ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Polyfluoride Anions, a Matrix-Isolation and Quantum-Chemical Investigation

View Author Information
Institut für Anorganische und Analytische Chemie, Albert-Ludwigs Universität Freiburg, Albertstrasse 21, D-79104 Freiburg im Breisgau, Germany
Chemistry Department, Tongji University, Shanghai 200092, China
§ Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319
*To whom correspondence should be addressed. E-mail: [email protected]. Fax: ++49 761 203-6001.
Cite this: Inorg. Chem. 2010, 49, 15, 7156–7164
Publication Date (Web):July 1, 2010
https://doi.org/10.1021/ic100981c
Copyright © 2010 American Chemical Society

    Article Views

    1559

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Laser-ablation experiments with metals provide a source of electrons for capture processes, which are codeposited with solid argon and neon containing molecular fluorine. New argon and neon matrix absorptions at 510.6 and 524.7 cm−1, respectively, are photosensitive upon irradiation at >290 nm, which is consistent with their assignment to an isolated anion. These bands are below the [M]+[F3] antisymmetric trifluoride stretching frequency of 550 cm−1 in an argon matrix, which is the typical relationship for cation−anion complexes and matrix-isolated anions. Thus, we report the isolated [F3] anion in solid argon and neon environments. Moreover, we have carried out quantum-chemical calculations up to and including the CCSD(T) method to investigate the stabilities of polyfluoride anions higher than the [F3] anion.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Estimation of the CBS (Table 1). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 101 publications.

    1. Frederik Bader, Sebastian Riedel, Helmut Beckers, Carsten Müller, Jean Christophe Tremblay, Beate Paulus. The Peculiar Interaction of Trifluoride Anions with Cryogenic Rare Gas Matrices. The Journal of Physical Chemistry A 2021, 125 (28) , 6221-6227. https://doi.org/10.1021/acs.jpca.1c04711
    2. Maksim Kulichenko, Andrey N. Utenyshev, Konstantin V. Bozhenko. Designing Molecular Electrides from Defective Unit Cells of Cubic Alkaline Earth Oxides. The Journal of Physical Chemistry C 2021, 125 (17) , 9564-9570. https://doi.org/10.1021/acs.jpcc.1c02710
    3. Shiyin Ma, Shichang Li, Tao Gao, Bingyun Ao. Pressure-Stabilized Zinc Trifluoride. The Journal of Physical Chemistry Letters 2020, 11 (8) , 2854-2858. https://doi.org/10.1021/acs.jpclett.0c00368
    4. Chao Wang, David Danovich, Hui Chen, Sason Shaik. Oriented External Electric Fields: Tweezers and Catalysts for Reactivity in Halogen-Bond Complexes. Journal of the American Chemical Society 2019, 141 (17) , 7122-7136. https://doi.org/10.1021/jacs.9b02174
    5. Alyssa M. Hua, Samantha L. Bidwell, Sarah I. Baker, Hrant P. Hratchian, Ryan D. Baxter. Experimental and Theoretical Evidence for Nitrogen–Fluorine Halogen Bonding in Silver-Initiated Radical Fluorinations. ACS Catalysis 2019, 9 (4) , 3322-3326. https://doi.org/10.1021/acscatal.9b00623
    6. Rui Wei, Xiuting Chen, Yu Gong. Infrared Spectra of the SO2F2– Anion in Solid Argon and Neon. The Journal of Physical Chemistry A 2018, 122 (38) , 7723-7729. https://doi.org/10.1021/acs.jpca.8b07756
    7. Wenjie Yu, Lester Andrews, and Xuefeng Wang . Infrared Spectroscopic and Electronic Structure Investigations of Beryllium Halide Molecules, Cations, and Anions in Noble Gas Matrices. The Journal of Physical Chemistry A 2017, 121 (46) , 8843-8855. https://doi.org/10.1021/acs.jpca.7b09454
    8. Gabriella Cavallo, Pierangelo Metrangolo, Roberto Milani, Tullio Pilati, Arri Priimagi, Giuseppe Resnati, and Giancarlo Terraneo . The Halogen Bond. Chemical Reviews 2016, 116 (4) , 2478-2601. https://doi.org/10.1021/acs.chemrev.5b00484
    9. Antony V. Wilson, Timothy Nguyen, Felix Brosi, Xuefeng Wang, Lester Andrews, Sebastian Riedel, Adam J. Bridgeman, and Nigel A. Young . A Matrix Isolation and Computational Study of Molecular Palladium Fluorides: Does PdF6 Exist?. Inorganic Chemistry 2016, 55 (3) , 1108-1123. https://doi.org/10.1021/acs.inorgchem.5b02273
    10. Thomas Vent-Schmidt and Sebastian Riedel . Investigation of Praseodymium Fluorides: A Combined Matrix-Isolation and Quantum-Chemical Study. Inorganic Chemistry 2015, 54 (23) , 11114-11120. https://doi.org/10.1021/acs.inorgchem.5b01175
    11. G. L. Gutsev, K. G. Belay, C. A. Weatherford, B. R. Ramachandran, L. G. Gutsev, and P. Jena . Structure and Properties of Polyfluoride Fn– Clusters (n = 3–29). The Journal of Physical Chemistry A 2015, 119 (24) , 6483-6492. https://doi.org/10.1021/acs.jpca.5b02431
    12. Thomas Vent-Schmidt, Lester Andrews, and Sebastian Riedel . Reactions of Laser-Ablated U Atoms with HF: Infrared Spectra and Quantum Chemical Calculations of HUF, UH, and UF in Noble Gas Solids. The Journal of Physical Chemistry A 2015, 119 (11) , 2253-2261. https://doi.org/10.1021/jp5055827
    13. K. Sahan Thanthiriwatte, Xuefeng Wang, Lester Andrews, David A. Dixon, Jens Metzger, Thomas Vent-Schmidt, and Sebastian Riedel . Properties of ThFx from Infrared Spectra in Solid Argon and Neon with Supporting Electronic Structure and Thermochemical Calculations. The Journal of Physical Chemistry A 2014, 118 (11) , 2107-2119. https://doi.org/10.1021/jp412818r
    14. Lester Andrews, K. Sahan Thanthiriwatte, Xuefeng Wang, and David A. Dixon . Thorium Fluorides ThF, ThF2, ThF3, ThF4, ThF3(F2), and ThF5– Characterized by Infrared Spectra in Solid Argon and Electronic Structure and Vibrational Frequency Calculations. Inorganic Chemistry 2013, 52 (14) , 8228-8233. https://doi.org/10.1021/ic401107w
    15. Shao-Wen Hu, Zhu-Xiang Wang, Feng Qu, Tai-Wei Chu, and Xiang-Yun Wang . Reaction Mechanism of Cl2 and 1-Alkyl-3-methylimidazolium Chloride Ionic Liquids. The Journal of Physical Chemistry A 2011, 115 (46) , 13452-13466. https://doi.org/10.1021/jp208095e
    16. Michael Wolff, Alexander Okrut, and Claus Feldmann . [(Ph)3PBr][Br7], [(Bz)(Ph)3P]2[Br8], [(n-Bu)3MeN]2[Br20], [C4MPyr]2[Br20], and [(Ph)3PCl]2[Cl2I14]: Extending the Horizon of Polyhalides via Synthesis in Ionic Liquids. Inorganic Chemistry 2011, 50 (22) , 11683-11694. https://doi.org/10.1021/ic201291k
    17. Xuefeng Wang and Lester Andrews . Quantum-Chemical Calculations and IR Spectra of the (F2)MF2 Molecules (M = B, Al, Ga, In, Tl) in Solid Matrices: A New Class of Very High Electron Affinity Neutral Molecules. Journal of the American Chemical Society 2011, 133 (11) , 3768-3771. https://doi.org/10.1021/ja1110442
    18. Thankan Jayasekharan. High Valent Mercury Fluoride Ions. ChemPhysChem 2023, 24 (13) https://doi.org/10.1002/cphc.202300036
    19. Lars Kloo. Catenated compounds in group 17—polyhalides. 2023, 1021-1049. https://doi.org/10.1016/B978-0-12-823144-9.00013-3
    20. Frederik Bader, Jean Christophe Tremblay, Beate Paulus. Theoretical modeling of molecules in weakly interacting environments: trifluoride anions in argon. Physical Chemistry Chemical Physics 2022, 24 (6) , 3555-3567. https://doi.org/10.1039/D1CP02338A
    21. Yanmin Xu, Jiaqiang Zhang, La Yang, Yifei Zhang, Zhijian Xu, Yunxiang Lu. Computational study of halogen-halogen interactions in polyhalide ionic liquids. Structural Chemistry 2022, 33 (1) , 219-227. https://doi.org/10.1007/s11224-021-01838-3
    22. Y. Qawasmeh, K. Töpfer, T. Serwatka, J. C. Tremblay, B. Paulus. Theoretical investigations of the interaction between diatomic molecules and coinage metal atoms. Molecular Physics 2021, 119 (9) , e1892224. https://doi.org/10.1080/00268976.2021.1892224
    23. Patrick Voßnacker, Thomas Keilhack, Nico Schwarze, Karsten Sonnenberg, Konrad Seppelt, Moritz Malischewski, Sebastian Riedel. From Missing Links to New Records: A Series of Novel Polychlorine Anions. European Journal of Inorganic Chemistry 2021, 2021 (11) , 1034-1040. https://doi.org/10.1002/ejic.202001072
    24. Frederik Bader, Jean Christophe Tremblay, Beate Paulus. A pair potential modeling study of F 3 − in neon matrices. Physical Chemistry Chemical Physics 2021, 23 (2) , 886-899. https://doi.org/10.1039/D0CP05031H
    25. Florian Kraus. About F2. 2021, 5-14. https://doi.org/10.1016/B978-0-12-819874-2.00002-3
    26. Yi Wang, Xinrui Miao, Wenli Deng. Halogen Bonds Fabricate 2D Molecular Self-Assembled Nanostructures by Scanning Tunneling Microscopy. Crystals 2020, 10 (11) , 1057. https://doi.org/10.3390/cryst10111057
    27. Mohammed S. Abdelbassit, Owen J. Curnow, Samuel J. Brooke, Mark R. Waterland. The Bromine‐Chlorine Interhalides [Br 3 Cl 5 ] 2 – , [Br 4 Cl 4 ] 2 – and [Br 6.56 Cl 1.44 ] 2 –. European Journal of Inorganic Chemistry 2020, 2020 (34) , 3302-3310. https://doi.org/10.1002/ejic.202000478
    28. Karsten Sonnenberg, Lisa Mann, Frenio A. Redeker, Benjamin Schmidt, Sebastian Riedel. Polyhalogen‐ und Polyinterhalogen‐Anionen von Fluor bis Iod. Angewandte Chemie 2020, 132 (14) , 5506-5535. https://doi.org/10.1002/ange.201903197
    29. Karsten Sonnenberg, Lisa Mann, Frenio A. Redeker, Benjamin Schmidt, Sebastian Riedel. Polyhalogen and Polyinterhalogen Anions from Fluorine to Iodine. Angewandte Chemie International Edition 2020, 59 (14) , 5464-5493. https://doi.org/10.1002/anie.201903197
    30. Dimitri A. Bikos, Thomas G. Mason. Band-collision gel electrophoresis. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-11438-9
    31. Mohammed A. Zaitoun. Investigation of the Chemistry for the Host Sol‐Gel Glass via the Energy Transfer Fluorescence of Encapsulated Organic‐Tb(III) Complexes. ChemistrySelect 2019, 4 (16) , 4689-4694. https://doi.org/10.1002/slct.201900594
    32. Sergei I. Ivlev, Konstantin Gaul, Mengyi Chen, Antti J. Karttunen, Robert Berger, Florian Kraus. Synthesis and Characterization of [Br 3 ][MF 6 ] (M=Sb, Ir), as well as Quantum Chemical Study of [Br 3 ] + Structure, Chemical Bonding, and Relativistic Effects Compared with [XBr 2 ] + (X=Br, I, At, Ts) and [TsZ 2 ] + (Z=F, Cl, Br, I, At, Ts). Chemistry – A European Journal 2019, 25 (22) , 5793-5802. https://doi.org/10.1002/chem.201900442
    33. Sergei I. Ivlev, Antti J. Karttunen, Markus Hoelzel, Matthias Conrad, Florian Kraus. The Crystal Structures of α‐ and β‐F 2 Revisited. Chemistry – A European Journal 2019, 25 (13) , 3310-3317. https://doi.org/10.1002/chem.201805298
    34. Frenio A. Redeker, Alexey Kropman, Carsten Müller, Sarah E. Zewge, Helmut Beckers, Beate Paulus, Sebastian Riedel. Theoretical investigation of the structures, stabilities and vibrational properties of triatomic interhalide ions and their alkali ion pairs. Journal of Fluorine Chemistry 2018, 216 , 81-88. https://doi.org/10.1016/j.jfluchem.2018.10.007
    35. Karsten Sonnenberg, Patrick Pröhm, Nico Schwarze, Carsten Müller, Helmut Beckers, Sebastian Riedel. Untersuchungen chlorreicher Polychloride: [Cl 11 ] − , [Cl 12 ] 2− und [Cl 13 ] −. Angewandte Chemie 2018, 130 (29) , 9274-9278. https://doi.org/10.1002/ange.201803486
    36. Benjamin Schmidt, Karsten Sonnenberg, Helmut Beckers, Simon Steinhauer, Sebastian Riedel. Synthese und Charakterisierung von nichtklassischen Polyinterhalogeniden basierend auf Brommonochlorid. Angewandte Chemie 2018, 130 (29) , 9279-9283. https://doi.org/10.1002/ange.201803705
    37. Karsten Sonnenberg, Patrick Pröhm, Nico Schwarze, Carsten Müller, Helmut Beckers, Sebastian Riedel. Investigation of Large Polychloride Anions: [Cl 11 ] − , [Cl 12 ] 2− , and [Cl 13 ] −. Angewandte Chemie International Edition 2018, 57 (29) , 9136-9140. https://doi.org/10.1002/anie.201803486
    38. Benjamin Schmidt, Karsten Sonnenberg, Helmut Beckers, Simon Steinhauer, Sebastian Riedel. Synthesis and Characterization of Nonclassical Interhalides Based on Bromine Monochloride. Angewandte Chemie International Edition 2018, 57 (29) , 9141-9145. https://doi.org/10.1002/anie.201803705
    39. Felipe S. S. Schneider, Giovanni Finoto Caramori, Renato L. T. Parreira, Vito Lippolis, Massimiliano Arca, Gianluca Ciancaleoni. Bond Analysis in Dihalogen–Halide and Dihalogen–Dimethylchalcogenide Systems. European Journal of Inorganic Chemistry 2018, 2018 (8) , 1007-1015. https://doi.org/10.1002/ejic.201701337
    40. Pankaj Dubey, Jyoti Saini, Kanupriya Verma, Ginny Karir, Anamika Mukhopadhyay, K.S. Viswanathan. Matrix Isolation Spectroscopy—A Window to Molecular Processes. 2018, 317-340. https://doi.org/10.1016/B978-0-12-849883-5.00014-0
    41. Zhi Sun, Henry F. Schaefer. Vibrational frequencies, structures, and energetics of the highly challenging alkali metal trifluorides MF 3 (M = Li, Na, K, Rb, and Cs). Physical Chemistry Chemical Physics 2018, 20 (28) , 18986-18994. https://doi.org/10.1039/C8CP03434F
    42. Lester Andrews, Xuefeng Wang. Assignment of Raman spectra for trifluoride anions in solid argon. Physical Chemistry Chemical Physics 2018, 20 (36) , 23378-23385. https://doi.org/10.1039/C8CP04361B
    43. Changwei Wang, David Danovich, Sason Shaik, Yirong Mo. Halogen Bonds in Novel Polyhalogen Monoanions. Chemistry – A European Journal 2017, 23 (36) , 8719-8728. https://doi.org/10.1002/chem.201701116
    44. Karsten Sonnenberg, Patrick Pröhm, Simon Steinhauer, Anja Wiesner, Carsten Müller, Sebastian Riedel. Formation and Characterization of [BrC(NMe 2 ) 2 )][Br 3 ] and [BrC(NMe 2 ) 2 )] 2 [Br 8 ] in Ionic Liquids. Zeitschrift für anorganische und allgemeine Chemie 2017, 643 (1) , 101-105. https://doi.org/10.1002/zaac.201600337
    45. F. A. Redeker, H. Beckers, S. Riedel. Matrix-isolation and comparative far-IR investigation of free linear [Cl 3 ] − and a series of alkali trichlorides. Chemical Communications 2017, 53 (96) , 12958-12961. https://doi.org/10.1039/C7CC08290H
    46. Robin Brückner, Patrick Pröhm, Anja Wiesner, Simon Steinhauer, Carsten Müller, Sebastian Riedel. Struktureller Nachweis des ersten Polychloriddianions: Untersuchung von [Cl 8 ] 2−. Angewandte Chemie 2016, 128 (36) , 11064-11068. https://doi.org/10.1002/ange.201604348
    47. Robin Brückner, Patrick Pröhm, Anja Wiesner, Simon Steinhauer, Carsten Müller, Sebastian Riedel. Structural Proof for the First Dianion of a Polychloride: Investigation of [Cl 8 ] 2−. Angewandte Chemie International Edition 2016, 55 (36) , 10904-10908. https://doi.org/10.1002/anie.201604348
    48. Gianluca Ciancaleoni, Massimiliano Arca, Giovanni F. Caramori, Gernot Frenking, Felipe S. S. Schneider, Vito Lippolis. Bonding Analysis in Homo‐ and Hetero‐Trihalide Species: A Charge Displacement Study. European Journal of Inorganic Chemistry 2016, 2016 (23) , 3804-3812. https://doi.org/10.1002/ejic.201600471
    49. Max E. Easton, Bun Chan, Anthony F. Masters, Leo Radom, Thomas Maschmeyer. Beyond the Halogen Bond: Examining the Limits of Extended Polybromide Networks through Quantum‐Chemical Investigations. Chemistry – An Asian Journal 2016, 11 (5) , 682-686. https://doi.org/10.1002/asia.201501316
    50. Thomas Vent‐Schmidt, Zongtang Fang, Zachary Lee, David Dixon, Sebastian Riedel. Extending the Row of Lanthanide Tetrafluorides: A Combined Matrix‐Isolation and Quantum‐Chemical Study. Chemistry – A European Journal 2016, 22 (7) , 2406-2416. https://doi.org/10.1002/chem.201504182
    51. Felix Brosi, Tobias Schlöder, Alexei Schmidt, Helmut Beckers, Sebastian Riedel. A combined quantum-chemical and matrix-isolation study on molecular manganese fluorides. Dalton Transactions 2016, 45 (12) , 5038-5044. https://doi.org/10.1039/C5DT04827C
    52. David Hausmann, Ralf Köppe, Silke Wolf, Peter W. Roesky, Claus Feldmann. Ionic-liquid-assisted synthesis of the phosphorus interhalides [PBr 4 ][IBr 2 ] and [PBr 4 ][I 5 Br 7 ]. Dalton Transactions 2016, 45 (41) , 16526-16532. https://doi.org/10.1039/C6DT03303B
    53. Robin Brückner, Heike Haller, Simon Steinhauer, Carsten Müller, Sebastian Riedel. Ein durch Halogen‐Halogen‐Wechselwirkungen zusammengehaltenes 2D‐Polychloridnetzwerk. Angewandte Chemie 2015, 127 (51) , 15800-15804. https://doi.org/10.1002/ange.201507948
    54. Robin Brückner, Heike Haller, Simon Steinhauer, Carsten Müller, Sebastian Riedel. A 2D Polychloride Network Held Together by Halogen–Halogen Interactions. Angewandte Chemie International Edition 2015, 54 (51) , 15579-15583. https://doi.org/10.1002/anie.201507948
    55. Felix Brosi, Thomas Vent‐Schmidt, Stefanie Kieninger, Tobias Schlöder, Helmut Beckers, Sebastian Riedel. Polyfluorides and Neat Fluorine as Host Material in Matrix‐Isolation Experiments. Chemistry – A European Journal 2015, 21 (46) , 16455-16462. https://doi.org/10.1002/chem.201502849
    56. Ilya V. Getmanskii, Vitaliy V. Koval, Ruslan M. Minyaev, Vladimir I. Minkin. Dependence of the structure of alkali metal–trifluoride ion pairs F3–M+ on the counterion M+ (M = Li, Na, K). Mendeleev Communications 2015, 25 (6) , 417-419. https://doi.org/10.1016/j.mencom.2015.11.005
    57. Giuseppe Resnati, Elena Boldyreva, Petra Bombicz, Masaki Kawano. Supramolecular interactions in the solid state. IUCrJ 2015, 2 (6) , 675-690. https://doi.org/10.1107/S2052252515014608
    58. Qiang Zhu, Artem R. Oganov, Qingfeng Zeng. Formation of Stoichiometric CsFn Compounds. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep07875
    59. Andrey Yu. Rogachev, Mao‐sheng Miao, Gabriel Merino, Roald Hoffmann. Molecular CsF 5 and CsF 2 +. Angewandte Chemie 2015, 127 (28) , 8393-8396. https://doi.org/10.1002/ange.201500402
    60. Thomas Vent‐Schmidt, Felix Brosi, Jens Metzger, Tobias Schlöder, Xuefeng Wang, Lester Andrews, Carsten Müller, Helmut Beckers, Sebastian Riedel. Fluorreiche Fluoride – neue Erkenntnisse über die Chemie von Polyfluoridanionen. Angewandte Chemie 2015, 127 (28) , 8397-8401. https://doi.org/10.1002/ange.201502624
    61. Andrey Yu. Rogachev, Mao‐sheng Miao, Gabriel Merino, Roald Hoffmann. Molecular CsF 5 and CsF 2 +. Angewandte Chemie International Edition 2015, 54 (28) , 8275-8278. https://doi.org/10.1002/anie.201500402
    62. Thomas Vent‐Schmidt, Felix Brosi, Jens Metzger, Tobias Schlöder, Xuefeng Wang, Lester Andrews, Carsten Müller, Helmut Beckers, Sebastian Riedel. Fluorine‐Rich Fluorides: New Insights into the Chemistry of Polyfluoride Anions. Angewandte Chemie International Edition 2015, 54 (28) , 8279-8283. https://doi.org/10.1002/anie.201502624
    63. Max E. Easton, Antony J. Ward, Toby Hudson, Peter Turner, Anthony F. Masters, Thomas Maschmeyer. The Formation of High‐Order Polybromides in a Room‐Temperature Ionic Liquid: From Monoanions ([Br 5 ] − to [Br 11 ] − ) to the Isolation of [PC 16 H 36 ] 2 [Br 24 ] as Determined by van der Waals Bonding Radii. Chemistry – A European Journal 2015, 21 (7) , 2961-2965. https://doi.org/10.1002/chem.201404505
    64. F. A. Redeker, H. Beckers, S. Riedel. Investigation of alkali metal polyfluorides by matrix-isolation spectroscopy. RSC Advances 2015, 5 (129) , 106568-106573. https://doi.org/10.1039/C5RA24227D
    65. Tobias Schlöder, Florian Kraus, Sebastian Riedel. Fluorides: Solid‐State Chemistry. 2014, 1-30. https://doi.org/10.1002/9781119951438.eibc0070.pub2
    66. Heike Haller, Sebastian Riedel. Recent Discoveries of Polyhalogen Anions – from Bromine to Fluorine. Zeitschrift für anorganische und allgemeine Chemie 2014, 640 (7) , 1281-1291. https://doi.org/10.1002/zaac.201400085
    67. Gabriella Cavallo, Pierangelo Metrangolo, Tullio Pilati, Giuseppe Resnati, Giancarlo Terraneo. Halogen Bond: A Long Overlooked Interaction. 2014, 1-17. https://doi.org/10.1007/128_2014_573
    68. Christine Walbaum, Mark Richter, Ulf Sachs, Ingo Pantenburg, Sebastian Riedel, Anja‐Verena Mudring, Gerd Meyer. Iod‐Iod‐Bindungen machen Tetra(diiod)chlorid, [Cl(I 2 ) 4 ] − , planar. Angewandte Chemie 2013, 125 (48) , 12965-12968. https://doi.org/10.1002/ange.201305412
    69. Christine Walbaum, Mark Richter, Ulf Sachs, Ingo Pantenburg, Sebastian Riedel, Anja‐Verena Mudring, Gerd Meyer. Iodine–Iodine Bonding makes Tetra(diiodine)chloride, [Cl(I 2 ) 4 ] − , Planar. Angewandte Chemie International Edition 2013, 52 (48) , 12732-12735. https://doi.org/10.1002/anie.201305412
    70. Fatma B. Alhanash, Nicholas A. Barnes, Stephen M. Godfrey, Rana Z. Khan, Robin G. Pritchard. Generation of a high symmetry 2D-polybromide network in the structure of {[(o-SCH3C6H4)3PBr][Br]·0.5(μ-Br2)3}n. The templating effect of the C3 symmetric [(o-SCH3C6H4)3PBr]+ cation. Polyhedron 2013, 65 , 102-109. https://doi.org/10.1016/j.poly.2013.08.027
    71. Mao-sheng Miao. Caesium in high oxidation states and as a p-block element. Nature Chemistry 2013, 5 (10) , 846-852. https://doi.org/10.1038/nchem.1754
    72. Sebastian Riedel, Peter Schwerdtfeger. Beyond state I. Nature Chemistry 2013, 5 (10) , 815-816. https://doi.org/10.1038/nchem.1767
    73. Heike Haller, Jan Schröder, Sebastian Riedel. Strukturbestimmung des Undecabromids [Br 11 ] −. Angewandte Chemie 2013, 125 (18) , 5037-5040. https://doi.org/10.1002/ange.201209928
    74. Heike Haller, Jan Schröder, Sebastian Riedel. Structural Evidence for Undecabromide [Br 11 ] −. Angewandte Chemie International Edition 2013, 52 (18) , 4937-4940. https://doi.org/10.1002/anie.201209928
    75. Xuefeng Wang, Lester Andrews, Felix Brosi, Sebastian Riedel. Matrix Infrared Spectroscopy and Quantum‐Chemical Calculations for the Coinage‐Metal Fluorides: Comparisons of ArAuF, NeAuF, and Molecules MF 2 and MF 3. Chemistry – A European Journal 2013, 19 (4) , 1397-1409. https://doi.org/10.1002/chem.201203306
    76. L. Kloo. Catenated Compounds – Group 17 – Polyhalides. 2013, 233-249. https://doi.org/10.1016/B978-0-08-097774-4.00109-1
    77. S. Riedel. High-Valent Fluorides and Fluoro-Oxidizers. 2013, 187-221. https://doi.org/10.1016/B978-0-08-097774-4.00208-4
    78. T. Schlöder, S. Riedel. Extreme Oxidation States of Transition Metals. 2013, 227-243. https://doi.org/10.1016/B978-0-08-097774-4.00908-6
    79. Thomas Vent-Schmidt, Rodney Dale Hunt, Lester Andrews, Sebastian Riedel. Formation and characterization of HUF and DUF in solid argon. Chemical Communications 2013, 49 (37) , 3863. https://doi.org/10.1039/c3cc41379a
    80. Tobias Schlöder, Thomas Vent‐Schmidt, Sebastian Riedel. A Matrix‐Isolation and Quantum‐Chemical Investigation of FeF 4. Angewandte Chemie 2012, 124 (48) , 12229-12233. https://doi.org/10.1002/ange.201206464
    81. Tobias Schlöder, Thomas Vent‐Schmidt, Sebastian Riedel. A Matrix‐Isolation and Quantum‐Chemical Investigation of FeF 4. Angewandte Chemie International Edition 2012, 51 (48) , 12063-12067. https://doi.org/10.1002/anie.201206464
    82. I. V. Getmanskii, R. M. Minyaev, V. I. Minkin. Effect of counterions on hypervalent interactions in prereaction complexes of S N 2 reactions of bisphenoid compounds of the second and third period elements. Russian Chemical Bulletin 2012, 61 (11) , 2036-2048. https://doi.org/10.1007/s11172-012-0285-1
    83. Xuefeng Wang, Lester Andrews, Knut Willmann, Felix Brosi, Sebastian Riedel. Untersuchung von Goldfluoriden und ihren Edelgaskomplexen durch Matrixisolationsspektroskopie und quantenchemische Rechnungen. Angewandte Chemie 2012, 124 (42) , 10780-10784. https://doi.org/10.1002/ange.201205072
    84. Xuefeng Wang, Lester Andrews, Knut Willmann, Felix Brosi, Sebastian Riedel. Investigation of Gold Fluorides and Noble Gas Complexes by Matrix‐Isolation Spectroscopy and Quantum‐Chemical Calculations. Angewandte Chemie International Edition 2012, 51 (42) , 10628-10632. https://doi.org/10.1002/anie.201205072
    85. Heike Haller, Sebastian Riedel. Überraschende Vielfalt. Nachrichten aus der Chemie 2012, 60 (9) , 865-867. https://doi.org/10.1002/nadc.201290304
    86. Lester Andrews, Xuefeng Wang, Yu Gong, Tobias Schlöder, Sebastian Riedel, Marvin J. Franger. Spektroskopische Beobachtung eines Gruppe‐12‐Oxyfluorids: eine Matrixisolations‐ und quantenchemische Untersuchung von Quecksilberoxyfluoriden. Angewandte Chemie 2012, 124 (33) , 8359-8363. https://doi.org/10.1002/ange.201204331
    87. Lester Andrews, Xuefeng Wang, Yu Gong, Tobias Schlöder, Sebastian Riedel, Marvin J. Franger. Spectroscopic Observation of a Group 12 Oxyfluoride: A Matrix‐Isolation and Quantum‐Chemical Investigation of Mercury Oxyfluorides. Angewandte Chemie International Edition 2012, 51 (33) , 8235-8238. https://doi.org/10.1002/anie.201204331
    88. Robin Brückner, Heike Haller, Mathias Ellwanger, Sebastian Riedel. Polychloride Monoanions from [Cl 3 ] − to [Cl 9 ] − : A Raman Spectroscopic and Quantum Chemical Investigation. Chemistry – A European Journal 2012, 18 (18) , 5741-5747. https://doi.org/10.1002/chem.201103659
    89. Heike Haller, Mathias Ellwanger, Alexander Higelin, Sebastian Riedel. Investigation of Polybromide Monoanions of the Series [NAlk 4 ][Br 9 ] (Alk = Methyl, Ethyl, Propyl, Butyl). Zeitschrift für anorganische und allgemeine Chemie 2012, 638 (3-4) , 553-558. https://doi.org/10.1002/zaac.201100452
    90. Tobias Schlöder, Sebastian Riedel. Investigation of heterodimeric and homodimeric radical cations of the series: [F 2 O 2 ] + , [F 2 Cl 2 ] + , [Cl 2 O 2 ] + , [F 4 ] + , and [Cl 4 ] +. RSC Adv. 2012, 2 (3) , 876-881. https://doi.org/10.1039/C1RA00804H
    91. Heike Haller, Mathias Ellwanger, Alexander Higelin, Sebastian Riedel. Struktureller Beweis für ein höheres Polybromidmonoanion: Untersuchung von [N(C 3 H 7 )][Br 9 ]. Angewandte Chemie 2011, 123 (48) , 11732-11736. https://doi.org/10.1002/ange.201105237
    92. Heike Haller, Mathias Ellwanger, Alexander Higelin, Sebastian Riedel. Structural Proof for a Higher Polybromide Monoanion: Investigation of [N(C 3 H 7 ) 4 ][Br 9 ]. Angewandte Chemie International Edition 2011, 50 (48) , 11528-11532. https://doi.org/10.1002/anie.201105237
    93. Fabio Pichierri. Structure and bonding in polybromide anions Br−(Br2)n (n=1–6). Chemical Physics Letters 2011, 515 (1-3) , 116-121. https://doi.org/10.1016/j.cplett.2011.09.003
    94. Marilyn E. Jacox, Warren E. Thompson. The infrared spectra of BF3+ and BF2OH+ trapped in solid neon. The Journal of Chemical Physics 2011, 134 (19) https://doi.org/10.1063/1.3587133
    95. Michael Wolff, Jens Meyer, Claus Feldmann. [C 4 MPyr] 2 [Br 20 ] – ein dreidimensionales Polybromidnetzwerk durch Synthese in ionischen Flüssigkeiten. Angewandte Chemie 2011, 123 (21) , 5073-5077. https://doi.org/10.1002/ange.201004804
    96. Michael Wolff, Jens Meyer, Claus Feldmann. [C 4 MPyr] 2 [Br 20 ]: Ionic‐Liquid‐Based Synthesis of a Three‐Dimensional Polybromide Network. Angewandte Chemie International Edition 2011, 50 (21) , 4970-4973. https://doi.org/10.1002/anie.201004804
    97. . Personalnachrichten. Nachrichten aus der Chemie 2011, 461-465. https://doi.org/10.1002/nadc.201180496
    98. Ricarda Berger, Giuseppe Resnati, Pierangelo Metrangolo, Edwin Weber, Jürg Hulliger. Organic fluorine compounds: a great opportunity for enhanced materials properties. Chemical Society Reviews 2011, 40 (7) , 3496. https://doi.org/10.1039/c0cs00221f
    99. Pierangelo Metrangolo, Jane S. Murray, Tullio Pilati, Peter Politzer, Giuseppe Resnati, Giancarlo Terraneo. The fluorine atom as a halogen bond donor, viz. a positive site. CrystEngComm 2011, 13 (22) , 6593. https://doi.org/10.1039/c1ce05554b
    100. Michael W. Justik. Halogens. Annual Reports Section "A" (Inorganic Chemistry) 2011, 107 , 125. https://doi.org/10.1039/c1ic90025k
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect