Biochemical CO Oxidation Requires a Frustrated Lewis Acid/Base Pair. Journal of the American Chemical Society 2020, 142 (29) , 12635-12642. https://doi.org/10.1021/jacs.0c03343
    5. Skylar J. Ferrara, Bo Wang, Elaine Haas, Karry Wright LeBlanc, Joel T. Mague, and James P. Donahue . Synthesis and Structures of [LCu(I)(SSiiPr3)] (L = triphos, carbene) and Related Compounds. Inorganic Chemistry 2016, 55 (18) , 9173-9177. https://doi.org/10.1021/acs.inorgchem.5b02811
    6. Aaron M. Appel, John E. Bercaw, Andrew B. Bocarsly, Holger Dobbek, Daniel L. DuBois, Michel Dupuis, James G. Ferry, Etsuko Fujita, Russ Hille, Paul J. A. Kenis, Cheryl A. Kerfeld, Robert H. Morris, Charles H. F. Peden, Archie R. Portis, Stephen W. Ragsdale, Thomas B. Rauchfuss, Joost N. H. Reek, Lance C. Seefeldt, Rudolf K. Thauer, and Grover L. Waldrop . Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation. Chemical Reviews 2013, 113 (8) , 6621-6658. https://doi.org/10.1021/cr300463y
    7. Cheng Xu, Zhi-Yuan Zhang, Zhi-Gang Ren, Li-Kuan Zhou, Hong-Xi Li, Hui-Fang Wang, Zhen-Rong Sun, and Jian-Ping Lang . Novel [Tp*WS3Cu2]-Based Coordination Compounds: Assembly, Crystal Structures, and Third-Order Nonlinear Optical Properties. Crystal Growth & Design 2013, 13 (6) , 2530-2539. https://doi.org/10.1021/cg400239d
    8. Robert D. Pike . Structure and Bonding in Copper(I) Carbonyl and Cyanide Complexes. Organometallics 2012, 31 (22) , 7647-7660. https://doi.org/10.1021/om3004459
    9. Moumita Bose, Golam Moula, Ameerunisha Begum, and Sabyasachi Sarkar . Dangling Thiyl Radical: Stabilized in [PPh4]2[(bdt)WVI(O)(μ-S)2CuI(SC6H4S•)]. Inorganic Chemistry 2011, 50 (9) , 3852-3854. https://doi.org/10.1021/ic200258u
    10. Stanislav Groysman, Amit Majumdar, Shao-Liang Zheng and R. H. Holm. Reactions of Monodithiolene Tungsten(VI) Sulfido Complexes with Copper(I) in Relation to the Structure of the Active Site of Carbon Monoxide Dehydrogenase. Inorganic Chemistry 2010, 49 (3) , 1082-1089. https://doi.org/10.1021/ic902066m
    11. Stanislav Groysman and R. H. Holm. Biomimetic Chemistry of Iron, Nickel, Molybdenum, and Tungsten in Sulfur-Ligated Protein Sites. Biochemistry 2009, 48 (11) , 2310-2320. https://doi.org/10.1021/bi900044e
    12. Wen-Hua Zhang, Ying-Lin Song, Zhen-Hong Wei, Ling-Ling Li, Yu-Jian Huang, Yong Zhang and Jian-Ping Lang. Assembly of [(η5-C5Me5)MoS3Cu3]-Supported One-Dimensional Chains with Single, Double, Triple, and Quadruple Strands. Inorganic Chemistry 2008, 47 (12) , 5332-5346. https://doi.org/10.1021/ic8003454
    13. Wen-Hua Zhang, Ying-Lin Song, Yong Zhang and Jian-Ping Lang . Binuclear Cluster-to-Cluster-Based Supramolecular Compounds: Design, Assembly, and Enhanced Third-Order Nonlinear Optical Performances of {[Et4N]2[MoOS3Cu2(μ-CN)]2·2aniline}n and {[Et4N]4[MoOS3Cu3CN(μ′-CN)]2(μ-CN)2}n. Crystal Growth & Design 2008, 8 (1) , 253-258. https://doi.org/10.1021/cg070235n
    14. Paul J. Fischer, Aaron P. Heerboth, Zoey R. Herm and Benjamin E. Kucera. [(2-(Diphenylphosphino)ethyl)cyclopentadienyl]tricarbonylmetalates: Supporting Ligands for Reactions at Group VI Metal−Copper Bonds. Organometallics 2007, 26 (26) , 6669-6673. https://doi.org/10.1021/om700861r
    15. Shunsuke Senda,, Yasuhiro Ohki,, Tomoko Hirayama,, Daisuke Toda,, Jing-Lin Chen,, Tsuyoshi Matsumoto,, Hiroyuki Kawaguchi, and, Kazuyuki Tatsumi. Mono{hydrotris(mercaptoimidazolyl)borato} Complexes of Manganese(II), Iron(II), Cobalt(II), and Nickel(II) Halides. Inorganic Chemistry 2006, 45 (24) , 9914-9925. https://doi.org/10.1021/ic0610132
    16. Biplab K. Maiti, Isabel Moura, José J. G. Moura. Molybdenum‐Copper Antagonism In Metalloenzymes And Anti‐Copper Therapy. ChemBioChem 2024, 114 https://doi.org/10.1002/cbic.202300679
    17. Umesh I. Kaluarachchige Don, A. M. Buddhika Chandima, Dmitri Gelman, Richard L. Lord, Stanislav Groysman. Design and Reactivity of Early-Late Bimetallics as Structural and Functional Models of Mo Cu CODH. Comments on Inorganic Chemistry 2024, , 1-36. https://doi.org/10.1080/02603594.2023.2298366
    18. Umesh I. Kaluarachchige Don, Ahmad S. Almaat, Cassandra L. Ward, Stanislav Groysman. Studies Relevant to the Functional Model of Mo-Cu CODH: In Situ Reactions of Cu(I)-L Complexes with Mo(VI) and Synthesis of Stable Structurally Characterized Heterotetranuclear MoVI2CuI2 Complex. Molecules 2023, 28 (8) , 3644. https://doi.org/10.3390/molecules28083644
    19. Xinyang Zhao, Lu Zhu, Xue Wu, Wei Wei, Jing Zhao. Bio-inspired catalysis. 2023, 373-406. https://doi.org/10.1016/B978-0-12-823144-9.00140-0
    20. Sebastian Pätsch, Jevy V. Correia, Benedict J. Elvers, Mareile Steuer, Carola Schulzke. Inspired by Nature—Functional Analogues of Molybdenum and Tungsten-Dependent Oxidoreductases. Molecules 2022, 27 (12) , 3695. https://doi.org/10.3390/molecules27123695
    21. Yi Tan, Zhi-Kang Wang, Fei-Fan Lang, Hui-Min Yu, Chen Cao, Chun-Yan Ni, Meng-Yi Wang, Ying-Lin Song, Jian-Ping Lang. Construction of cluster-based supramolecular wire and rectangle. Dalton Transactions 2022, 51 (16) , 6358-6365. https://doi.org/10.1039/D2DT00344A
    22. Sarah S. Sabar, Othman I. Alajrawy, Salwa A.H. Elbohy, Carmen M. Sharaby. New molybdenum(VI) and vanadium(IV) complexes with 3-aminopyridine and dithiooxamide ligands spectroscopic characterization, DFT calculations, and in vitro cytotoxic activity. Materials Today: Proceedings 2022, 65 , 2537-2550. https://doi.org/10.1016/j.matpr.2022.04.725
    23. Neal P. Mankad. Learning from Nature: Bio-inspired Heterobinuclear Electrocatalysts for Selective CO2 Reduction. Trends in Chemistry 2021, 3 (3) , 159-160. https://doi.org/10.1016/j.trechm.2020.12.002
    24. Ashta C. Ghosh, Carole Duboc, Marcello Gennari. Synergy between metals for small molecule activation: Enzymes and bio-inspired complexes. Coordination Chemistry Reviews 2021, 428 , 213606. https://doi.org/10.1016/j.ccr.2020.213606
    25. Monami Maiti, Santarupa Thakurta, Guillaume Pilet, Antonio Bauzá, Antonio Frontera. Two new hydrogen-bonded supramolecular dioxo-molybdenum(VI) complexes based on acetyl-hydrazone ligands: Synthesis, crystal structure and DFT studies. Journal of Molecular Structure 2021, 1226 , 129346. https://doi.org/10.1016/j.molstruc.2020.129346
    26. Neal P. Mankad, Dibbendu Ghosh. Biomimetic Studies of the Mo/Cu Active Site of CO Dehydrogenase. 2021, 772-789. https://doi.org/10.1016/B978-0-08-102688-5.00060-X
    27. Yi-Chou Tsai. Molybdenum. 2021, 567-745. https://doi.org/10.1016/B978-0-08-102688-5.00040-4
    28. Yuan Zhu, Hongchen Xia, Jinfang Zhang, Chi Zhang. A Water-Stable Luminescent W/S/Cu Heterothiometallic Cluster for Detection of TNP. Journal of Cluster Science 2020, 31 (6) , 1383-1388. https://doi.org/10.1007/s10876-019-01749-8
    29. Ahmed Mouchfiq, Tanya K. Todorova, Subal Dey, Marc Fontecave, Victor Mougel. A bioinspired molybdenum–copper molecular catalyst for CO 2 electroreduction. Chemical Science 2020, 11 (21) , 5503-5510. https://doi.org/10.1039/D0SC01045F
    30. M. Aulice Scibioh, B. Viswanathan. Biochemical Reduction of CO 2. 2018, 255-306. https://doi.org/10.1016/B978-0-444-63996-7.00006-7
    31. Craig Gourlay, David J. Nielsen, David J. Evans, Jonathan M. White, Charles G. Young. Models for aerobic carbon monoxide dehydrogenase: synthesis, characterization and reactivity of paramagnetic Mo V O(μ-S)Cu I complexes. Chemical Science 2018, 9 (4) , 876-888. https://doi.org/10.1039/C7SC04239F
    32. Thilini S. Hollingsworth, Ryan L. Hollingsworth, Richard L. Lord, Stanislav Groysman. Cooperative bimetallic reactivity of a heterodinuclear molybdenum–copper model of Mo–Cu CODH. Dalton Transactions 2018, 47 (30) , 10017-10024. https://doi.org/10.1039/C8DT02323A
    33. Quan Liu, Wen-Hua Zhang, Jian-Ping Lang. Versatile thiomolybdate(thiotungstate)–copper–sulfide clusters and multidimensional polymers linked by cyanides. Coordination Chemistry Reviews 2017, 350 , 248-274. https://doi.org/10.1016/j.ccr.2017.06.027
    34. Ahad Fasihizad, Alireza Akbari, Mehdi Ahmadi, Michal Dusek, Margarida S. Henriques, Michaela Pojarova. Copper(II) and molybdenum(VI) complexes of a tridentate ONN donor isothiosemicarbazone: Synthesis, characterization, X-ray, TGA and DFT. Polyhedron 2016, 115 , 297-305. https://doi.org/10.1016/j.poly.2016.05.018
    35. Lu Gan, David Jennings, Joseph Laureanti, Anne Katherine Jones. Biomimetic Complexes for Production of Dihydrogen and Reduction of CO2. 2015, 233-272. https://doi.org/10.1007/3418_2015_146
    36. Carola Schulzke, Ashta Chandra Ghosh. Molybdenum and Tungsten Oxidoreductase Models. 2014, 349-382. https://doi.org/10.1002/9783527664160.ch13
    37. Amit Majumdar. Bioinorganic modeling chemistry of carbon monoxide dehydrogenases: description of model complexes, current status and possible future scopes. Dalton Transactions 2014, 43 (32) , 12135. https://doi.org/10.1039/C4DT00729H
    38. Moumita Bose, Golam Moula, Sabyasachi Sarkar. Electronic Structure of Monodithiolated IronOxotungsten Heterometallic Complexes: Integer‐Spin FeW Assembly. Chemistry – An Asian Journal 2013, 8 (6) , 1128-1138. https://doi.org/10.1002/asia.201300245
    39. Zhi-Yuan Zhang, Wei-Jie Gong, Fan Wang, Min-Min Chen, Li-Kuan Zhou, Zhi-Gang Ren, Zhen-Rong Sun, Jian-Ping Lang. Assembly of new Mo/Cu/S clusters from [Et4N][Tp*MoS(S4)] and Cu(i) salts: syntheses, structures and third-order nonlinear optical properties. Dalton Transactions 2013, 42 (26) , 9495. https://doi.org/10.1039/c3dt50759a
    40. Reza Takjoo, Mehdi Ahmadi, Alireza Akbari, Hadi Amiri Rudbari, Francesco Nicolò. Complexes with cis -MoO 2 unit of new isothiosemicarbazone. Journal of Coordination Chemistry 2012, 65 (19) , 3403-3412. https://doi.org/10.1080/00958972.2012.709935
    41. Xi Chen, Hong-Xi Li, Zhi-Yuan Zhang, Wei Zhao, Jian-Ping Lang, Brendan F. Abrahams. Activation and amplification of the third-order NLO and luminescent responses of a precursor cluster by a supramolecular approach. Chemical Communications 2012, 48 (37) , 4480. https://doi.org/10.1039/c2cc30581j
    42. Xi Chen, Hong-Xi Li, Zhi-Yuan Zhang, Cheng Xu, Kai-Peng Hou, Li-Kuan Zhou, Jian-Ping Lang, Zhen-Rong Sun. Assembly of two cluster-based coordination polymers with good NLO performance from one NLO-inactive precursor cluster [Et4N][Tp*W(μ3–S)3(CuCl)3]. CrystEngComm 2012, 14 (11) , 4027. https://doi.org/10.1039/c2ce25143d
    43. Golam Moula, Moumita Bose, Biplab K. Maiti, Sabyasachi Sarkar. Oxomolybdenum monodithiolene complexes linked with sulfur bridged iron: antiferromagnetically coupled Fe(iii)Mo(v) systems. Dalton Transactions 2012, 41 (41) , 12926. https://doi.org/10.1039/c2dt31743e
    44. A. Kumar, R.A. Lal, O.B. Chanu, R. Borthakur, A. Koch, A. Lemtur, S. Adhikari, S. Choudhury. Synthesis and characterization of a binuclear copper(II) complex [Cu(H 2 slox)] 2 from polyfunctional disalicylaldehyde oxaloyldihydrazone and its heterobinuclear copper(II) and molybdenum(VI) complexes. Journal of Coordination Chemistry 2011, 64 (10) , 1729-1742. https://doi.org/10.1080/00958972.2011.580845
    45. Ulf‐Peter Apfel, Wolfgang Weigand. Efficient Activation of the Greenhouse Gas CO 2. Angewandte Chemie International Edition 2011, 50 (19) , 4262-4264. https://doi.org/10.1002/anie.201007163
    46. Güneş Bender, Elizabeth Pierce, Jeffrey A. Hill, Joseph E. Darty, Stephen W. Ragsdale. Metal centers in the anaerobic microbial metabolism of CO and CO2. Metallomics 2011, 3 (8) , 797. https://doi.org/10.1039/c1mt00042j
    47. Xi-Ying Wang, Hua-Tian Shi, Fang-Hui Wu, Qian-Feng Zhang. Synthetic reactions and coordination modes of ruthenium complexes with tris(mercaptomethimazolyl)borate ligands. Journal of Molecular Structure 2010, 982 (1-3) , 66-72. https://doi.org/10.1016/j.molstruc.2010.08.007
    48. Damián Fernández-Anca, M. Inés García-Seijo, M. Esther García-Fernández. Tripodal polyphosphine ligands as inductors of chelate ring-opening processes in mononuclear palladium(ii) and platinum(ii) compounds. The X-ray crystal structure of two derivatives containing dangling phosphorus. Dalton Transactions 2010, 39 (9) , 2327. https://doi.org/10.1039/b912678c
    49. Zhen‐Hong Wei, Ling‐Ling Li, Zhi‐Gang Ren, Hong‐Xi Li, Jian‐Ping Lang, Yong Zhang, Zhen‐Rong Sun. Reactions of [Et 4 N][Tp*W(μ 3 ‐S)(μ‐S) 2 ­(CuSCN) 2 ] with Nitrogen Donor Ligands: Syntheses, Structures, and Third‐Order Nonlinear Optical Properties. European Journal of Inorganic Chemistry 2009, 2009 (28) , 4240-4247. https://doi.org/10.1002/ejic.200900424
    50. Eric E. Benson, Clifford P. Kubiak, Aaron J. Sathrum, Jonathan M. Smieja. Electrocatalytic and homogeneous approaches to conversion of CO 2 to liquid fuels. Chem. Soc. Rev. 2009, 38 (1) , 89-99. https://doi.org/10.1039/B804323J
    51. Xiaojun Wang, Xiaoming Lu, Peizhou Li, Xiuhuan Pei, Chaohui Ye. Solvothermal synthesis, structure and properties of two new compounds based on Keggin polyoxometalates decorated by copper complexes. Journal of Coordination Chemistry 2008, 61 (23) , 3753-3762. https://doi.org/10.1080/00958970802120192
    52. Biplab K. Maiti, Kuntal Pal, Sabyasachi Sarkar. Plasticity in [(R 4– x R 1 x ) 4 N] 4 [Cu 4 {S 2 C 2 (CN) 2 } 4 ] ( x = 0–4) is Molded by a Guest Cation on an Elastic Anionic Host. European Journal of Inorganic Chemistry 2008, 2008 (15) , 2407-2420. https://doi.org/10.1002/ejic.200800094
    53. Jun-Jieh Wang, R. H. Holm. Silylation, Sulfidation, and Benzene-1,2-dithiolate Complexation Reactions of Oxo- and Oxosulfidomolybdates(VI) and -Tungstates(VI). Inorganic Chemistry 2007, 46 (26) , 11156-11164. https://doi.org/10.1021/ic701294y
    54. Hideki Sugimoto. Chemistry of Synthetic Models Relevant to the Active Sites of Molybdenum and Tungsten Containing Enzymes. Bulletin of Japan Society of Coordination Chemistry 2007, 50 (0) , 26-39. https://doi.org/10.4019/bjscc.50.26
    55. Derek W. Smith. Copper. Annual Reports Section "A" (Inorganic Chemistry) 2006, 102 , 253. https://doi.org/10.1039/b514789c
    56. J. McMaster. Bioinorganic chemistry. Annual Reports Section "A" (Inorganic Chemistry) 2006, 102 , 564. https://doi.org/10.1039/b514851k

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2005, 44, 17, 6034–6043
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ic050294v
    Published July 29, 2005
    Copyright © 2005 American Chemical Society

    Article Views

    1507

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.