Theoretical Investigation of Paramagnetic NMR Shifts in Transition Metal Acetylacetonato Complexes: Analysis of Signs, Magnitudes, and the Role of the Covalency of Ligand–Metal BondingClick to copy article linkArticle link copied!
Abstract
Ligand chemical shifts are calculated and analyzed for three paramagnetic transition metal tris-acetylacetonato (acac) complexes, namely high-spin Fe(III) and Cr(III), and low-spin Ru(III), using scalar relativistic density functional theory (DFT). The signs and magnitudes of the paramagnetic NMR ligand chemical shifts are directly related to the extent of covalent acac oxygen-to-metal σ donation involving unoccupied metal valence dσ acceptor orbitals. The role of delocalization of metal-centered spin density over the ligand atoms plays a minor secondary role. Of particular interest is the origin of the sign and magnitude of the methyl carbon chemical shift in the acac ligands, and the role played by the DFT delocalization error when calculating such shifts. It is found that the α versus β spin balance of oxygen σ donation to metal valence d acceptor orbitals is responsible for the sign and the magnitude of the ligand methyl carbon chemical shift. A problematic case is the methyl carbon shift of Fe(acac)3. Most functionals produce shifts in excess of 1400 ppm, whereas the experimental shift is approximately 279 ppm. Range-separated hybrid functionals that are optimally tuned for Fe(acac)3 based on DFT energetic criteria predict a lower limit of about 2000 ppm for the methyl carbon shift of the high-spin electronic configuration. Since the experimental value is based on a very strongly broadened signal it is possibly unreliable.
Cited By
This article is cited by 58 publications.
- Matthieu Autillo, Marie-Claire Illy, Luca Briscese, Md. Ashraful Islam, Hélène Bolvin, Claude Berthon. Paramagnetic Properties of [AnIV(NO3)6]2− Complexes (An = U, Np, Pu) Probed by NMR Spectroscopy and Quantum Chemical Calculations. Inorganic Chemistry 2024, 63
(28)
, 12969-12980. https://doi.org/10.1021/acs.inorgchem.4c01694
- Artur Wodyński, Bryan Lauw, Marc Reimann, Martin Kaupp. Spin-Symmetry Breaking and Hyperfine Couplings in Transition-Metal Complexes Revisited Using Density Functionals Based on the Exact-Exchange Energy Density. Journal of Chemical Theory and Computation 2024, 20
(5)
, 2033-2048. https://doi.org/10.1021/acs.jctc.3c01422
- Ryma Haddad, Yingrui Zhao, Antoine Miche, Ferdaous Ben Romdhane, Nivedita Sudheer, Ovidiu Ersen, François Devred, François Ribot, Capucine Sassoye, Clement Sanchez, Damien P. Debecker, Corinne Chaneac, Cédric Boissière. Solvent-free Preparation of Ru/Al2O3 Catalysts for CO2 Methanation: An Example of Frugal Innovation. Chemistry of Materials 2023, 35
(19)
, 8248-8260. https://doi.org/10.1021/acs.chemmater.3c01746
- Jan Novotný, Lukáš Jeremias, Patrick Nimax, Stanislav Komorovsky, Ivo Heinmaa, Radek Marek. Crystal and Substituent Effects on Paramagnetic NMR Shifts in Transition-Metal Complexes. Inorganic Chemistry 2021, 60
(13)
, 9368-9377. https://doi.org/10.1021/acs.inorgchem.1c00204
- Akash Bajaj, Heather J. Kulik. Molecular DFT+U: A Transferable, Low-Cost Approach to Eliminate Delocalization Error. The Journal of Physical Chemistry Letters 2021, 12
(14)
, 3633-3640. https://doi.org/10.1021/acs.jpclett.1c00796
- Fang Liu, Heather J. Kulik. Impact of Approximate DFT Density Delocalization Error on Potential Energy Surfaces in Transition Metal Chemistry. Journal of Chemical Theory and Computation 2020, 16
(1)
, 264-277. https://doi.org/10.1021/acs.jctc.9b00842
- Jon Paul Janet, Fang Liu, Aditya Nandy, Chenru Duan, Tzuhsiung Yang, Sean Lin, Heather J. Kulik. Designing in the Face of Uncertainty: Exploiting Electronic Structure and Machine Learning Models for Discovery in Inorganic Chemistry. Inorganic Chemistry 2019, 58
(16)
, 10592-10606. https://doi.org/10.1021/acs.inorgchem.9b00109
- Arobendo Mondal, Martin Kaupp. Computation of NMR Shifts for Paramagnetic Solids Including Zero-Field-Splitting and Beyond-DFT Approaches. Application to LiMPO4 (M = Mn, Fe, Co, Ni) and MPO4 (M = Fe, Co). The Journal of Physical Chemistry C 2019, 123
(13)
, 8387-8405. https://doi.org/10.1021/acs.jpcc.8b09645
- Brett
M. Hakey, Jonathan M. Darmon, Yu Zhang, Jeffrey L. Petersen, Carsten Milsmann. Synthesis and Electronic Structure of Neutral Square-Planar High-Spin Iron(II) Complexes Supported by a Dianionic Pincer Ligand. Inorganic Chemistry 2019, 58
(2)
, 1252-1266. https://doi.org/10.1021/acs.inorgchem.8b02730
- Pankaj
L. Bora, Jan Novotný, Kenneth Ruud, Stanislav Komorovsky, Radek Marek. Electron-Spin Structure and Metal–Ligand Bonding in Open-Shell Systems from Relativistic EPR and NMR: A Case Study of Square-Planar Iridium Catalysts. Journal of Chemical Theory and Computation 2019, 15
(1)
, 201-214. https://doi.org/10.1021/acs.jctc.8b00914
- Caspar
J. Schattenberg, Toni M. Maier, Martin Kaupp. Lessons from the Spin-Polarization/Spin-Contamination Dilemma of Transition-Metal Hyperfine Couplings for the Construction of Exchange-Correlation Functionals. Journal of Chemical Theory and Computation 2018, 14
(11)
, 5653-5672. https://doi.org/10.1021/acs.jctc.8b00597
- Lukáš Jeremias, Jan Novotný, Michal Repisky, Stanislav Komorovsky, Radek Marek. Interplay of Through-Bond Hyperfine and Substituent Effects on the NMR Chemical Shifts in Ru(III) Complexes. Inorganic Chemistry 2018, 57
(15)
, 8748-8759. https://doi.org/10.1021/acs.inorgchem.8b00073
- Qing Zhao and Heather J. Kulik . Where Does the Density Localize in the Solid State? Divergent Behavior for Hybrids and DFT+U. Journal of Chemical Theory and Computation 2018, 14
(2)
, 670-683. https://doi.org/10.1021/acs.jctc.7b01061
- Jan Novotný, David Přichystal, Martin Sojka, Stanislav Komorovsky, Marek Nečas, and Radek Marek . Hyperfine Effects in Ligand NMR: Paramagnetic Ru(III) Complexes with 3-Substituted Pyridines. Inorganic Chemistry 2018, 57
(2)
, 641-652. https://doi.org/10.1021/acs.inorgchem.7b02440
- Arobendo Mondal, Michael W. Gaultois, Andrew J. Pell, Marcella Iannuzzi, Clare P. Grey, Jürg Hutter, and Martin Kaupp . Large-Scale Computation of Nuclear Magnetic Resonance Shifts for Paramagnetic Solids Using CP2K. Journal of Chemical Theory and Computation 2018, 14
(1)
, 377-394. https://doi.org/10.1021/acs.jctc.7b00991
- Terry Z. H. Gani and Heather J. Kulik . Unifying Exchange Sensitivity in Transition-Metal Spin-State Ordering and Catalysis through Bond Valence Metrics. Journal of Chemical Theory and Computation 2017, 13
(11)
, 5443-5457. https://doi.org/10.1021/acs.jctc.7b00848
- Eser S. Akturk, Steven J. Scappaticci, Rachel N. Seals, and Michael P. Marshak . Bulky β-Diketones Enabling New Lewis Acidic Ligand Platforms. Inorganic Chemistry 2017, 56
(19)
, 11466-11469. https://doi.org/10.1021/acs.inorgchem.7b02077
- Miguel Cortijo, Christine Viala, Thibault Reynaldo, Ludovic Favereau, Isabelle Fabing, Monika Srebro-Hooper, Jochen Autschbach, Nicolas Ratel-Ramond, Jeanne Crassous, and Jacques Bonvoisin . Synthesis, Spectroelectrochemical Behavior, and Chiroptical Switching of Tris(β-diketonato) Complexes of Ruthenium(III), Chromium(III), and Cobalt(III). Inorganic Chemistry 2017, 56
(8)
, 4555-4567. https://doi.org/10.1021/acs.inorgchem.6b03094
- Terry Z. H. Gani and Heather J. Kulik . Where Does the Density Localize? Convergent Behavior for Global Hybrids, Range Separation, and DFT+U. Journal of Chemical Theory and Computation 2016, 12
(12)
, 5931-5945. https://doi.org/10.1021/acs.jctc.6b00937
- Frédéric Gendron and Jochen Autschbach . Ligand NMR Chemical Shift Calculations for Paramagnetic Metal Complexes: 5f1 vs 5f2 Actinides. Journal of Chemical Theory and Computation 2016, 12
(11)
, 5309-5321. https://doi.org/10.1021/acs.jctc.6b00462
- Jan Novotný, Martin Sojka, Stanislav Komorovsky, Marek Nečas, and Radek Marek . Interpreting the Paramagnetic NMR Spectra of Potential Ru(III) Metallodrugs: Synergy between Experiment and Relativistic DFT Calculations. Journal of the American Chemical Society 2016, 138
(27)
, 8432-8445. https://doi.org/10.1021/jacs.6b02749
- Thomas J. Duignan and Jochen Autschbach . Impact of the Kohn–Sham Delocalization Error on the 4f Shell Localization and Population in Lanthanide Complexes. Journal of Chemical Theory and Computation 2016, 12
(7)
, 3109-3121. https://doi.org/10.1021/acs.jctc.6b00238
- Kamal Sharkas, Ben Pritchard, and Jochen Autschbach . Effects from Spin–Orbit Coupling on Electron–Nucleus Hyperfine Coupling Calculated at the Restricted Active Space Level for Kramers Doublets. Journal of Chemical Theory and Computation 2015, 11
(2)
, 538-549. https://doi.org/10.1021/ct500988h
- Jochen Autschbach and Monika Srebro . Delocalization Error and “Functional Tuning” in Kohn–Sham Calculations of Molecular Properties. Accounts of Chemical Research 2014, 47
(8)
, 2592-2602. https://doi.org/10.1021/ar500171t
- Frédéric Gendron, Ben Pritchard, Hélène Bolvin, and Jochen Autschbach . Magnetic Resonance Properties of Actinyl Carbonate Complexes and Plutonyl(VI)-tris-nitrate. Inorganic Chemistry 2014, 53
(16)
, 8577-8592. https://doi.org/10.1021/ic501168a
- Haitao Sun and Jochen Autschbach . Electronic Energy Gaps for π-Conjugated Oligomers and Polymers Calculated with Density Functional Theory. Journal of Chemical Theory and Computation 2014, 10
(3)
, 1035-1047. https://doi.org/10.1021/ct4009975
- Stanislav Komorovsky, Michal Repisky, Kenneth Ruud, Olga L. Malkina, and Vladimir G. Malkin . Four-Component Relativistic Density Functional Theory Calculations of NMR Shielding Tensors for Paramagnetic Systems. The Journal of Physical Chemistry A 2013, 117
(51)
, 14209-14219. https://doi.org/10.1021/jp408389h
- Véronique Patinec, Gabriele A. Rolla, Mauro Botta, Raphaël Tripier, David Esteban-Gómez, and Carlos Platas-Iglesias . Hyperfine Coupling Constants on Inner-Sphere Water Molecules of a Triazacyclononane-based Mn(II) Complex and Related Systems Relevant as MRI Contrast Agents. Inorganic Chemistry 2013, 52
(19)
, 11173-11184. https://doi.org/10.1021/ic4014366
- Prakash Verma and Jochen Autschbach . Variational versus Perturbational Treatment of Spin–Orbit Coupling in Relativistic Density Functional Calculations of Electronic g Factors: Effects from Spin-Polarization and Exact Exchange. Journal of Chemical Theory and Computation 2013, 9
(2)
, 1052-1067. https://doi.org/10.1021/ct3009864
- Aurora Rodríguez-Rodríguez, David Esteban-Gómez, Andrés de Blas, Teresa Rodríguez-Blas, Mauro Botta, Raphaël Tripier, and Carlos Platas-Iglesias . Solution Structure of Ln(III) Complexes with Macrocyclic Ligands Through Theoretical Evaluation of 1H NMR Contact Shifts. Inorganic Chemistry 2012, 51
(24)
, 13419-13429. https://doi.org/10.1021/ic302322r
- Sayak Roy, Biprajit Sarkar, Hans-Georg Imrich, Jan Fiedler, Stanislav Záliš, Reyes Jimenez-Aparicio, Francisco A. Urbanos, Shaikh M. Mobin, Goutam Kumar Lahiri, and Wolfgang Kaim . Charged, but Found “Not Guilty”: Innocence of the Suspect Bridging Ligands [RO(O)CNNC(O)OR]2– = L2– in [(acac)2Ru(μ-L)Ru(acac)2]n, n = +,0,–,2–. Inorganic Chemistry 2012, 51
(17)
, 9273-9281. https://doi.org/10.1021/ic300809w
- Md. Ashraful Islam, Andrew J. Pell. Delving into theoretical and computational considerations for accurate calculation of chemical shifts in paramagnetic transition metal systems using quantum chemical methods. Physical Chemistry Chemical Physics 2024, 26
(16)
, 12786-12798. https://doi.org/10.1039/D4CP00683F
- Jochen Autschbach. Quantum Chemistry of d- and f-Block Elements. 2024, 177-192. https://doi.org/10.1016/B978-0-12-821978-2.00134-3
- Ari Pyykkönen, Juha Vaara. Computational NMR of the iron pyrazolylborate complexes [Tp
2
Fe]
+
and Tp
2
Fe including solvation and spin-crossover effects. Physical Chemistry Chemical Physics 2023, 25
(4)
, 3121-3135. https://doi.org/10.1039/D2CP03721A
- Aleksander Jaworski, Niklas Hedin. Electron correlation and vibrational effects in predictions of paramagnetic NMR shifts. Physical Chemistry Chemical Physics 2022, 24
(25)
, 15230-15244. https://doi.org/10.1039/D2CP01206E
- Akash Bajaj, Chenru Duan, Aditya Nandy, Michael G. Taylor, Heather J. Kulik. Molecular orbital projectors in non-empirical jmDFT recover exact conditions in transition-metal chemistry. The Journal of Chemical Physics 2022, 156
(18)
https://doi.org/10.1063/5.0089460
- James Shee, Matthias Loipersberger, Diptarka Hait, Joonho Lee, Martin Head-Gordon. Revealing the nature of electron correlation in transition metal complexes with symmetry breaking and chemical intuition. The Journal of Chemical Physics 2021, 154
(19)
https://doi.org/10.1063/5.0047386
- Abril C. Castro, Marcel Swart. Recent Advances in Computational NMR Spectrum Prediction. 2020, 41-68. https://doi.org/10.1039/9781788015882-00041
- Aditya Nandy, Daniel B. K. Chu, Daniel R. Harper, Chenru Duan, Naveen Arunachalam, Yael Cytter, Heather J. Kulik. Large-scale comparison of 3d and 4d transition metal complexes illuminates the reduced effect of exchange on second-row spin-state energetics. Physical Chemistry Chemical Physics 2020, 22
(34)
, 19326-19341. https://doi.org/10.1039/D0CP02977G
- Anders B. A. Andersen, Ari Pyykkönen, Hans Jørgen Aa. Jensen, Vickie McKee, Juha Vaara, Ulla Gro Nielsen. Remarkable reversal of
13
C-NMR assignment in d
1
, d
2
compared to d
8
, d
9
acetylacetonate complexes: analysis and explanation based on solid-state MAS NMR and computations. Physical Chemistry Chemical Physics 2020, 22
(15)
, 8048-8059. https://doi.org/10.1039/D0CP00980F
- Stefan Gugler, Jon Paul Janet, Heather J. Kulik. Enumeration of
de novo
inorganic complexes for chemical discovery and machine learning. Molecular Systems Design & Engineering 2020, 5
(1)
, 139-152. https://doi.org/10.1039/C9ME00069K
- Kirill Levin, Scott Kroeker. Probing Jahn-Teller distortions in Mn(acac)3 through paramagnetic interactions in solid-state MAS NMR. Solid State Nuclear Magnetic Resonance 2019, 101 , 101-109. https://doi.org/10.1016/j.ssnmr.2019.05.004
- Andrew J. Pell, Guido Pintacuda, Clare P. Grey. Paramagnetic NMR in solution and the solid state. Progress in Nuclear Magnetic Resonance Spectroscopy 2019, 111 , 1-271. https://doi.org/10.1016/j.pnmrs.2018.05.001
- Anders Øwre, Morten Vinum, Michal Kern, Joris Van Slageren, Jesper Bendix, Mauro Perfetti. Chiral, Heterometallic Lanthanide–Transition Metal Complexes by Design. Inorganics 2018, 6
(3)
, 72. https://doi.org/10.3390/inorganics6030072
- Evert Jan Baerends. Density functional approximations for orbital energies and total energies of molecules and solids. The Journal of Chemical Physics 2018, 149
(5)
https://doi.org/10.1063/1.5026951
- Dumitru-Claudiu Sergentu, Frédéric Gendron, Jochen Autschbach. Similar ligand–metal bonding for transition metals and actinides? 5f
1
U(C
7
H
7
)
2
−
versus
3d
n
metallocenes. Chemical Science 2018, 9
(29)
, 6292-6306. https://doi.org/10.1039/C7SC05373H
- S. Carlotto, L. Floreano, A. Cossaro, M. Dominguez, M. Rancan, M. Sambi, M. Casarin. The electronic properties of three popular high spin complexes [TM(acac)
3
, TM = Cr, Mn, and Fe] revisited: an experimental and theoretical study. Physical Chemistry Chemical Physics 2017, 19
(36)
, 24840-24854. https://doi.org/10.1039/C7CP04461E
- Marko Damjanović, Prinson P. Samuel, Herbert W. Roesky, Markus Enders. NMR analysis of an Fe(
i
)–carbene complex with strong magnetic anisotropy. Dalton Transactions 2017, 46
(16)
, 5159-5169. https://doi.org/10.1039/C7DT00408G
- Bob Martin, Jochen Autschbach. Kohn–Sham calculations of NMR shifts for paramagnetic 3d metal complexes: protocols, delocalization error, and the curious amide proton shifts of a high-spin iron(
ii
) macrocycle complex. Physical Chemistry Chemical Physics 2016, 18
(31)
, 21051-21068. https://doi.org/10.1039/C5CP07667F
- Andrea Borgogno, Federico Rastrelli, Alessandro Bagno. Characterization of Paramagnetic Reactive Intermediates: Predicting the NMR Spectra of Iron(IV)–Oxo Complexes by DFT. Chemistry – A European Journal 2015, 21
(37)
, 12960-12970. https://doi.org/10.1002/chem.201500864
- Xianqi Kong, Victor V. Terskikh, Rahul L. Khade, Liu Yang, Amber Rorick, Yong Zhang, Peng He, Yining Huang, Gang Wu. Solid‐State
17
O NMR Spectroscopy of Paramagnetic Coordination Compounds. Angewandte Chemie 2015, 127
(16)
, 4835-4839. https://doi.org/10.1002/ange.201409888
- Xianqi Kong, Victor V. Terskikh, Rahul L. Khade, Liu Yang, Amber Rorick, Yong Zhang, Peng He, Yining Huang, Gang Wu. Solid‐State
17
O NMR Spectroscopy of Paramagnetic Coordination Compounds. Angewandte Chemie International Edition 2015, 54
(16)
, 4753-4757. https://doi.org/10.1002/anie.201409888
- Bob Martin, Jochen Autschbach. Temperature dependence of contact and dipolar NMR chemical shifts in paramagnetic molecules. The Journal of Chemical Physics 2015, 142
(5)
https://doi.org/10.1063/1.4906318
- Ana R. Freitas, Mónica Silva, M. Luísa Ramos, Licínia L. G. Justino, Sofia M. Fonseca, Madalina M. Barsan, Christopher M. A. Brett, M. Ramos Silva, Hugh D. Burrows. Synthesis, structure, and spectral and electrochemical properties of chromium(
iii
) tris-(8-hydroxyquinolinate). Dalton Transactions 2015, 44
(25)
, 11491-11503. https://doi.org/10.1039/C5DT00727E
- Jochen Autschbach. NMR Calculations for Paramagnetic Molecules and Metal Complexes. 2015, 3-36. https://doi.org/10.1016/bs.arcc.2015.09.006
- William C. Isley III, Salvatore Zarra, Rebecca K. Carlson, Rana A. Bilbeisi, Tanya K. Ronson, Jonathan R. Nitschke, Laura Gagliardi, Christopher J. Cramer. Predicting paramagnetic
1
H NMR chemical shifts and state-energy separations in spin-crossover host–guest systems. Phys. Chem. Chem. Phys. 2014, 16
(22)
, 10620-10628. https://doi.org/10.1039/C4CP01478B
- Andrea Borgogno, Federico Rastrelli, Alessandro Bagno. Predicting the spin state of paramagnetic iron complexes by DFT calculation of proton NMR spectra. Dalton Trans. 2014, 43
(25)
, 9486-9496. https://doi.org/10.1039/C4DT00671B
- Juha Vaara. Chemical Shift in Paramagnetic Systems. 2013, 41-67. https://doi.org/10.1016/B978-0-444-59411-2.00003-4
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.