ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

The Use of Polarizable [AuX2(CN)2] (X = Br, I) Building Blocks Toward the Formation of Birefringent Coordination Polymers

View Author Information
Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
*To whom correspondence should be addressed. E-mail: [email protected] (Z.-G.Y.); [email protected]. (D.B.L.).
Cite this: Inorg. Chem. 2010, 49, 20, 9609–9616
Publication Date (Web):September 22, 2010
https://doi.org/10.1021/ic101357y
Copyright © 2010 American Chemical Society

    Article Views

    780

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    The [nBu4N][AuX2(CN)2] (X = Br, I) salts were synthesized and structurally characterized. Both feature square-planar [AuX2(CN)2] anions, with trans cyano and halo ligands, which aggregate via halogen−halogen interactions. The aggregation of [AuX2(CN)2] units results in the parallel alignment of all of the Br−Au−Br moieties in the anions along the [110] and [11̅0] directions. Two crystal habits of [nBu4N][AuBr2(CN)2] were grown: with (11̅0) and (001) as the primary faces. The birefringence in the (11̅0) plane was found to be Δn = 0.051(4) and was <0.03 in the (001) plane. Using the [AuBr2(CN)2] unit, [M(phen)2][AuBr2(CN)2]2 (M = Fe, Ni), [Ni(terpy)2][AuBr2(CN)2]2, [Fe(terpy)2][AuBr2(CN)2][ClO4], and [Cu(phen)2(NO3)][AuBr2(CN)2] (phen = 1,10-phenanthroline, terpy = 2,2′;6′,2′′-terpyridine) were synthesized and structurally characterized: they formed ionic structures with coordinatively saturated metal cations and structurally aligning Br···Br interactions between the [AuBr2(CN)2] anions. A molecular complex, Cu(terpy)[AuBr2(CN)2]2, was prepared, as well as the coordination polymer, [Ni(en)2(AuBr2(CN)2)][AuBr2(CN)2]·MeOH (en = ethylenediamine). The structure consists of layers of chains of Ni(en)2(AuBr2(CN)2)+ units and chains of unbound [AuBr2(CN)2] units formed via Br···Br interactions; a Δn = 0.131(3) was measured. The Δn values were related to the supramolecular structures in terms of the relative intermolecular alignment of Br−Au−Br and NC−Au−CN bonds. These measurements both demonstrate the utility of the Au−Br bonds in enhancing birefringence and show that the contribution of the M−CN units to the overall birefringence of cyanometallate coordinations polymers is non-negligible.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Single-crystal X-ray crystallographic data in CIF format for all compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 39 publications.

    1. Si-Guo Wu, Long-Fei Wang, Ze-Yu Ruan, Shan-Nan Du, Silvia Gómez-Coca, Zhao-Ping Ni, Eliseo Ruiz, Xiao-Ming Chen, Ming-Liang Tong. Redox-Programmable Spin-Crossover Behaviors in a Cationic Framework. Journal of the American Chemical Society 2022, 144 (32) , 14888-14896. https://doi.org/10.1021/jacs.2c06313
    2. Ivana Šloufová, Blanka Vlčková, Peter Mojzeš, Irena Matulková, Ivana Císařová, Marek Procházka, Jiří Vohlídal. Probing the Formation, Structure, and Reactivity of Zn(II), Ag(I), and Fe(II) Complexes with 2,2′:6′,2″-Terpyridine on Ag Nanoparticles Surfaces by Time Evolution of SERS Spectra, Factor Analysis, and DFT Calculations. The Journal of Physical Chemistry C 2018, 122 (11) , 6066-6077. https://doi.org/10.1021/acs.jpcc.7b12157
    3. Sriparna Mukherjee, Chang Liu, and Elena Jakubikova . Comparison of Interfacial Electron Transfer Efficiency in [Fe(ctpy)2]2+–TiO2 and [Fe(cCNC)2]2+–TiO2 Assemblies: Importance of Conformational Sampling. The Journal of Physical Chemistry A 2018, 122 (7) , 1821-1830. https://doi.org/10.1021/acs.jpca.7b10932
    4. Jeffrey S. Ovens and Daniel B. Leznoff . Thermal Expansion Behavior of MI[AuX2(CN)2]-Based Coordination Polymers (M = Ag, Cu; X = CN, Cl, Br). Inorganic Chemistry 2017, 56 (13) , 7332-7343. https://doi.org/10.1021/acs.inorgchem.6b03153
    5. James Nance, David N. Bowman, Sriparna Mukherjee, C. T. Kelley, and Elena Jakubikova . Insights into the Spin-State Transitions in [Fe(tpy)2]2+: Importance of the Terpyridine Rocking Motion. Inorganic Chemistry 2015, 54 (23) , 11259-11268. https://doi.org/10.1021/acs.inorgchem.5b01747
    6. Jeffrey S. Ovens and Daniel B. Leznoff . Raman Detected Sensing of Volatile Organic Compounds by Vapochromic Cu[AuX2(CN)2]2 (X = Cl, Br) Coordination Polymer Materials. Chemistry of Materials 2015, 27 (5) , 1465-1478. https://doi.org/10.1021/cm502998w
    7. Sriparna Mukherjee, David N. Bowman, and Elena Jakubikova . Cyclometalated Fe(II) Complexes as Sensitizers in Dye-Sensitized Solar Cells. Inorganic Chemistry 2015, 54 (2) , 560-569. https://doi.org/10.1021/ic502438g
    8. Juan Gil-Rubio, Verónica Cámara, Delia Bautista, and José Vicente . Mono- and Dinuclear Ag(I), Au(I), and Au(III) Metallamacrocycles Containing N-Heterocyclic Dicarbene Ligands. Inorganic Chemistry 2013, 52 (7) , 4071-4083. https://doi.org/10.1021/ic400184p
    9. Bang-Heng Lyu, Ze-Yu Ruan, Wen Cui, Si-Guo Wu, Zhao-Ping Ni, Ming-Liang Tong. Successive redox modulation in an iron( ii ) spin-crossover framework. Inorganic Chemistry Frontiers 2023, 10 (12) , 3577-3583. https://doi.org/10.1039/D3QI00644A
    10. D. P. Shevchenko, V. V. Sharutin. Unusual Reactions of Potassium Dihalodicyanoaurates with Organyltriphenylphosphonium Halides. Russian Journal of Coordination Chemistry 2023, 49 (6) , 384-391. https://doi.org/10.1134/S1070328423600304
    11. D. P. Shevchenko, A. E. Khabina. Synthesis and Structure of the Ionic Complexes [Ph3PEt][Au(CN)2Cl2] and [Ph3PCH2CH2Br][Au(CN)2Br2]. Russian Journal of Coordination Chemistry 2023, 49 (3) , 184-188. https://doi.org/10.1134/S1070328423700392
    12. D. P. Shevchenko, A. E. Khabina. Structure and Synthesis of Dihalodicyanoaurate Complexes [Ph3PR][Au(CN)2Hal2] (Hal = Cl, R = Me, СH2Ph; Hal = Br, R = cyclo-C6H11; Hal = I, R = Ph). Russian Journal of Coordination Chemistry 2023, 49 (2) , 110-116. https://doi.org/10.1134/S1070328422700361
    13. D. P. Shevchenko, V. V. Sharutin, O. K. Sharutina. Synthesis and Structure of Gold Complexes [Ph3P(CH2)2CH2Br][Au(CN)2Br2], [Ph4Sb·(DMSO-O)][Au(CN)2Br2], and Ph3PC(H)(COOMe)Au(CN)2Cl. Russian Journal of General Chemistry 2022, 92 (5) , 860-866. https://doi.org/10.1134/S1070363222050152
    14. D. P. Shevchenko, A. E. Khabina, V. V. Sharutin, O. K. Sharutina, V. S. Senchurin. Synthesis and Structure of Gold Complexes [Ph3PR][Au(CN)2Cl2] (R = CH2CH=CHCH3, CH2CN) and Ph3PC(H)(CN)Au(CN)2Cl. Russian Journal of Coordination Chemistry 2022, 48 (1) , 26-32. https://doi.org/10.1134/S1070328422010055
    15. V. V. Sharutin, O. K. Sharutina, N. M. Tarasova, О. S. El’tsov. Synthesis and Structure of (4Fluorobenzyl)triphenylphosphonium Dicyanodihaloaurates [Ph3PCH2C6H4F-4][Au(CN)2Hlg2]. Russian Journal of General Chemistry 2021, 91 (11) , 2187-2193. https://doi.org/10.1134/S1070363221110086
    16. D. P. Shevchenko, A. E. Khabina, V. V. Sharutin, O. K. Sharutina, V. S. Senchurin, O. S. Eltsov. Structures of dibromodicyanoaurate complexes with methoxymethyltriphenylphosphonium and tetraphenylstibonium cations. Russian Chemical Bulletin 2021, 70 (10) , 1946-1950. https://doi.org/10.1007/s11172-021-3301-5
    17. Guilherme R. Gonçalves, Alexandre B. de Carvalho, João Honorato, Katia M. Oliveira, Rodrigo S. Correa. A new polymorph of six-coordinated bis(5,5′-dimethyl-2,2′-bipyridine) nitratocopper(II) nitrate and its DNA interactions. Journal of Molecular Structure 2021, 1224 , 129035. https://doi.org/10.1016/j.molstruc.2020.129035
    18. V. V. Sharutin, O. K. Sharutina, N. M. Tarasova, A. N. Efremov, O. S. Eltsov. Synthesis and structure of gold complexes [Ph3PR]+[Au(CN)2I2-trans]−, R = Et, CH2Ph, Ph. Russian Chemical Bulletin 2020, 69 (10) , 1892-1896. https://doi.org/10.1007/s11172-020-2975-4
    19. V. V. Sharutin, O. K. Sharutina, A. N. Efremov, O. S. Eltsov. Synthesis and Structure of Tetra(para-tolyl)antimony Dicyanodiiodoaurate [p-Tol4Sb][Au(CN)2I2] and Alkyltriphenylphosphonium Dicyanodiiodoaurates [Ph3PAlk][Au(CN)2I2], Alk = Me, CH2CN. Russian Journal of Coordination Chemistry 2020, 46 (9) , 631-638. https://doi.org/10.1134/S1070328420090031
    20. Jana M. Holthoff, Elric Engelage, Robert Weiss, Stefan M. Huber. “Anti‐elektrostatische” Halogenbrücken. Angewandte Chemie 2020, 132 (27) , 11244-11251. https://doi.org/10.1002/ange.202003083
    21. Jana M. Holthoff, Elric Engelage, Robert Weiss, Stefan M. Huber. “Anti‐Electrostatic” Halogen Bonding. Angewandte Chemie International Edition 2020, 59 (27) , 11150-11157. https://doi.org/10.1002/anie.202003083
    22. V. V. Sharutin, O. K. Sharutina, N. M. Tarasova, A. N. Efremov. Trialkyl Triphenyl Phosphonium Dicyanodibromoaurates [Ph3PAlk][Au(CN)2Br2], Alk = CH2C6H4(OH)-2, CH2C6H11-cyclo, CH2Ph, CH2C6H4CN-4. Russian Journal of Inorganic Chemistry 2020, 65 (2) , 169-175. https://doi.org/10.1134/S0036023620020151
    23. Xin Ding, Matti Tuikka, Kari Rissanen, Matti Haukka. Extended Assemblies of Ru(bpy)(CO)2X2 (X = Cl, Br, I) Molecules Linked by 1,4-Diiodotetrafluoro-Benzene (DITFB) Halogen Bond Donors. Crystals 2019, 9 (6) , 319. https://doi.org/10.3390/cryst9060319
    24. Jeffrey S. Ovens, Daniel B. Leznoff. Probing halogen⋯halogen interactions via thermal expansion analysis. CrystEngComm 2018, 20 (13) , 1769-1773. https://doi.org/10.1039/C7CE02167D
    25. Fwu Ming Shen, Shie Fu Lush. Crystal structure of (nitrato-κ O )bis(1,10′-phenanthroline-κ 2 N , N ′)copper(II) nitrate gallic acid monosolvate monohydrate. Acta Crystallographica Section E Crystallographic Communications 2016, 72 (11) , 1577-1580. https://doi.org/10.1107/S2056989016016066
    26. Xin Ding, Matti J. Tuikka, Pipsa Hirva, Vadim Yu. Kukushkin, Alexander S. Novikov, Matti Haukka. Fine-tuning halogen bonding properties of diiodine through halogen–halogen charge transfer – extended [Ru(2,2′-bipyridine)(CO) 2 X 2 ]·I 2 systems (X = Cl, Br, I). CrystEngComm 2016, 18 (11) , 1987-1995. https://doi.org/10.1039/C5CE02396C
    27. Frankie White, Richard E. Sykora. Crystal structure of bis(2,2′:6′,2′′-terpyridine-κ 3 N , N ′, N ′′)nickel(II) dicyanidoaurate(I). Acta Crystallographica Section E Structure Reports Online 2014, 70 (12) , 519-521. https://doi.org/10.1107/S1600536814024672
    28. E. V. Makotchenko, I. A. Baidina, I. V. Korol’kov. Structure of diethylenetriammonium tetrabromoaurates(III). Journal of Structural Chemistry 2014, 55 (5) , 887-894. https://doi.org/10.1134/S0022476614050138
    29. Ivan Potočňák, Lucia Váhovská, Peter Herich. Low-dimensional compounds containing cyanide groups. XXV. Synthesis, spectroscopic properties and crystal structures of two ionic iron(II) complexes with tricyanomethanide: tris(1,10-phenanthroline-κ 2 N , N ′)iron(II) bis(tricyanomethanide) and tris(2,2′-bipyridine-κ 2 N , N ′)iron(II) bis(tricyanomethanide) sesquihydrate. Acta Crystallographica Section C Structural Chemistry 2014, 70 (5) , 432-436. https://doi.org/10.1107/S2053229614006512
    30. Sophie E. Canton, Xiaoyi Zhang, Latévi M. Lawson Daku, Amanda L. Smeigh, Jianxin Zhang, Yizhu Liu, Carl-Johan Wallentin, Klaus Attenkofer, Guy Jennings, Charles A. Kurtz, David Gosztola, Kenneth Wärnmark, Andreas Hauser, Villy Sundström. Probing the Anisotropic Distortion of Photoexcited Spin Crossover Complexes with Picosecond X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C 2014, 118 (8) , 4536-4545. https://doi.org/10.1021/jp5003963
    31. Weihong Wu, Yunxiang Lu, Yingtao Liu, Changjun Peng, Honglai Liu. Substituent and transition metal effects on halogen bonding: CSD search and theoretical study. Computational and Theoretical Chemistry 2014, 1029 , 21-25. https://doi.org/10.1016/j.comptc.2013.12.008
    32. John R. Thompson, Jeffrey S. Ovens, Vance E. Williams, Daniel B. Leznoff. Supramolecular Assembly of Bis(benzimidazole)pyridine: An Extended Anisotropic Ligand For Highly Birefringent Materials. Chemistry – A European Journal 2013, 19 (49) , 16572-16578. https://doi.org/10.1002/chem.201302659
    33. Jeffrey S. Ovens, Kimberley N. Truong, Daniel B. Leznoff. Targeting [AuCl2(CN)2]− units as halophilic building blocks in coordination polymers. Inorganica Chimica Acta 2013, 403 , 127-135. https://doi.org/10.1016/j.ica.2013.02.011
    34. Katarína Lacková, Ivan Potočňák. (Nitrato-κ 2 O , O ′)bis(1,10-phenanthroline-κ 2 N , N ′)copper(II) tricyanomethanide. Acta Crystallographica Section E Structure Reports Online 2012, 68 (12) , m1553-m1554. https://doi.org/10.1107/S1600536812047757
    35. Edwin W. Y. Wong, Jeffrey S. Ovens, Daniel B. Leznoff. From Low to Very High Birefringence in Bis(2-pyridylimino)isoindolines: Synthesis and Structure-Property Analysis. Chemistry - A European Journal 2012, 18 (22) , 6781-6787. https://doi.org/10.1002/chem.201103421
    36. Jeffrey S. Ovens, Kimberley N. Truong, Daniel B. Leznoff. Structural organization and dimensionality at the hands of weak intermolecular Au⋯Au, Au⋯X and X⋯X (X = Cl, Br, I) interactions. Dalton Trans. 2012, 41 (4) , 1345-1351. https://doi.org/10.1039/C1DT11741F
    37. Jeffrey S. Ovens, Andrew R. Geisheimer, Alexei A. Bokov, Zuo-Guang Ye, Daniel B. Leznoff. ChemInform Abstract: The Use of Polarizable [AuX2(CN)2]- (X: Br, I) Building Blocks Toward the Formation of Birefringent Coordination Polymers.. ChemInform 2011, 42 (1) , no-no. https://doi.org/10.1002/chin.201101019
    38. Jeffrey S. Ovens, Daniel B. Leznoff. Thermally triggered reductive elimination of bromine from Au(iii) as a path to Au(i)-based coordination polymers. Dalton Transactions 2011, 40 (16) , 4140. https://doi.org/10.1039/c0dt01772h
    39. Hong-Tao Liu, Xiao-Gen Xiong, Phuong Diem Dau, Yi-Lei Wang, Jun Li, Lai-Sheng Wang. The mixed cyanide halide Au(i) complexes, [XAuCN]− (X = F, Cl, Br, and I): evolution from ionic to covalent bonding. Chemical Science 2011, 2 (11) , 2101. https://doi.org/10.1039/c1sc00487e

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect