The Use of Polarizable [AuX2(CN)2]− (X = Br, I) Building Blocks Toward the Formation of Birefringent Coordination Polymers
Abstract

The [nBu4N][AuX2(CN)2] (X = Br, I) salts were synthesized and structurally characterized. Both feature square-planar [AuX2(CN)2]− anions, with trans cyano and halo ligands, which aggregate via halogen−halogen interactions. The aggregation of [AuX2(CN)2]− units results in the parallel alignment of all of the Br−Au−Br moieties in the anions along the [110] and [11̅0] directions. Two crystal habits of [nBu4N][AuBr2(CN)2] were grown: with (11̅0) and (001) as the primary faces. The birefringence in the (11̅0) plane was found to be Δn = 0.051(4) and was <0.03 in the (001) plane. Using the [AuBr2(CN)2]− unit, [M(phen)2][AuBr2(CN)2]2 (M = Fe, Ni), [Ni(terpy)2][AuBr2(CN)2]2, [Fe(terpy)2][AuBr2(CN)2][ClO4], and [Cu(phen)2(NO3)][AuBr2(CN)2] (phen = 1,10-phenanthroline, terpy = 2,2′;6′,2′′-terpyridine) were synthesized and structurally characterized: they formed ionic structures with coordinatively saturated metal cations and structurally aligning Br···Br interactions between the [AuBr2(CN)2]− anions. A molecular complex, Cu(terpy)[AuBr2(CN)2]2, was prepared, as well as the coordination polymer, [Ni(en)2(AuBr2(CN)2)][AuBr2(CN)2]·MeOH (en = ethylenediamine). The structure consists of layers of chains of Ni(en)2(AuBr2(CN)2)+ units and chains of unbound [AuBr2(CN)2]− units formed via Br···Br interactions; a Δn = 0.131(3) was measured. The Δn values were related to the supramolecular structures in terms of the relative intermolecular alignment of Br−Au−Br and NC−Au−CN bonds. These measurements both demonstrate the utility of the Au−Br bonds in enhancing birefringence and show that the contribution of the M−CN units to the overall birefringence of cyanometallate coordinations polymers is non-negligible.
Cited By
This article is cited by 39 publications.
- Si-Guo Wu, Long-Fei Wang, Ze-Yu Ruan, Shan-Nan Du, Silvia Gómez-Coca, Zhao-Ping Ni, Eliseo Ruiz, Xiao-Ming Chen, Ming-Liang Tong. Redox-Programmable Spin-Crossover Behaviors in a Cationic Framework. Journal of the American Chemical Society 2022, 144 (32) , 14888-14896. https://doi.org/10.1021/jacs.2c06313
- Ivana Šloufová, Blanka Vlčková, Peter Mojzeš, Irena Matulková, Ivana Císařová, Marek Procházka, Jiří Vohlídal. Probing the Formation, Structure, and Reactivity of Zn(II), Ag(I), and Fe(II) Complexes with 2,2′:6′,2″-Terpyridine on Ag Nanoparticles Surfaces by Time Evolution of SERS Spectra, Factor Analysis, and DFT Calculations. The Journal of Physical Chemistry C 2018, 122 (11) , 6066-6077. https://doi.org/10.1021/acs.jpcc.7b12157
- Sriparna Mukherjee, Chang Liu, and Elena Jakubikova . Comparison of Interfacial Electron Transfer Efficiency in [Fe(ctpy)2]2+–TiO2 and [Fe(cCNC)2]2+–TiO2 Assemblies: Importance of Conformational Sampling. The Journal of Physical Chemistry A 2018, 122 (7) , 1821-1830. https://doi.org/10.1021/acs.jpca.7b10932
- Jeffrey S. Ovens and Daniel B. Leznoff . Thermal Expansion Behavior of MI[AuX2(CN)2]-Based Coordination Polymers (M = Ag, Cu; X = CN, Cl, Br). Inorganic Chemistry 2017, 56 (13) , 7332-7343. https://doi.org/10.1021/acs.inorgchem.6b03153
- James Nance, David N. Bowman, Sriparna Mukherjee, C. T. Kelley, and Elena Jakubikova . Insights into the Spin-State Transitions in [Fe(tpy)2]2+: Importance of the Terpyridine Rocking Motion. Inorganic Chemistry 2015, 54 (23) , 11259-11268. https://doi.org/10.1021/acs.inorgchem.5b01747
- Jeffrey S. Ovens and Daniel B. Leznoff . Raman Detected Sensing of Volatile Organic Compounds by Vapochromic Cu[AuX2(CN)2]2 (X = Cl, Br) Coordination Polymer Materials. Chemistry of Materials 2015, 27 (5) , 1465-1478. https://doi.org/10.1021/cm502998w
- Sriparna Mukherjee, David N. Bowman, and Elena Jakubikova . Cyclometalated Fe(II) Complexes as Sensitizers in Dye-Sensitized Solar Cells. Inorganic Chemistry 2015, 54 (2) , 560-569. https://doi.org/10.1021/ic502438g
- Juan Gil-Rubio, Verónica Cámara, Delia Bautista, and José Vicente . Mono- and Dinuclear Ag(I), Au(I), and Au(III) Metallamacrocycles Containing N-Heterocyclic Dicarbene Ligands. Inorganic Chemistry 2013, 52 (7) , 4071-4083. https://doi.org/10.1021/ic400184p
- Bang-Heng Lyu, Ze-Yu Ruan, Wen Cui, Si-Guo Wu, Zhao-Ping Ni, Ming-Liang Tong. Successive redox modulation in an iron( ii ) spin-crossover framework. Inorganic Chemistry Frontiers 2023, 10 (12) , 3577-3583. https://doi.org/10.1039/D3QI00644A
- D. P. Shevchenko, V. V. Sharutin. Unusual Reactions of Potassium Dihalodicyanoaurates with Organyltriphenylphosphonium Halides. Russian Journal of Coordination Chemistry 2023, 49 (6) , 384-391. https://doi.org/10.1134/S1070328423600304
- D. P. Shevchenko, A. E. Khabina. Synthesis and Structure of the Ionic Complexes [Ph3PEt][Au(CN)2Cl2] and [Ph3PCH2CH2Br][Au(CN)2Br2]. Russian Journal of Coordination Chemistry 2023, 49 (3) , 184-188. https://doi.org/10.1134/S1070328423700392
- D. P. Shevchenko, A. E. Khabina. Structure and Synthesis of Dihalodicyanoaurate Complexes [Ph3PR][Au(CN)2Hal2] (Hal = Cl, R = Me, СH2Ph; Hal = Br, R = cyclo-C6H11; Hal = I, R = Ph). Russian Journal of Coordination Chemistry 2023, 49 (2) , 110-116. https://doi.org/10.1134/S1070328422700361
- D. P. Shevchenko, V. V. Sharutin, O. K. Sharutina. Synthesis and Structure of Gold Complexes [Ph3P(CH2)2CH2Br][Au(CN)2Br2], [Ph4Sb·(DMSO-O)][Au(CN)2Br2], and Ph3PC(H)(COOMe)Au(CN)2Cl. Russian Journal of General Chemistry 2022, 92 (5) , 860-866. https://doi.org/10.1134/S1070363222050152
- D. P. Shevchenko, A. E. Khabina, V. V. Sharutin, O. K. Sharutina, V. S. Senchurin. Synthesis and Structure of Gold Complexes [Ph3PR][Au(CN)2Cl2] (R = CH2CH=CHCH3, CH2CN) and Ph3PC(H)(CN)Au(CN)2Cl. Russian Journal of Coordination Chemistry 2022, 48 (1) , 26-32. https://doi.org/10.1134/S1070328422010055
- V. V. Sharutin, O. K. Sharutina, N. M. Tarasova, О. S. El’tsov. Synthesis and Structure of (4Fluorobenzyl)triphenylphosphonium Dicyanodihaloaurates [Ph3PCH2C6H4F-4][Au(CN)2Hlg2]. Russian Journal of General Chemistry 2021, 91 (11) , 2187-2193. https://doi.org/10.1134/S1070363221110086
- D. P. Shevchenko, A. E. Khabina, V. V. Sharutin, O. K. Sharutina, V. S. Senchurin, O. S. Eltsov. Structures of dibromodicyanoaurate complexes with methoxymethyltriphenylphosphonium and tetraphenylstibonium cations. Russian Chemical Bulletin 2021, 70 (10) , 1946-1950. https://doi.org/10.1007/s11172-021-3301-5
- Guilherme R. Gonçalves, Alexandre B. de Carvalho, João Honorato, Katia M. Oliveira, Rodrigo S. Correa. A new polymorph of six-coordinated bis(5,5′-dimethyl-2,2′-bipyridine) nitratocopper(II) nitrate and its DNA interactions. Journal of Molecular Structure 2021, 1224 , 129035. https://doi.org/10.1016/j.molstruc.2020.129035
- V. V. Sharutin, O. K. Sharutina, N. M. Tarasova, A. N. Efremov, O. S. Eltsov. Synthesis and structure of gold complexes [Ph3PR]+[Au(CN)2I2-trans]−, R = Et, CH2Ph, Ph. Russian Chemical Bulletin 2020, 69 (10) , 1892-1896. https://doi.org/10.1007/s11172-020-2975-4
- V. V. Sharutin, O. K. Sharutina, A. N. Efremov, O. S. Eltsov. Synthesis and Structure of Tetra(para-tolyl)antimony Dicyanodiiodoaurate [p-Tol4Sb][Au(CN)2I2] and Alkyltriphenylphosphonium Dicyanodiiodoaurates [Ph3PAlk][Au(CN)2I2], Alk = Me, CH2CN. Russian Journal of Coordination Chemistry 2020, 46 (9) , 631-638. https://doi.org/10.1134/S1070328420090031
- Jana M. Holthoff, Elric Engelage, Robert Weiss, Stefan M. Huber. “Anti‐elektrostatische” Halogenbrücken. Angewandte Chemie 2020, 132 (27) , 11244-11251. https://doi.org/10.1002/ange.202003083
- Jana M. Holthoff, Elric Engelage, Robert Weiss, Stefan M. Huber. “Anti‐Electrostatic” Halogen Bonding. Angewandte Chemie International Edition 2020, 59 (27) , 11150-11157. https://doi.org/10.1002/anie.202003083
- V. V. Sharutin, O. K. Sharutina, N. M. Tarasova, A. N. Efremov. Trialkyl Triphenyl Phosphonium Dicyanodibromoaurates [Ph3PAlk][Au(CN)2Br2], Alk = CH2C6H4(OH)-2, CH2C6H11-cyclo, CH2Ph, CH2C6H4CN-4. Russian Journal of Inorganic Chemistry 2020, 65 (2) , 169-175. https://doi.org/10.1134/S0036023620020151
- Xin Ding, Matti Tuikka, Kari Rissanen, Matti Haukka. Extended Assemblies of Ru(bpy)(CO)2X2 (X = Cl, Br, I) Molecules Linked by 1,4-Diiodotetrafluoro-Benzene (DITFB) Halogen Bond Donors. Crystals 2019, 9 (6) , 319. https://doi.org/10.3390/cryst9060319
- Jeffrey S. Ovens, Daniel B. Leznoff. Probing halogen⋯halogen interactions via thermal expansion analysis. CrystEngComm 2018, 20 (13) , 1769-1773. https://doi.org/10.1039/C7CE02167D
- Fwu Ming Shen, Shie Fu Lush. Crystal structure of (nitrato-κ O )bis(1,10′-phenanthroline-κ 2 N , N ′)copper(II) nitrate gallic acid monosolvate monohydrate. Acta Crystallographica Section E Crystallographic Communications 2016, 72 (11) , 1577-1580. https://doi.org/10.1107/S2056989016016066
- Xin Ding, Matti J. Tuikka, Pipsa Hirva, Vadim Yu. Kukushkin, Alexander S. Novikov, Matti Haukka. Fine-tuning halogen bonding properties of diiodine through halogen–halogen charge transfer – extended [Ru(2,2′-bipyridine)(CO) 2 X 2 ]·I 2 systems (X = Cl, Br, I). CrystEngComm 2016, 18 (11) , 1987-1995. https://doi.org/10.1039/C5CE02396C
- Frankie White, Richard E. Sykora. Crystal structure of bis(2,2′:6′,2′′-terpyridine-κ 3 N , N ′, N ′′)nickel(II) dicyanidoaurate(I). Acta Crystallographica Section E Structure Reports Online 2014, 70 (12) , 519-521. https://doi.org/10.1107/S1600536814024672
- E. V. Makotchenko, I. A. Baidina, I. V. Korol’kov. Structure of diethylenetriammonium tetrabromoaurates(III). Journal of Structural Chemistry 2014, 55 (5) , 887-894. https://doi.org/10.1134/S0022476614050138
- Ivan Potočňák, Lucia Váhovská, Peter Herich. Low-dimensional compounds containing cyanide groups. XXV. Synthesis, spectroscopic properties and crystal structures of two ionic iron(II) complexes with tricyanomethanide: tris(1,10-phenanthroline-κ 2 N , N ′)iron(II) bis(tricyanomethanide) and tris(2,2′-bipyridine-κ 2 N , N ′)iron(II) bis(tricyanomethanide) sesquihydrate. Acta Crystallographica Section C Structural Chemistry 2014, 70 (5) , 432-436. https://doi.org/10.1107/S2053229614006512
- Sophie E. Canton, Xiaoyi Zhang, Latévi M. Lawson Daku, Amanda L. Smeigh, Jianxin Zhang, Yizhu Liu, Carl-Johan Wallentin, Klaus Attenkofer, Guy Jennings, Charles A. Kurtz, David Gosztola, Kenneth Wärnmark, Andreas Hauser, Villy Sundström. Probing the Anisotropic Distortion of Photoexcited Spin Crossover Complexes with Picosecond X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C 2014, 118 (8) , 4536-4545. https://doi.org/10.1021/jp5003963
- Weihong Wu, Yunxiang Lu, Yingtao Liu, Changjun Peng, Honglai Liu. Substituent and transition metal effects on halogen bonding: CSD search and theoretical study. Computational and Theoretical Chemistry 2014, 1029 , 21-25. https://doi.org/10.1016/j.comptc.2013.12.008
- John R. Thompson, Jeffrey S. Ovens, Vance E. Williams, Daniel B. Leznoff. Supramolecular Assembly of Bis(benzimidazole)pyridine: An Extended Anisotropic Ligand For Highly Birefringent Materials. Chemistry – A European Journal 2013, 19 (49) , 16572-16578. https://doi.org/10.1002/chem.201302659
- Jeffrey S. Ovens, Kimberley N. Truong, Daniel B. Leznoff. Targeting [AuCl2(CN)2]− units as halophilic building blocks in coordination polymers. Inorganica Chimica Acta 2013, 403 , 127-135. https://doi.org/10.1016/j.ica.2013.02.011
- Katarína Lacková, Ivan Potočňák. (Nitrato-κ 2 O , O ′)bis(1,10-phenanthroline-κ 2 N , N ′)copper(II) tricyanomethanide. Acta Crystallographica Section E Structure Reports Online 2012, 68 (12) , m1553-m1554. https://doi.org/10.1107/S1600536812047757
- Edwin W. Y. Wong, Jeffrey S. Ovens, Daniel B. Leznoff. From Low to Very High Birefringence in Bis(2-pyridylimino)isoindolines: Synthesis and Structure-Property Analysis. Chemistry - A European Journal 2012, 18 (22) , 6781-6787. https://doi.org/10.1002/chem.201103421
- Jeffrey S. Ovens, Kimberley N. Truong, Daniel B. Leznoff. Structural organization and dimensionality at the hands of weak intermolecular Au⋯Au, Au⋯X and X⋯X (X = Cl, Br, I) interactions. Dalton Trans. 2012, 41 (4) , 1345-1351. https://doi.org/10.1039/C1DT11741F
- Jeffrey S. Ovens, Andrew R. Geisheimer, Alexei A. Bokov, Zuo-Guang Ye, Daniel B. Leznoff. ChemInform Abstract: The Use of Polarizable [AuX2(CN)2]- (X: Br, I) Building Blocks Toward the Formation of Birefringent Coordination Polymers.. ChemInform 2011, 42 (1) , no-no. https://doi.org/10.1002/chin.201101019
- Jeffrey S. Ovens, Daniel B. Leznoff. Thermally triggered reductive elimination of bromine from Au(iii) as a path to Au(i)-based coordination polymers. Dalton Transactions 2011, 40 (16) , 4140. https://doi.org/10.1039/c0dt01772h
- Hong-Tao Liu, Xiao-Gen Xiong, Phuong Diem Dau, Yi-Lei Wang, Jun Li, Lai-Sheng Wang. The mixed cyanide halide Au(i) complexes, [XAuCN]− (X = F, Cl, Br, and I): evolution from ionic to covalent bonding. Chemical Science 2011, 2 (11) , 2101. https://doi.org/10.1039/c1sc00487e