ACS Publications. Most Trusted. Most Cited. Most Read
Theoretical Investigation of Paramagnetic NMR Shifts in Transition Metal Acetylacetonato Complexes: Analysis of Signs, Magnitudes, and the Role of the Covalency of Ligand–Metal Bonding
My Activity
    Article

    Theoretical Investigation of Paramagnetic NMR Shifts in Transition Metal Acetylacetonato Complexes: Analysis of Signs, Magnitudes, and the Role of the Covalency of Ligand–Metal Bonding
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
    Other Access OptionsSupporting Information (1)

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2012, 51, 15, 8340–8351
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ic300868v
    Published July 26, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Ligand chemical shifts are calculated and analyzed for three paramagnetic transition metal tris-acetylacetonato (acac) complexes, namely high-spin Fe(III) and Cr(III), and low-spin Ru(III), using scalar relativistic density functional theory (DFT). The signs and magnitudes of the paramagnetic NMR ligand chemical shifts are directly related to the extent of covalent acac oxygen-to-metal σ donation involving unoccupied metal valence dσ acceptor orbitals. The role of delocalization of metal-centered spin density over the ligand atoms plays a minor secondary role. Of particular interest is the origin of the sign and magnitude of the methyl carbon chemical shift in the acac ligands, and the role played by the DFT delocalization error when calculating such shifts. It is found that the α versus β spin balance of oxygen σ donation to metal valence d acceptor orbitals is responsible for the sign and the magnitude of the ligand methyl carbon chemical shift. A problematic case is the methyl carbon shift of Fe(acac)3. Most functionals produce shifts in excess of 1400 ppm, whereas the experimental shift is approximately 279 ppm. Range-separated hybrid functionals that are optimally tuned for Fe(acac)3 based on DFT energetic criteria predict a lower limit of about 2000 ppm for the methyl carbon shift of the high-spin electronic configuration. Since the experimental value is based on a very strongly broadened signal it is possibly unreliable.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Isosurface plots of selected LMOs for the tris-acetylacetonato complexes; TMS shielding values; a breakdown of methyl 13C pNMR shifts into orbital, FC, and PC contributions; ZFS data; and additional information about the optimal tuning procedure of section 3.6. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 58 publications.

    1. Matthieu Autillo, Marie-Claire Illy, Luca Briscese, Md. Ashraful Islam, Hélène Bolvin, Claude Berthon. Paramagnetic Properties of [AnIV(NO3)6]2− Complexes (An = U, Np, Pu) Probed by NMR Spectroscopy and Quantum Chemical Calculations. Inorganic Chemistry 2024, 63 (28) , 12969-12980. https://doi.org/10.1021/acs.inorgchem.4c01694
    2. Artur Wodyński, Bryan Lauw, Marc Reimann, Martin Kaupp. Spin-Symmetry Breaking and Hyperfine Couplings in Transition-Metal Complexes Revisited Using Density Functionals Based on the Exact-Exchange Energy Density. Journal of Chemical Theory and Computation 2024, 20 (5) , 2033-2048. https://doi.org/10.1021/acs.jctc.3c01422
    3. Ryma Haddad, Yingrui Zhao, Antoine Miche, Ferdaous Ben Romdhane, Nivedita Sudheer, Ovidiu Ersen, François Devred, François Ribot, Capucine Sassoye, Clement Sanchez, Damien P. Debecker, Corinne Chaneac, Cédric Boissière. Solvent-free Preparation of Ru/Al2O3 Catalysts for CO2 Methanation: An Example of Frugal Innovation. Chemistry of Materials 2023, 35 (19) , 8248-8260. https://doi.org/10.1021/acs.chemmater.3c01746
    4. Jan Novotný, Lukáš Jeremias, Patrick Nimax, Stanislav Komorovsky, Ivo Heinmaa, Radek Marek. Crystal and Substituent Effects on Paramagnetic NMR Shifts in Transition-Metal Complexes. Inorganic Chemistry 2021, 60 (13) , 9368-9377. https://doi.org/10.1021/acs.inorgchem.1c00204
    5. Akash Bajaj, Heather J. Kulik. Molecular DFT+U: A Transferable, Low-Cost Approach to Eliminate Delocalization Error. The Journal of Physical Chemistry Letters 2021, 12 (14) , 3633-3640. https://doi.org/10.1021/acs.jpclett.1c00796
    6. Fang Liu, Heather J. Kulik. Impact of Approximate DFT Density Delocalization Error on Potential Energy Surfaces in Transition Metal Chemistry. Journal of Chemical Theory and Computation 2020, 16 (1) , 264-277. https://doi.org/10.1021/acs.jctc.9b00842
    7. Jon Paul Janet, Fang Liu, Aditya Nandy, Chenru Duan, Tzuhsiung Yang, Sean Lin, Heather J. Kulik. Designing in the Face of Uncertainty: Exploiting Electronic Structure and Machine Learning Models for Discovery in Inorganic Chemistry. Inorganic Chemistry 2019, 58 (16) , 10592-10606. https://doi.org/10.1021/acs.inorgchem.9b00109
    8. Arobendo Mondal, Martin Kaupp. Computation of NMR Shifts for Paramagnetic Solids Including Zero-Field-Splitting and Beyond-DFT Approaches. Application to LiMPO4 (M = Mn, Fe, Co, Ni) and MPO4 (M = Fe, Co). The Journal of Physical Chemistry C 2019, 123 (13) , 8387-8405. https://doi.org/10.1021/acs.jpcc.8b09645
    9. Brett M. Hakey, Jonathan M. Darmon, Yu Zhang, Jeffrey L. Petersen, Carsten Milsmann. Synthesis and Electronic Structure of Neutral Square-Planar High-Spin Iron(II) Complexes Supported by a Dianionic Pincer Ligand. Inorganic Chemistry 2019, 58 (2) , 1252-1266. https://doi.org/10.1021/acs.inorgchem.8b02730
    10. Pankaj L. Bora, Jan Novotný, Kenneth Ruud, Stanislav Komorovsky, Radek Marek. Electron-Spin Structure and Metal–Ligand Bonding in Open-Shell Systems from Relativistic EPR and NMR: A Case Study of Square-Planar Iridium Catalysts. Journal of Chemical Theory and Computation 2019, 15 (1) , 201-214. https://doi.org/10.1021/acs.jctc.8b00914
    11. Caspar J. Schattenberg, Toni M. Maier, Martin Kaupp. Lessons from the Spin-Polarization/Spin-Contamination Dilemma of Transition-Metal Hyperfine Couplings for the Construction of Exchange-Correlation Functionals. Journal of Chemical Theory and Computation 2018, 14 (11) , 5653-5672. https://doi.org/10.1021/acs.jctc.8b00597
    12. Lukáš Jeremias, Jan Novotný, Michal Repisky, Stanislav Komorovsky, Radek Marek. Interplay of Through-Bond Hyperfine and Substituent Effects on the NMR Chemical Shifts in Ru(III) Complexes. Inorganic Chemistry 2018, 57 (15) , 8748-8759. https://doi.org/10.1021/acs.inorgchem.8b00073
    13. Qing Zhao and Heather J. Kulik . Where Does the Density Localize in the Solid State? Divergent Behavior for Hybrids and DFT+U. Journal of Chemical Theory and Computation 2018, 14 (2) , 670-683. https://doi.org/10.1021/acs.jctc.7b01061
    14. Jan Novotný, David Přichystal, Martin Sojka, Stanislav Komorovsky, Marek Nečas, and Radek Marek . Hyperfine Effects in Ligand NMR: Paramagnetic Ru(III) Complexes with 3-Substituted Pyridines. Inorganic Chemistry 2018, 57 (2) , 641-652. https://doi.org/10.1021/acs.inorgchem.7b02440
    15. Arobendo Mondal, Michael W. Gaultois, Andrew J. Pell, Marcella Iannuzzi, Clare P. Grey, Jürg Hutter, and Martin Kaupp . Large-Scale Computation of Nuclear Magnetic Resonance Shifts for Paramagnetic Solids Using CP2K. Journal of Chemical Theory and Computation 2018, 14 (1) , 377-394. https://doi.org/10.1021/acs.jctc.7b00991
    16. Terry Z. H. Gani and Heather J. Kulik . Unifying Exchange Sensitivity in Transition-Metal Spin-State Ordering and Catalysis through Bond Valence Metrics. Journal of Chemical Theory and Computation 2017, 13 (11) , 5443-5457. https://doi.org/10.1021/acs.jctc.7b00848
    17. Eser S. Akturk, Steven J. Scappaticci, Rachel N. Seals, and Michael P. Marshak . Bulky β-Diketones Enabling New Lewis Acidic Ligand Platforms. Inorganic Chemistry 2017, 56 (19) , 11466-11469. https://doi.org/10.1021/acs.inorgchem.7b02077
    18. Miguel Cortijo, Christine Viala, Thibault Reynaldo, Ludovic Favereau, Isabelle Fabing, Monika Srebro-Hooper, Jochen Autschbach, Nicolas Ratel-Ramond, Jeanne Crassous, and Jacques Bonvoisin . Synthesis, Spectroelectrochemical Behavior, and Chiroptical Switching of Tris(β-diketonato) Complexes of Ruthenium(III), Chromium(III), and Cobalt(III). Inorganic Chemistry 2017, 56 (8) , 4555-4567. https://doi.org/10.1021/acs.inorgchem.6b03094
    19. Terry Z. H. Gani and Heather J. Kulik . Where Does the Density Localize? Convergent Behavior for Global Hybrids, Range Separation, and DFT+U. Journal of Chemical Theory and Computation 2016, 12 (12) , 5931-5945. https://doi.org/10.1021/acs.jctc.6b00937
    20. Frédéric Gendron and Jochen Autschbach . Ligand NMR Chemical Shift Calculations for Paramagnetic Metal Complexes: 5f1 vs 5f2 Actinides. Journal of Chemical Theory and Computation 2016, 12 (11) , 5309-5321. https://doi.org/10.1021/acs.jctc.6b00462
    21. Jan Novotný, Martin Sojka, Stanislav Komorovsky, Marek Nečas, and Radek Marek . Interpreting the Paramagnetic NMR Spectra of Potential Ru(III) Metallodrugs: Synergy between Experiment and Relativistic DFT Calculations. Journal of the American Chemical Society 2016, 138 (27) , 8432-8445. https://doi.org/10.1021/jacs.6b02749
    22. Thomas J. Duignan and Jochen Autschbach . Impact of the Kohn–Sham Delocalization Error on the 4f Shell Localization and Population in Lanthanide Complexes. Journal of Chemical Theory and Computation 2016, 12 (7) , 3109-3121. https://doi.org/10.1021/acs.jctc.6b00238
    23. Kamal Sharkas, Ben Pritchard, and Jochen Autschbach . Effects from Spin–Orbit Coupling on Electron–Nucleus Hyperfine Coupling Calculated at the Restricted Active Space Level for Kramers Doublets. Journal of Chemical Theory and Computation 2015, 11 (2) , 538-549. https://doi.org/10.1021/ct500988h
    24. Jochen Autschbach and Monika Srebro . Delocalization Error and “Functional Tuning” in Kohn–Sham Calculations of Molecular Properties. Accounts of Chemical Research 2014, 47 (8) , 2592-2602. https://doi.org/10.1021/ar500171t
    25. Frédéric Gendron, Ben Pritchard, Hélène Bolvin, and Jochen Autschbach . Magnetic Resonance Properties of Actinyl Carbonate Complexes and Plutonyl(VI)-tris-nitrate. Inorganic Chemistry 2014, 53 (16) , 8577-8592. https://doi.org/10.1021/ic501168a
    26. Haitao Sun and Jochen Autschbach . Electronic Energy Gaps for π-Conjugated Oligomers and Polymers Calculated with Density Functional Theory. Journal of Chemical Theory and Computation 2014, 10 (3) , 1035-1047. https://doi.org/10.1021/ct4009975
    27. Stanislav Komorovsky, Michal Repisky, Kenneth Ruud, Olga L. Malkina, and Vladimir G. Malkin . Four-Component Relativistic Density Functional Theory Calculations of NMR Shielding Tensors for Paramagnetic Systems. The Journal of Physical Chemistry A 2013, 117 (51) , 14209-14219. https://doi.org/10.1021/jp408389h
    28. Véronique Patinec, Gabriele A. Rolla, Mauro Botta, Raphaël Tripier, David Esteban-Gómez, and Carlos Platas-Iglesias . Hyperfine Coupling Constants on Inner-Sphere Water Molecules of a Triazacyclononane-based Mn(II) Complex and Related Systems Relevant as MRI Contrast Agents. Inorganic Chemistry 2013, 52 (19) , 11173-11184. https://doi.org/10.1021/ic4014366
    29. Prakash Verma and Jochen Autschbach . Variational versus Perturbational Treatment of Spin–Orbit Coupling in Relativistic Density Functional Calculations of Electronic g Factors: Effects from Spin-Polarization and Exact Exchange. Journal of Chemical Theory and Computation 2013, 9 (2) , 1052-1067. https://doi.org/10.1021/ct3009864
    30. Aurora Rodríguez-Rodríguez, David Esteban-Gómez, Andrés de Blas, Teresa Rodríguez-Blas, Mauro Botta, Raphaël Tripier, and Carlos Platas-Iglesias . Solution Structure of Ln(III) Complexes with Macrocyclic Ligands Through Theoretical Evaluation of 1H NMR Contact Shifts. Inorganic Chemistry 2012, 51 (24) , 13419-13429. https://doi.org/10.1021/ic302322r
    31. Sayak Roy, Biprajit Sarkar, Hans-Georg Imrich, Jan Fiedler, Stanislav Záliš, Reyes Jimenez-Aparicio, Francisco A. Urbanos, Shaikh M. Mobin, Goutam Kumar Lahiri, and Wolfgang Kaim . Charged, but Found “Not Guilty”: Innocence of the Suspect Bridging Ligands [RO(O)CNNC(O)OR]2– = L2– in [(acac)2Ru(μ-L)Ru(acac)2]n, n = +,0,–,2–. Inorganic Chemistry 2012, 51 (17) , 9273-9281. https://doi.org/10.1021/ic300809w
    32. Md. Ashraful Islam, Andrew J. Pell. Delving into theoretical and computational considerations for accurate calculation of chemical shifts in paramagnetic transition metal systems using quantum chemical methods. Physical Chemistry Chemical Physics 2024, 26 (16) , 12786-12798. https://doi.org/10.1039/D4CP00683F
    33. Jochen Autschbach. Quantum Chemistry of d- and f-Block Elements. 2024, 177-192. https://doi.org/10.1016/B978-0-12-821978-2.00134-3
    34. Ari Pyykkönen, Juha Vaara. Computational NMR of the iron pyrazolylborate complexes [Tp 2 Fe] + and Tp 2 Fe including solvation and spin-crossover effects. Physical Chemistry Chemical Physics 2023, 25 (4) , 3121-3135. https://doi.org/10.1039/D2CP03721A
    35. Aleksander Jaworski, Niklas Hedin. Electron correlation and vibrational effects in predictions of paramagnetic NMR shifts. Physical Chemistry Chemical Physics 2022, 24 (25) , 15230-15244. https://doi.org/10.1039/D2CP01206E
    36. Akash Bajaj, Chenru Duan, Aditya Nandy, Michael G. Taylor, Heather J. Kulik. Molecular orbital projectors in non-empirical jmDFT recover exact conditions in transition-metal chemistry. The Journal of Chemical Physics 2022, 156 (18) https://doi.org/10.1063/5.0089460
    37. James Shee, Matthias Loipersberger, Diptarka Hait, Joonho Lee, Martin Head-Gordon. Revealing the nature of electron correlation in transition metal complexes with symmetry breaking and chemical intuition. The Journal of Chemical Physics 2021, 154 (19) https://doi.org/10.1063/5.0047386
    38. Abril C. Castro, Marcel Swart. Recent Advances in Computational NMR Spectrum Prediction. 2020, 41-68. https://doi.org/10.1039/9781788015882-00041
    39. Aditya Nandy, Daniel B. K. Chu, Daniel R. Harper, Chenru Duan, Naveen Arunachalam, Yael Cytter, Heather J. Kulik. Large-scale comparison of 3d and 4d transition metal complexes illuminates the reduced effect of exchange on second-row spin-state energetics. Physical Chemistry Chemical Physics 2020, 22 (34) , 19326-19341. https://doi.org/10.1039/D0CP02977G
    40. Anders B. A. Andersen, Ari Pyykkönen, Hans Jørgen Aa. Jensen, Vickie McKee, Juha Vaara, Ulla Gro Nielsen. Remarkable reversal of 13 C-NMR assignment in d 1 , d 2 compared to d 8 , d 9 acetylacetonate complexes: analysis and explanation based on solid-state MAS NMR and computations. Physical Chemistry Chemical Physics 2020, 22 (15) , 8048-8059. https://doi.org/10.1039/D0CP00980F
    41. Stefan Gugler, Jon Paul Janet, Heather J. Kulik. Enumeration of de novo inorganic complexes for chemical discovery and machine learning. Molecular Systems Design & Engineering 2020, 5 (1) , 139-152. https://doi.org/10.1039/C9ME00069K
    42. Kirill Levin, Scott Kroeker. Probing Jahn-Teller distortions in Mn(acac)3 through paramagnetic interactions in solid-state MAS NMR. Solid State Nuclear Magnetic Resonance 2019, 101 , 101-109. https://doi.org/10.1016/j.ssnmr.2019.05.004
    43. Andrew J. Pell, Guido Pintacuda, Clare P. Grey. Paramagnetic NMR in solution and the solid state. Progress in Nuclear Magnetic Resonance Spectroscopy 2019, 111 , 1-271. https://doi.org/10.1016/j.pnmrs.2018.05.001
    44. Anders Øwre, Morten Vinum, Michal Kern, Joris Van Slageren, Jesper Bendix, Mauro Perfetti. Chiral, Heterometallic Lanthanide–Transition Metal Complexes by Design. Inorganics 2018, 6 (3) , 72. https://doi.org/10.3390/inorganics6030072
    45. Evert Jan Baerends. Density functional approximations for orbital energies and total energies of molecules and solids. The Journal of Chemical Physics 2018, 149 (5) https://doi.org/10.1063/1.5026951
    46. Dumitru-Claudiu Sergentu, Frédéric Gendron, Jochen Autschbach. Similar ligand–metal bonding for transition metals and actinides? 5f 1 U(C 7 H 7 ) 2 − versus 3d n metallocenes. Chemical Science 2018, 9 (29) , 6292-6306. https://doi.org/10.1039/C7SC05373H
    47. S. Carlotto, L. Floreano, A. Cossaro, M. Dominguez, M. Rancan, M. Sambi, M. Casarin. The electronic properties of three popular high spin complexes [TM(acac) 3 , TM = Cr, Mn, and Fe] revisited: an experimental and theoretical study. Physical Chemistry Chemical Physics 2017, 19 (36) , 24840-24854. https://doi.org/10.1039/C7CP04461E
    48. Marko Damjanović, Prinson P. Samuel, Herbert W. Roesky, Markus Enders. NMR analysis of an Fe( i )–carbene complex with strong magnetic anisotropy. Dalton Transactions 2017, 46 (16) , 5159-5169. https://doi.org/10.1039/C7DT00408G
    49. Bob Martin, Jochen Autschbach. Kohn–Sham calculations of NMR shifts for paramagnetic 3d metal complexes: protocols, delocalization error, and the curious amide proton shifts of a high-spin iron( ii ) macrocycle complex. Physical Chemistry Chemical Physics 2016, 18 (31) , 21051-21068. https://doi.org/10.1039/C5CP07667F
    50. Andrea Borgogno, Federico Rastrelli, Alessandro Bagno. Characterization of Paramagnetic Reactive Intermediates: Predicting the NMR Spectra of Iron(IV)–Oxo Complexes by DFT. Chemistry – A European Journal 2015, 21 (37) , 12960-12970. https://doi.org/10.1002/chem.201500864
    51. Xianqi Kong, Victor V. Terskikh, Rahul L. Khade, Liu Yang, Amber Rorick, Yong Zhang, Peng He, Yining Huang, Gang Wu. Solid‐State 17 O NMR Spectroscopy of Paramagnetic Coordination Compounds. Angewandte Chemie 2015, 127 (16) , 4835-4839. https://doi.org/10.1002/ange.201409888
    52. Xianqi Kong, Victor V. Terskikh, Rahul L. Khade, Liu Yang, Amber Rorick, Yong Zhang, Peng He, Yining Huang, Gang Wu. Solid‐State 17 O NMR Spectroscopy of Paramagnetic Coordination Compounds. Angewandte Chemie International Edition 2015, 54 (16) , 4753-4757. https://doi.org/10.1002/anie.201409888
    53. Bob Martin, Jochen Autschbach. Temperature dependence of contact and dipolar NMR chemical shifts in paramagnetic molecules. The Journal of Chemical Physics 2015, 142 (5) https://doi.org/10.1063/1.4906318
    54. Ana R. Freitas, Mónica Silva, M. Luísa Ramos, Licínia L. G. Justino, Sofia M. Fonseca, Madalina M. Barsan, Christopher M. A. Brett, M. Ramos Silva, Hugh D. Burrows. Synthesis, structure, and spectral and electrochemical properties of chromium( iii ) tris-(8-hydroxyquinolinate). Dalton Transactions 2015, 44 (25) , 11491-11503. https://doi.org/10.1039/C5DT00727E
    55. Jochen Autschbach. NMR Calculations for Paramagnetic Molecules and Metal Complexes. 2015, 3-36. https://doi.org/10.1016/bs.arcc.2015.09.006
    56. William C. Isley III, Salvatore Zarra, Rebecca K. Carlson, Rana A. Bilbeisi, Tanya K. Ronson, Jonathan R. Nitschke, Laura Gagliardi, Christopher J. Cramer. Predicting paramagnetic 1 H NMR chemical shifts and state-energy separations in spin-crossover host–guest systems. Phys. Chem. Chem. Phys. 2014, 16 (22) , 10620-10628. https://doi.org/10.1039/C4CP01478B
    57. Andrea Borgogno, Federico Rastrelli, Alessandro Bagno. Predicting the spin state of paramagnetic iron complexes by DFT calculation of proton NMR spectra. Dalton Trans. 2014, 43 (25) , 9486-9496. https://doi.org/10.1039/C4DT00671B
    58. Juha Vaara. Chemical Shift in Paramagnetic Systems. 2013, 41-67. https://doi.org/10.1016/B978-0-444-59411-2.00003-4

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2012, 51, 15, 8340–8351
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ic300868v
    Published July 26, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    2489

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.