ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Solution Structures, Stabilities, Kinetics, and Dynamics of DO3A and DO3A–Sulphonamide Complexes

View Author Information
Department of Inorganic and Analytical Chemistry, MTA-DE Homogeneous Catalysis and Reaction Mechanisms Research Group, §Department of Physical Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
Centro Ricerche Bracco, Bracco Imaging Spa, Via Ribes 5, I-10010 Colleretto Giacosa, Italy
Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
*E-mail: [email protected]. Fax: +36 518-600. Tel.: +36 52-512-900/23209 (Z.B.).
*E-mail: [email protected]. Fax: +39-011-6706487. Tel.: +39-011-6706451 (S.A.).
Cite this: Inorg. Chem. 2014, 53, 6, 2858–2872
Publication Date (Web):February 24, 2014
https://doi.org/10.1021/ic4025958
Copyright © 2014 American Chemical Society

    Article Views

    1447

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    The Gd3+-DO3A–arylsulphonamide (DO3A–SA) complex is a promising pH-sensitive MRI agent. The stability constants of the DO3A–SA and DO3A complexes formed with Mg2+, Ca2+, Mn2+, Zn2+, and Cu2+ ions are similar, whereas the logKLnL values of Ln(DO3A–SA) complexes are 2 orders of magnitude higher than those of the Ln(DO3A) complexes. The protonation constant (log KMHL) of the sulphonamide nitrogen in the Mg2+, Ca2+, Mn2+, Zn2+, and Cu2+ complexes is very similar to that of the free ligand, whereas the logKLnHL values of the Ln(DO3A–SA) complexes are lower by about 4 logK units, indicating a strong interaction between the Ln3+ ions and the sulphonamide N atom. The Ln(HDO3A–SA) complexes are formed via triprotonated *Ln(H3DO3A–SA) intermediates which rearrange to the final complex in an OH-assisted deprotonation process. The transmetalation reaction of Gd(HDO3A–SA) with Cu2+ is very slow (t1/2 = 5.6 × 103 h at pH = 7.4), and it mainly occurs through proton-assisted dissociation of the complex. The 1H and 13C NMR spectra of the La-, Eu-, Y-, and Lu(DO3A–SA) complexes have been assigned using 2D correlation spectroscopy (COSY, EXSY, HSQC). Two sets of signals are observed for Eu-, Y-, and Lu(DO3A–SA), showing two coordination isomers in solution, that is, square antiprismatic (SAP) and twisted square antiprismatic (TSAP) geometries with ratios of 86–14, 93– 7, and 94–6%, respectively. Line shape analysis of the 13C NMR spectra of La-, Y- , and Lu(DO3A–SA) gives higher rates and lower activation entropy values compared to Ln(DOTA) for the arm rotation, which indicates that the Ln(DO3A–SA) complexes are less rigid due to the larger flexibility of the ethylene group in the sulphonamide pendant arm. The fast isomerization and the lower activation parameters of Ln(DO3A–SA) have been confirmed by theoretical calculations in vacuo and by using the polarizable continuum model. The solid state X-ray structure of Cu(H2DO3A–SA) shows distorted octahedral coordination. The coordination sites of Cu2+ are occupied by two ring N- and two carboxylate O-atoms in equatorial position. The other two ring N-atoms complete the coordination sphere in axial positions. The solid state structure also indicates that a carboxylate O atom and the sulphonamide nitrogen are protonated and noncoordinated.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Experimental details for the characterization of thermodynamic and kinetic properties of the DO3A–SA and DO3A complexes of Mg2+, Ca2+, Mn2+, Zn2+, Cu2+, and Ln3+ ions. The bond distance and angle data of Cu(H2DO3A–SA) complex in the solid state. 1H, 13C, and 2D EXSY NMR spectra of Ln(DO3A–SA) complexes. The main structural parameters and the Gibbs free energies of the SAPR ↔ TSAPR and SAPL ↔ TSAPL interconversions of the Ln(DO3A–SA) complexes. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 52 publications.

    1. Ngô Minh Toàn, Adrienn Vágner, Gábor Nagy, Gábor Ország, Tamás Nagy, Csaba Csikos, Balázs Váradi, Gergő Zoltán Sajtos, István Kapus, Zoltán Szoboszlai, Dezső Szikra, György Trencsényi, Gyula Tircsó, Ildikó Garai. [52Mn]Mn-BPPA-Trastuzumab: A Promising HER2-Specific PET Radiotracer. Journal of Medicinal Chemistry 2024, 67 (10) , 8261-8270. https://doi.org/10.1021/acs.jmedchem.4c00344
    2. Yong Jian, Gengshen Mo, Weiyuan Xu, Yao Liu, Zhichao Zhang, Yinghui Ding, Ruonan Gao, Jiao Xu, Jiang Zhu, Kun Shu, Zhihan Yan, Fabio Carniato, Carlos Platas-Iglesias, Fangfu Ye, Mauro Botta, Lixiong Dai. Chiral Pyclen-Based Heptadentate Chelates as Highly Stable MRI Contrast Agents. Inorganic Chemistry 2024, 63 (18) , 8462-8475. https://doi.org/10.1021/acs.inorgchem.4c01028
    3. Alexander M. Brown, Jana L. Butman, Raphael Lengacher, Natasha P. Vargo, Kirsten E. Martin, Angus Koller, Dariusz Śmiłowicz, Eszter Boros, Jerome R. Robinson. N,N-Alkylation Clarifies the Role of N- and O-Protonated Intermediates in Cyclen-Based 64Cu Radiopharmaceuticals. Inorganic Chemistry 2023, 62 (4) , 1362-1376. https://doi.org/10.1021/acs.inorgchem.2c02907
    4. Giulia Licciardi, Domenico Rizzo, Maria Salobehaj, Lara Massai, Andrea Geri, Luigi Messori, Enrico Ravera, Marco Fragai, Giacomo Parigi. Large Protein Assemblies for High-Relaxivity Contrast Agents: The Case of Gadolinium-Labeled Asparaginase. Bioconjugate Chemistry 2022, 33 (12) , 2411-2419. https://doi.org/10.1021/acs.bioconjchem.2c00506
    5. Rocío Uzal-Varela, Francisco Pérez-Fernández, Laura Valencia, Aurora Rodríguez-Rodríguez, Carlos Platas-Iglesias, Peter Caravan, David Esteban-Gómez. Thermodynamic Stability of Mn(II) Complexes with Aminocarboxylate Ligands Analyzed Using Structural Descriptors. Inorganic Chemistry 2022, 61 (35) , 14173-14186. https://doi.org/10.1021/acs.inorgchem.2c02364
    6. Fátima Lucio-Martínez, Zoltán Garda, Balázs Váradi, Ferenc Krisztián Kálmán, David Esteban-Gómez, Éva Tóth, Gyula Tircsó, Carlos Platas-Iglesias. Rigidified Derivative of the Non-macrocyclic Ligand H4OCTAPA for Stable Lanthanide(III) Complexation. Inorganic Chemistry 2022, 61 (12) , 5157-5171. https://doi.org/10.1021/acs.inorgchem.2c00501
    7. Zoltán Garda, Enikő Molnár, Nadège Hamon, José Luis Barriada, David Esteban-Gómez, Balázs Váradi, Viktória Nagy, Kristof Pota, Ferenc Krisztián Kálmán, Imre Tóth, Norbert Lihi, Carlos Platas-Iglesias, Éva Tóth, Raphaël Tripier, Gyula Tircsó. Complexation of Mn(II) by Rigid Pyclen Diacetates: Equilibrium, Kinetic, Relaxometric, Density Functional Theory, and Superoxide Dismutase Activity Studies. Inorganic Chemistry 2021, 60 (2) , 1133-1148. https://doi.org/10.1021/acs.inorgchem.0c03276
    8. Rocío Uzal-Varela, Aurora Rodríguez-Rodríguez, Miguel Martínez-Calvo, Fabio Carniato, Daniela Lalli, David Esteban-Gómez, Isabel Brandariz, Paulo Pérez-Lourido, Mauro Botta, Carlos Platas-Iglesias. Mn2+ Complexes Containing Sulfonamide Groups with pH-Responsive Relaxivity. Inorganic Chemistry 2020, 59 (19) , 14306-14317. https://doi.org/10.1021/acs.inorgchem.0c02098
    9. Zoltán Garda, Viktoria Nagy, Aurora Rodríguez-Rodríguez, Rosa Pujales-Paradela, Véronique Patinec, Goran Angelovski, Éva Tóth, Ferenc K. Kálmán, David Esteban-Gómez, Raphaël Tripier, Carlos Platas-Iglesias, Gyula Tircsó. Unexpected Trends in the Stability and Dissociation Kinetics of Lanthanide(III) Complexes with Cyclen-Based Ligands across the Lanthanide Series. Inorganic Chemistry 2020, 59 (12) , 8184-8195. https://doi.org/10.1021/acs.inorgchem.0c00520
    10. Richárd Botár, Enikő Molnár, György Trencsényi, János Kiss, Ferenc K. Kálmán, Gyula Tircsó. Stable and Inert Mn(II)-Based and pH-Responsive Contrast Agents. Journal of the American Chemical Society 2020, 142 (4) , 1662-1666. https://doi.org/10.1021/jacs.9b09407
    11. Nadine Leygue, Chantal Galaup, Alberto Lopera, Estefanía Delgado-Pinar, René M. Williams, Heinz Gornitzka, Jurriaan M. Zwier, Enrique García-España, Laurent Lamarque, Claude Picard. Tripyridinophane Platform Containing Three Acetate Pendant Arms: An Attractive Structural Entry for the Development of Neutral Eu(III) and Tb(III) Complexes in Aqueous Solution. Inorganic Chemistry 2020, 59 (2) , 1496-1512. https://doi.org/10.1021/acs.inorgchem.9b03345
    12. Serhat Gündüz, Sandip Vibhute, Richard Botár, Ferenc K. Kálmán, Imre Tóth, Gyula Tircsó, Martín Regueiro-Figueroa, David Esteban-Gómez, Carlos Platas-Iglesias, Goran Angelovski. Coordination Properties of GdDO3A-Based Model Compounds of Bioresponsive MRI Contrast Agents. Inorganic Chemistry 2018, 57 (10) , 5973-5986. https://doi.org/10.1021/acs.inorgchem.8b00473
    13. Vojtěch Kubíček, Zuzana Böhmová, Romana Ševčíková, Jakub Vaněk, Přemysl Lubal, Zuzana Poláková, Romana Michalicová, Jan Kotek, Petr Hermann. NOTA Complexes with Copper(II) and Divalent Metal Ions: Kinetic and Thermodynamic Studies. Inorganic Chemistry 2018, 57 (6) , 3061-3072. https://doi.org/10.1021/acs.inorgchem.7b02929
    14. Tang Tang, Chuqiao Tu, Sarah Y. Chow, Kevin H. Leung, Siyi Du, and Angelique Y. Louie . Quantitative Assessment of Binding Affinities for Nanoparticles Targeted to Vulnerable Plaque. Bioconjugate Chemistry 2015, 26 (6) , 1086-1094. https://doi.org/10.1021/acs.bioconjchem.5b00144
    15. Silvia Versolatto, Mariangela Boccalon, Nicol Guidolin, Fabio Travagin, Enzo Alessio, Silvio Aime, Gabriele Balducci, Giovanni B. Giovenzana, Zsolt Baranyai. [Gd(HB‐DO3A)]: Equilibrium, Dissociation Kinetic and Structural Differences in a Simple Homolog of [Gd(HP‐DO3A)] (Prohance ® ). Chemistry – A European Journal 2024, 30 (28) https://doi.org/10.1002/chem.202400344
    16. Sophie Laine, Rémy Jouclas, Célia S. Bonnet, Pascal Retailleau, Vincent Steinmetz, Agnès Pallier, Zoltán Garda, Gyula Tircsó, Philippe Durand, Éva Tóth. Structural, stability and relaxation features of lanthanide‐complexes designed for multimodal imaging detection of enzyme activities. European Journal of Inorganic Chemistry 2024, 27 (14) https://doi.org/10.1002/ejic.202300784
    17. Emma Caillet, Léa Nunes, Svetlana V. Eliseeva, Modou Ndiaye, Manon Isaac, Agnès Pallier, Jean-François Morfin, Hervé Meudal, Stéphane Petoud, Sylvain Routier, Carlos Platas-Iglesias, Frédéric Buron, Célia S. Bonnet. Investigation of Ln 3+ complexation by a DOTA derivative substituted by an imidazothiadiazole: synthesis, solution structure, luminescence and relaxation properties. Dalton Transactions 2024, 39 https://doi.org/10.1039/D4DT00533C
    18. Xiaojuan Shen, Yan Pan, Guohai Liang. Development of Macrocyclic Mn(II)−Bispyridine Complexes as pH‐Responsive Magnetic Resonance Imaging Contrast Agents. European Journal of Inorganic Chemistry 2023, 26 (12) https://doi.org/10.1002/ejic.202200786
    19. Rocío Uzal-Varela, Aurora Rodríguez-Rodríguez, Huan Wang, David Esteban-Gómez, Isabel Brandariz, Eric M. Gale, Peter Caravan, Carlos Platas-Iglesias. Prediction of Gd(III) complex thermodynamic stability. Coordination Chemistry Reviews 2022, 467 , 214606. https://doi.org/10.1016/j.ccr.2022.214606
    20. Patrick Cieslik, Peter Comba, Benedikt Dittmar, Daouda Ndiaye, Éva Tóth, Gunasekaran Velmurugan, Hubert Wadepohl. Exceptional Manganese(II) Stability and Manganese(II)/Zinc(II) Selectivity with Rigid Polydentate Ligands**. Angewandte Chemie 2022, 134 (10) https://doi.org/10.1002/ange.202115580
    21. Patrick Cieslik, Peter Comba, Benedikt Dittmar, Daouda Ndiaye, Éva Tóth, Gunasekaran Velmurugan, Hubert Wadepohl. Exceptional Manganese(II) Stability and Manganese(II)/Zinc(II) Selectivity with Rigid Polydentate Ligands**. Angewandte Chemie International Edition 2022, 61 (10) https://doi.org/10.1002/anie.202115580
    22. Raphaël Tripier, Gyula Tircsó, Carlos Platas-Iglesias, Charlene Harriswangler. Importance of ligand design in lanthanide azamacrocyclic complexes relevant to biomedical applications. 2022, 129-220. https://doi.org/10.1016/bs.hpcre.2022.05.001
    23. Zoltán Garda, Tamara Kócs, István Bányai, José A. Martins, Ferenc Krisztián Kálmán, Imre Tóth, Carlos F. G. C. Geraldes, Gyula Tircsó. Complexes of Bifunctional DO3A-N-(α-amino)propinate Ligands with Mg(II), Ca(II), Cu(II), Zn(II), and Lanthanide(III) Ions: Thermodynamic Stability, Formation and Dissociation Kinetics, and Solution Dynamic NMR Studies. Molecules 2021, 26 (16) , 4956. https://doi.org/10.3390/molecules26164956
    24. Fabio Travagin, Luciano Lattuada, Giovanni B. Giovenzana. AAZTA: The rise of mesocyclic chelating agents for metal coordination in medicine. Coordination Chemistry Reviews 2021, 438 , 213908. https://doi.org/10.1016/j.ccr.2021.213908
    25. Jia-Liang Chen, Ben-Guang Chen, Bin Li, Feng Yang, Xun-Cheng Su. Assessing multiple conformations of lanthanide binding tags for proteins using a sensitive 19 F-reporter. Chemical Communications 2021, 57 (35) , 4291-4294. https://doi.org/10.1039/D1CC00791B
    26. Guochen Bao. Lanthanide complexes for drug delivery and therapeutics. Journal of Luminescence 2020, 228 , 117622. https://doi.org/10.1016/j.jlumin.2020.117622
    27. Gyula Tircsó, Enikő Tircsóné Benyó, Zoltán Garda, Jaspal Singh, Robert Trokowski, Ernő Brücher, A. Dean Sherry, Éva Tóth, Zoltán Kovács. Comparison of the equilibrium, kinetic and water exchange properties of some metal ion-DOTA and DOTA-bis(amide) complexes. Journal of Inorganic Biochemistry 2020, 206 , 111042. https://doi.org/10.1016/j.jinorgbio.2020.111042
    28. Zsolt Baranyai, Gyula Tircsó, Frank Rösch. The Use of the Macrocyclic Chelator DOTA in Radiochemical Separations. European Journal of Inorganic Chemistry 2020, 2020 (1) , 36-56. https://doi.org/10.1002/ejic.201900706
    29. V. Di Marco, P. Pastore, M. Tosato, A. Andrighetto, F. Borgna, N. Realdon. pH-static titrations for kinetic studies of metal-ligand complex formation: The case example of the reaction between Strontium(II) and DOTA. Inorganica Chimica Acta 2019, 498 , 119147. https://doi.org/10.1016/j.ica.2019.119147
    30. Jiří Bárta, Petr Hermann, Jan Kotek. Coordination Behavior of 1,4-Disubstituted Cyclen Endowed with Phosphonate, Phosphonate Monoethylester, and H-Phosphinate Pendant Arms. Molecules 2019, 24 (18) , 3324. https://doi.org/10.3390/molecules24183324
    31. Marie Brandt, Jens Cardinale, Ivo Rausch, Thomas L. Mindt. Manganese in PET imaging: Opportunities and challenges. Journal of Labelled Compounds and Radiopharmaceuticals 2019, 62 (8) , 541-551. https://doi.org/10.1002/jlcr.3754
    32. Alice C. Harnden, Andrei S. Batsanov, David Parker. Paramagnetic Lanthanide NMR Probes Signalling Changes in Zinc Concentration by Emission and Chemical Shift: A Proof of Concept Study. Chemistry – A European Journal 2019, 25 (24) , 6212-6225. https://doi.org/10.1002/chem.201900609
    33. Rosa Pujales-Paradela, Aurora Rodríguez-Rodríguez, Antonella Gayoso-Padula, Isabel Brandariz, Laura Valencia, David Esteban-Gómez, Carlos Platas-Iglesias. On the consequences of the stereochemical activity of the Bi( iii ) 6s 2 lone pair in cyclen-based complexes. The [Bi(DO3A)] case. Dalton Transactions 2018, 47 (39) , 13830-13842. https://doi.org/10.1039/C8DT02602E
    34. Zoltán Garda, Enikő Molnár, Ferenc K. Kálmán, Richárd Botár, Viktória Nagy, Zsolt Baranyai, Ernő Brücher, Zoltán Kovács, Imre Tóth, Gyula Tircsó. Effect of the Nature of Donor Atoms on the Thermodynamic, Kinetic and Relaxation Properties of Mn(II) Complexes Formed With Some Trisubstituted 12-Membered Macrocyclic Ligands. Frontiers in Chemistry 2018, 6 https://doi.org/10.3389/fchem.2018.00232
    35. Oliver John V. Belleza, Ansyl Marie B. Naraga, Aaron Joseph L. Villaraza. Relative Ligand Exchange Rates in Gd‐based MRI Contrast Agent Formation as Probed by Gd–XO Complex. Journal of the Chinese Chemical Society 2018, 65 (5) , 561-566. https://doi.org/10.1002/jccs.201700323
    36. Alexander Wurzer, Adrienn Vágner, Dávid Horváth, Flóra Fellegi, Hans-Jürgen Wester, Ferenc K. Kálmán, Johannes Notni. Synthesis of Symmetrical Tetrameric Conjugates of the Radiolanthanide Chelator DOTPI for Application in Endoradiotherapy by Means of Click Chemistry. Frontiers in Chemistry 2018, 6 https://doi.org/10.3389/fchem.2018.00107
    37. Anne Kathrine R. Junker, Leila R. Hill, Amber L. Thompson, Stephen Faulkner, Thomas Just Sørensen. Shining light on the antenna chromophore in lanthanide based dyes. Dalton Transactions 2018, 47 (14) , 4794-4803. https://doi.org/10.1039/C7DT04788F
    38. Claude P. Gros, Clément Michelin, Léo Bucher, Nicolas Desbois, Charles H. Devillers, Athanassios G. Coutsolelos, Subhayan Biswas, Ganesh D. Sharma. Synthesis and characterization of zinc carboxy–porphyrin complexes for dye sensitized solar cells. New Journal of Chemistry 2018, 42 (10) , 8151-8159. https://doi.org/10.1039/C7NJ04612J
    39. Irene Maria Carnovale, Marco Lucio Lolli, Sonia Colombo Serra, Alberto Fringuello Mingo, Roberta Napolitano, Valeria Boi, Nicol Guidolin, Luciano Lattuada, Fabio Tedoldi, Zsolt Baranyai, Silvio Aime. Exploring the intramolecular catalysis of the proton exchange process to modulate the relaxivity of Gd( iii )-complexes of HP-DO3A-like ligands. Chemical Communications 2018, 54 (72) , 10056-10059. https://doi.org/10.1039/C8CC05284K
    40. Thomas Just Sørensen, Manuel Tropiano, Alan M. Kenwright, Stephen Faulkner. Triheterometallic Lanthanide Complexes Prepared from Kinetically Inert Lanthanide Building Blocks. European Journal of Inorganic Chemistry 2017, 2017 (15) , 2165-2172. https://doi.org/10.1002/ejic.201700027
    41. Attila Forgács, Rosa Pujales-Paradela, Martín Regueiro-Figueroa, Laura Valencia, David Esteban-Gómez, Mauro Botta, Carlos Platas-Iglesias. Developing the family of picolinate ligands for Mn 2+ complexation. Dalton Transactions 2017, 46 (5) , 1546-1558. https://doi.org/10.1039/C6DT04442E
    42. Mariane Le Fur, Maryline Beyler, Enikő Molnár, Olivier Fougère, David Esteban-Gómez, Gyula Tircsó, Carlos Platas-Iglesias, Nicolas Lepareur, Olivier Rousseaux, Raphaël Tripier. The role of the capping bond effect on pyclen nat Y 3+ / 90 Y 3+ chelates: full control of the regiospecific N-functionalization makes the difference. Chemical Communications 2017, 53 (69) , 9534-9537. https://doi.org/10.1039/C7CC05088G
    43. Soňa Procházková, Vojtěch Kubíček, Zuzana Böhmová, Kateřina Holá, Jan Kotek, Petr Hermann. DOTA analogues with a phosphinate-iminodiacetate pendant arm: modification of the complex formation rate with a strongly chelating pendant. Dalton Transactions 2017, 46 (31) , 10484-10497. https://doi.org/10.1039/C7DT01797A
    44. Anja Wacker, Fabio Carniato, Carlos Platas-Iglesias, David Esteban-Gomez, Hans-Jürgen Wester, Lorenzo Tei, Johannes Notni. Dimer formation of GdDO3A-arylsulfonamide complexes causes loss of pH-dependency of relaxivity. Dalton Transactions 2017, 46 (48) , 16828-16836. https://doi.org/10.1039/C7DT02985C
    45. Zoltán Garda, Attila Forgács, Quyen N. Do, Ferenc K. Kálmán, Sarolta Timári, Zsolt Baranyai, Lorenzo Tei, Imre Tóth, Zoltán Kovács, Gyula Tircsó. Physico-chemical properties of MnII complexes formed with cis- and trans-DO2A: thermodynamic, electrochemical and kinetic studies. Journal of Inorganic Biochemistry 2016, 163 , 206-213. https://doi.org/10.1016/j.jinorgbio.2016.07.018
    46. Attila Forgács, Lorenzo Tei, Zsolt Baranyai, Imre Tóth, László Zékány, Mauro Botta. A Bisamide Derivative of [Mn(1,4‐DO2A)] – Solution Thermodynamic, Kinetic, and NMR Relaxometric Studies. European Journal of Inorganic Chemistry 2016, 2016 (8) , 1165-1174. https://doi.org/10.1002/ejic.201501415
    47. Gyula Tircsó, Martín Regueiro‐Figueroa, Viktória Nagy, Zoltán Garda, Tamás Garai, Ferenc Krisztián Kálmán, David Esteban‐Gómez, Éva Tóth, Carlos Platas‐Iglesias. Approaching the Kinetic Inertness of Macrocyclic Gadolinium(III)‐Based MRI Contrast Agents with Highly Rigid Open‐Chain Derivatives. Chemistry – A European Journal 2016, 22 (3) , 896-901. https://doi.org/10.1002/chem.201503836
    48. Adrienn Vágner, Eliana Gianolio, Silvio Aime, Alessandro Maiocchi, Imre Tóth, Zsolt Baranyai, Lorenzo Tei. High kinetic inertness of a bis-hydrated Gd-complex with a constrained AAZTA-like ligand. Chemical Communications 2016, 52 (75) , 11235-11238. https://doi.org/10.1039/C6CC04753J
    49. Aurora Rodríguez-Rodríguez, Zoltán Garda, Erika Ruscsák, David Esteban-Gómez, Andrés de Blas, Teresa Rodríguez-Blas, Luís M. P. Lima, Maryline Beyler, Raphaël Tripier, Gyula Tircsó, Carlos Platas-Iglesias. Stable Mn 2+ , Cu 2+ and Ln 3+ complexes with cyclen-based ligands functionalized with picolinate pendant arms. Dalton Transactions 2015, 44 (11) , 5017-5031. https://doi.org/10.1039/C4DT02985B
    50. Lorenzo Tei, Zsolt Baranyai, Luca Gaino, Attila Forgács, Adrienn Vágner, Mauro Botta. Thermodynamic stability, kinetic inertness and relaxometric properties of monoamide derivatives of lanthanide( iii ) DOTA complexes. Dalton Transactions 2015, 44 (12) , 5467-5478. https://doi.org/10.1039/C4DT03939D
    51. Roberto Artali, Zsolt Baranyai, Mauro Botta, Giovanni B. Giovenzana, Angelo Maspero, Roberto Negri, Giovanni Palmisano, Massimo Sisti, Stefano Tollari. Solution thermodynamics, computational and relaxometric studies of ditopic DO3A-based Mn( ii ) complexes. New Journal of Chemistry 2015, 39 (1) , 539-547. https://doi.org/10.1039/C4NJ01571A
    52. Martín Regueiro‐Figueroa, Erika Ruscsák, Laura Fra, Gyula Tircsó, Imre Tóth, Andrés de Blas, Teresa Rodríguez‐Blas, Carlos Platas‐Iglesias, David Esteban‐Gómez. Highly Stable Complexes of Divalent Metal Ions (Mg 2+ , Ca 2+ , Cu 2+ , Zn 2+ , Cd 2+ , and Pb 2+ ) with a Dota‐Like Ligand Containing a Picolinate Pendant. European Journal of Inorganic Chemistry 2014, 2014 (36) , 6165-6173. https://doi.org/10.1002/ejic.201402693

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect