ACS Publications. Most Trusted. Most Cited. Most Read
Lanthanide Metalloligand Strategy toward d–f Heterometallic Metal–Organic Frameworks: Magnetism and Symmetric-Dependent Luminescent Properties
My Activity
    Article

    Lanthanide Metalloligand Strategy toward d–f Heterometallic Metal–Organic Frameworks: Magnetism and Symmetric-Dependent Luminescent Properties
    Click to copy article linkArticle link copied!

    View Author Information
    Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
    College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
    *E-mail: [email protected]. Tel.: +86-931-8915151. Fax: +86-931-8912582.
    Other Access OptionsSupporting Information (2)

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2014, 53, 12, 5922–5930
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ic403080n
    Published June 2, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    On the basis of lanthanide metalloligands, [Ln(ODA)3]3– (H2ODA = oxydiacetic acid), three series of d–f heterometallic metal–organic frameworks, {[Co(H2O)6]·[Ln2(ODA)6Co2]·6H2O}n [1; Ln = Gd (1a), Dy (1b), and Er (1c)], {[Ln2(ODA)6Cd3(H2O)6mH2O}n [2; Ln = Pr (2a), Nd (2b), Sm (2c), Eu (2d), and Dy (2e), m = 9, 6, or 3], and {[Cd(H2O)6]·[Ln2(ODA)6Cd2mH2O}n [3; Ln = Dy (3a), Ho (3b), Er (3c), Tm (3d), and Lu (3e), m = 6 or 12], were designed and synthesized by a solvent volatilization and hydrothermal method. Magnetic investigation of 1 reveals the ferromagnetic interactions between the metal ions. In 2, LnIII ions occupied the inversion centers, which are confirmed by the fact that the emission intensity ratio of 5D07F1 to 5D07F2 of the EuIII ion is much more than 3 in 2d. It is worth noting that, in 2d, the intensity ratio I(5D07F1)/I(5D07F2) could decrease significantly upon the introduction of different hydrophilic guest molecules, which implies that the luminescent properties of 2d have a strong dependence on the geometry of the first coordination sphere of the EuIII ion.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Crystallographic data (CIF) and additional supporting data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 50 publications.

    1. Marco Bazi, Edoardo Bracciotti, Lorenzo Fioravanti, Fabio Marchetti, Marzio Rancan, Lidia Armelao, Simona Samaritani, Luca Labella. Mononuclear Rare-Earth Metalloligands Exploiting a Divergent Ligand. Inorganic Chemistry 2024, 63 (17) , 7678-7691. https://doi.org/10.1021/acs.inorgchem.3c04532
    2. Jing-xin Ma, Tingting Ma, Rui Qian, Liuqing Zhou, Qi Guo, Jin-Hui Yang, Qingfeng Yang. Na–Ln Heterometallic Coordination Polymers: Structure Modulation by Na+ Concentration and Efficient Detection to Tetracycline Antibiotics and 4-(Phenylazo)aniline. Inorganic Chemistry 2021, 60 (11) , 7937-7951. https://doi.org/10.1021/acs.inorgchem.1c00462
    3. Marco Visconti, Simona Maggini, Gianfranco Ciani, Pierluigi Mercandelli, Benedetta Del Secco, Luca Prodi, Massimo Sgarzi, Nelsi Zaccheroni, Lucia Carlucci. New Lanthanide Metalloligands and Their Use for the Assembly of Ln–Ag Bimetallic Coordination Frameworks: Stepwise Modular Synthesis, Structural Characterization, and Optical Properties. Crystal Growth & Design 2019, 19 (9) , 5376-5389. https://doi.org/10.1021/acs.cgd.9b00894
    4. Mei Pan, Wei-Ming Liao, Shao-Yun Yin, Si-Si Sun, Cheng-Yong Su. Single-Phase White-Light-Emitting and Photoluminescent Color-Tuning Coordination Assemblies. Chemical Reviews 2018, 118 (18) , 8889-8935. https://doi.org/10.1021/acs.chemrev.8b00222
    5. Lei Hu, Gui-Xia Hao, Hai-Dong Luo, Chun-Xian Ke, Guang Shi, Jia Lin, Xiao-Ming Lin, Umair Yaqub Qazi, Yue-Peng Cai. Bifunctional 2D Cd(II)-Based Metal–Organic Framework as Efficient Heterogeneous Catalyst for the Formation of C–C Bond. Crystal Growth & Design 2018, 18 (5) , 2883-2889. https://doi.org/10.1021/acs.cgd.7b01728
    6. Ling Ding, Le-Hui Liu, Qing Shi, Yan-Qiong Sun, Yong-Jiang Wang, and Yi-Ping Chen . Luminescent 3D Lanthanide–Cadmium Heterometal–Organic Frameworks with Chemical Stability and Selective Luminescent Sensing. Inorganic Chemistry 2017, 56 (24) , 14850-14858. https://doi.org/10.1021/acs.inorgchem.7b02071
    7. Jing-xin Ma, Jiarui Guo, Hailong Wang, Bin Li, Tianlin Yang, and Banglin Chen . Microporous Lanthanide Metal–Organic Framework Constructed from Lanthanide Metalloligand for Selective Separation of C2H2/CO2 and C2H2/CH4 at Room Temperature. Inorganic Chemistry 2017, 56 (12) , 7145-7150. https://doi.org/10.1021/acs.inorgchem.7b00762
    8. Ying Wang, Xiu-Guang Wang, Bin Yuan, Cheng-Yuan Shao, Yuan-Yuan Chen, Bing-Bing Zhou, Ming-Shu Li, Xiao-Mai An, Peng Cheng, and Xiao-Jun Zhao . Cation-Exchange Porosity Tuning in a Dynamic 4d–4f–3d Framework for NiII Ion-Selective Luminescent Probe. Inorganic Chemistry 2015, 54 (9) , 4456-4465. https://doi.org/10.1021/acs.inorgchem.5b00217
    9. Ke Liu, Jing-Min Zhou, Hui-Min Li, Na Xu, and Peng Cheng . A Series of CuII–LnIII Metal–Organic Frameworks Based on 2,2′-Bipyridine-3,3′-dicarboxylic Acid: Syntheses, Structures, and Magnetic Properties. Crystal Growth & Design 2014, 14 (12) , 6409-6420. https://doi.org/10.1021/cg5012617
    10. Jie Yang, Xiaoqing Wang, Rongming Wang, Liangliang Zhang, Fuling Liu, Fangna Dai, and Daofeng Sun . Syntheses, Crystal Structures, and Properties of Two 2-Fold Interpenetrating Metal–Organic Frameworks Based on a Trigonal Rigid Ligand. Crystal Growth & Design 2014, 14 (12) , 6521-6527. https://doi.org/10.1021/cg501425x
    11. Kankan Patra, Haridas Pal. Lanthanide-based metal–organic frameworks (Ln-MOFs): synthesis, properties and applications. RSC Sustainability 2025, 3 (2) , 629-660. https://doi.org/10.1039/D4SU00271G
    12. Cristian Grechi, Silvia Carlotto, Massimo Guelfi, Simona Samaritani, Lidia Armelao, Luca Labella. Sandwich d/f Heterometallic Complexes [(Ln(hfac)3)2M(acac)3] (Ln = La, Pr, Sm, Dy and M = Co; Ln = La and M = Ru). Molecules 2024, 29 (16) , 3927. https://doi.org/10.3390/molecules29163927
    13. Fernando Igoa Saldaña, Agustín López, Javier González-Platas, Leopoldo Suescun, Carlos Kremer, Julia Torres. Extended isomerism in heteronuclear metal–organic frameworks: synthetic strategies and crystal structures of lanthanide–cobalt–oxydiacetate systems. CrystEngComm 2024, 26 (19) , 2560-2570. https://doi.org/10.1039/D4CE00168K
    14. Elisa Gallo, Luca Bellucci, Silvia Carlotto, Gregorio Bottaro, Luca Babetto, Luca Giordano, Fabio Marchetti, Simona Samaritani, Lidia Armelao, Luca Labella. Aluminium 8-Hydroxyquinolinate N-Oxide as a Precursor to Heterometallic Aluminium–Lanthanide Complexes. Molecules 2024, 29 (2) , 451. https://doi.org/10.3390/molecules29020451
    15. Julia Torres, Carlos Kremer. Coordination chemistry of lanthanide ions with X-(CH2-COO-)2 (X = O, NH, S) ligands: The leading role of X as carboxylate-connecting group. Coordination Chemistry Reviews 2023, 494 , 215347. https://doi.org/10.1016/j.ccr.2023.215347
    16. Yuejiao Jia, Dechao Li, Ming Hu. A multifunctional probe based on a heterometallic-organic framework: highly selective detection of 1,3-dinitrobenzene, tryptophan, and visual recognition of pentavalent vanadate ions. Materials Today Chemistry 2023, 30 , 101518. https://doi.org/10.1016/j.mtchem.2023.101518
    17. Shi-He Wang, Jia-Qi Li, Yan-Mei Wang, Shu Hou, Yu-Xian Chi, Jing Jin. Syntheses, crystal structures and photophysical properties of Ni/Co-Ln coordination polymers. Inorganica Chimica Acta 2022, 537 , 120927. https://doi.org/10.1016/j.ica.2022.120927
    18. Maxim A. Shmelev, Aleksandr S. Chistyakov, Galina A. Razgonyaeva, Vladimir V. Kovalev, Julia K. Voronina, Fedor M. Dolgushin, Natalia V. Gogoleva, Mikhail A. Kiskin, Alexey A. Sidorov, Igor L. Eremenko. Effect of Non-Covalent Interactions on the 2,4- and 3,5-Dinitrobenzoate Eu-Cd Complex Structures. Crystals 2022, 12 (4) , 508. https://doi.org/10.3390/cryst12040508
    19. Kamran T. Mahmudov, Fatali E. Huseynov, Vusala A. Aliyeva, M. Fátima C. Guedes da Silva, Armando J. L. Pombeiro. Noncovalent Interactions at Lanthanide Complexes. Chemistry – A European Journal 2021, 27 (58) , 14370-14389. https://doi.org/10.1002/chem.202102245
    20. Chenhu Shen, Yibing Xie, Bingshan Kong, Jing‐xin Ma, Jinhui Yang. Construction of Isomorphous Coordination Polymers with 2‐(3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl) acetate Ligand: Structures, Fluorescent Temperature Sensing, and Magnetic Properties. European Journal of Inorganic Chemistry 2021, 2021 (17) , 1651-1658. https://doi.org/10.1002/ejic.202100037
    21. Avik De, Sukhen Bala, Sayan Saha, Krishna Sundar Das, Sohel Akhtar, Amit Adhikary, Arijit Ghosh, Guo-Zhang Huang, Srijita Paul Chowdhuri, Benu Brata Das, Ming-Liang Tong, Raju Mondal. Lanthanide clusters of phenanthroline containing a pyridine–pyrazole based ligand: magnetism and cell imaging. Dalton Transactions 2021, 50 (10) , 3593-3609. https://doi.org/10.1039/D0DT04122J
    22. Han Wei, Cui-Li Wang, Wei Gao, Jie-Ping Liu, Xiu-Mei Zhang. Novel 3D anionic heterometallic frameworks based on trinuclear Co II and trinuclear Ln III motifs displaying slow magnetic relaxation and selective adsorption of methylene blue. CrystEngComm 2020, 22 (44) , 7639-7647. https://doi.org/10.1039/D0CE01254H
    23. Fernando Igoa, Mariano Romero, Guzmán Peinado, Jorge Castiglioni, Javier Gonzalez-Platas, Ricardo Faccio, Leopoldo Suescun, Carlos Kremer, Julia Torres. Ln( iii )–Ni( ii ) heteropolynuclear metal organic frameworks of oxydiacetate with promising proton-conductive properties. CrystEngComm 2020, 22 (34) , 5638-5648. https://doi.org/10.1039/D0CE00900H
    24. Xiao-Ming Shi, Li-Na Xiao, Peng Peng, Jie Zhang. The crystal structure of (2,3-dioxo-5,6:13,14-dibenzo-9,10-benzo-1,4,8,11-7, 11-diene-κ 4 N , N′ , N′′ , N′′′ )-nickel(II), Ni(C 22 H 14 N 4 O 2 ). Zeitschrift für Kristallographie - New Crystal Structures 2020, 235 (3) , 747-749. https://doi.org/10.1515/ncrs-2019-0941
    25. Meng‐Yue Jiang, Li Yu, Yi‐Cheng Zhou, Jing Jia, Xue‐Jian Si, Wen‐Wen Dong, Zheng‐Fang Tian, Jun Zhao, Dong‐Sheng Li. A Novel d‐f Heterometallic Cd II ‐Eu III Metal‐organic Framework as a Sensitive Luminescent Sensor for the Dual Detection of Ronidazole and 4‐Nitrophenol. Zeitschrift für anorganische und allgemeine Chemie 2020, 646 (5) , 268-274. https://doi.org/10.1002/zaac.201900283
    26. Xiqiang Tian, Yanping Dong. Synthesis, Structure, and Magnetic Properties of a Three‐Dimensional Cobalt Carboxylate Metal‐Organic Framework. ChemistrySelect 2019, 4 (43) , 12608-12611. https://doi.org/10.1002/slct.201903131
    27. Wei Liu, Xin Huang, Chunyang Chen, Cong Xu, Jingxin Ma, Lizi Yang, Wenjie Wang, Wei Dou, Weisheng Liu. Function‐Oriented: The Construction of Lanthanide MOF Luminescent Sensors Containing Dual‐Function Urea Hydrogen‐Bond Sites for Efficient Detection of Picric Acid. Chemistry – A European Journal 2019, 25 (4) , 1090-1097. https://doi.org/10.1002/chem.201805080
    28. Yukun Liu, Guimei He, Yiyu Chen, Kang Tian, Feng Cao, Chi Zhang, Wenhua Zhu, Juan Wang. A series of 3d–4f heterometallic MOFs: syntheses, structures, optical, and electrochemical properties. Journal of Coordination Chemistry 2018, 71 (16-18) , 2714-2721. https://doi.org/10.1080/00958972.2018.1503253
    29. Shu Hou, Xiao-Yun Tang, Yue Li, Rui-Xue Wang, Fei-Fei Chen, Yan Wang, Yu-Xian Chi, Jing Jin. Syntheses, crystal structures and photophysical properties of a series of Zn-Ln coordination polymers. Journal of Molecular Structure 2018, 1167 , 239-247. https://doi.org/10.1016/j.molstruc.2018.04.080
    30. Fernando Igoa, Sebastián Martínez, Kassio P. S. Zanoni, Jorge Castiglioni, Leopoldo Suescun, Javier González-Platas, Andrea S. S. de Camargo, Carlos Kremer, Julia Torres. Polymorphism and luminescence properties of heteropolynuclear metal–organic frameworks containing oxydiacetate as linker. CrystEngComm 2018, 20 (34) , 4942-4953. https://doi.org/10.1039/C8CE01074A
    31. Yubo Xing, Yuqi Liu, Xiaofei Xue, Xinying Wang, Wei Li. Zn-Er heterometallic carboxylate framework based on 3,5-pyrazoledicarboxylic acid with nested sandwich structure and its luminescent property. Inorganic Chemistry Communications 2017, 84 , 153-158. https://doi.org/10.1016/j.inoche.2017.08.015
    32. Ceng-Ceng Du, Jian-Zhong Fan, Xin-Fang Wang, Sheng-Bin Zhou, Duo-Zhi Wang. New metal-organic complexes based on bis(tetrazole) ligands: Synthesis, structures and properties. Journal of Molecular Structure 2017, 1133 , 348-357. https://doi.org/10.1016/j.molstruc.2016.12.033
    33. Chao Bai, Bing Xu, Huai-Ming Hu, Meng-Lin Yang, Ganglin Xue. Cadmium(II) coordination polymers constructed from a bis-functionalized ligand 4′-(3-carboxyphenyl)-2,2′:6′,2″-terpyridine: Synthesis, structure and luminescence. Polyhedron 2017, 124 , 1-11. https://doi.org/10.1016/j.poly.2016.12.022
    34. J. August Ridenour, Korey P. Carter, Ray J. Butcher, Christopher L. Cahill. RE-p-halobenzoic acid–terpyridine complexes, Part II: structural diversity, supramolecular assembly, and luminescence properties in a series of p-bromobenzoic acid rare-earth hybrid materials. CrystEngComm 2017, 19 (8) , 1172-1189. https://doi.org/10.1039/C6CE02355J
    35. Guozan Yuan, Qi Zhang, Zhiping Wang, Kai Song, Xiaomei Yuan, Yangzhi Wang, Liyan Zhang. Assembly of four 8-quinolinate-based multinuclear complexes: the effect of substituents on core structures and photoluminescence properties. Inorganic Chemistry Frontiers 2017, 4 (5) , 764-772. https://doi.org/10.1039/C7QI00082K
    36. Jeffrey D. Einkauf, Joseph P. Karram, Natalie E. Greig, Benny C. Chan, Daniel T. de Lill. Hole‐Size Relationships in the Assembly of a Furandicarboxylate‐Based Metallolinker in Praseodymium Coordination Polymers Synthesized under Basic Conditions. European Journal of Inorganic Chemistry 2016, 2016 (7) , 1085-1092. https://doi.org/10.1002/ejic.201501350
    37. Yu‐Xian Chi, Yu‐Qian Liu, Xiao‐Shuang Hu, Xiao‐Yun Tang, Yu‐Juan Liu, Jing Jin, Shu‐Yun Niu, Guang‐Ning Zhang. Syntheses, Crystal Structures, and Photophysical Properties of Heteronuclear Zinc(II)/Cadmium(II)‐Lanthanide(III) Coordination Complexes based on Benzoic Acid. Zeitschrift für anorganische und allgemeine Chemie 2016, 642 (1) , 73-80. https://doi.org/10.1002/zaac.201500641
    38. Cong Xu, Alexander M. Kirillov, Yubo Shu, Yan Liu, Lirong Guo, Lizi Yang, Wei Dou, Wei Liu, Chunyang Chen, Xin Huang, Jiayao Zhang, Weisheng Liu. Photoluminescence enhancement induced by a halide anion encapsulation in a series of novel lanthanide( iii ) coordination polymers. CrystEngComm 2016, 18 (7) , 1190-1199. https://doi.org/10.1039/C5CE01901J
    39. Han Zhang, Zhi-Hao Yan, Yun Luo, Xiu-Ying Zheng, Xiang-Jian Kong, La-Sheng Long, Lan-Sun Zheng. Anion-controlled assembly of a series of heterometallic 3d–4f compounds with 0D cluster, 1D chain, 2D network and 3D frameworks. CrystEngComm 2016, 18 (22) , 4142-4149. https://doi.org/10.1039/C5CE02503F
    40. Xiao-Ming Lin, Ji-Liang Niu, Pei-Xian Wen, Yan-Na Lu, Lei Hu, Da-Liang Zhang, Yue-Peng Cai. From 1D to 3D lanthanide coordination polymers constructed with pyridine-3,5-dicarboxylic acid: synthesis, crystal structures, and catalytic properties. RSC Advances 2016, 6 (68) , 63425-63432. https://doi.org/10.1039/C6RA13242A
    41. Li Ma, Peng Du, Jin Yang, Ying-Ying Liu, Xiao-Li Liu, Jian-Fang Ma. Two heterotrimetallic organic frameworks constructed using a functionalized Schiff base ligand: syntheses, structures and visible photocatalytic activities for the degradation of chlorophenols. RSC Advances 2016, 6 (101) , 98611-98619. https://doi.org/10.1039/C6RA18817F
    42. Lu Yang, Sheng Zhang, Xiaoni Qu, Qi Yang, Xiangyu Liu, Qing Wei, Gang Xie, Sanping Chen. Synthesis, crystal structure and photoluminescence property of Eu/Tb MOFs with mixed polycarboxylate ligands. Journal of Solid State Chemistry 2015, 231 , 223-229. https://doi.org/10.1016/j.jssc.2015.08.037
    43. Huan Zhang, Diming Chen, Huili Ma, Peng Cheng. Real‐Time Detection of Traces of Benzaldehyde in Benzyl Alcohol as a Solvent by a Flexible Lanthanide Microporous Metal–Organic Framework. Chemistry – A European Journal 2015, 21 (44) , 15854-15859. https://doi.org/10.1002/chem.201502033
    44. Qian Mu, Haiyan Wang, Liangjun Li, Chao Wang, Ying Wang, Xuebo Zhao. Enhanced CO 2 Adsorption Affinity in a NbO‐type MOF Constructed from a Low‐Cost Diisophthalate Ligand with a Piperazine‐Ring Bridge. Chemistry – An Asian Journal 2015, 10 (9) , 1864-1869. https://doi.org/10.1002/asia.201500509
    45. Jing Li, Jin Yang, Ying‐Ying Liu, Jian‐Fang Ma. Two Heterometallic–Organic Frameworks Composed of Iron(III)‐Salen‐Based Ligands and d 10 Metals: Gas Sorption and Visible‐Light Photocatalytic Degradation of 2‐Chlorophenol. Chemistry – A European Journal 2015, 21 (11) , 4413-4421. https://doi.org/10.1002/chem.201406349
    46. Huan-Cheng Hu, Xiao-Min Kang, Chun-Shuai Cao, Peng Cheng, Bin Zhao. First tetrazole-bridged d–f heterometallic MOFs with a large magnetic entropy change. Chemical Communications 2015, 51 (54) , 10850-10853. https://doi.org/10.1039/C5CC03670D
    47. Dou Ma, Rui Huo, Xia Li. Unique lanthanide frameworks with 6 3 topology based on 1,5-naphthalenedisulfonate and 1H-imidazo[4,5-f][1,10]-phenanthroline: syntheses, crystal structure, photoluminescence, and white light emission. CrystEngComm 2015, 17 (34) , 6575-6582. https://doi.org/10.1039/C5CE01302J
    48. Bo Xu, Tao Zhang, Lei Zhang, Cun Cheng Li. Structures and Properties of Coordination Polymers based on 5‐Nitroisophthalic Acid and N , N ′‐bis(4‐pyridyl‐methyl) Piperazine. Zeitschrift für anorganische und allgemeine Chemie 2014, 640 (12-13) , 2503-2507. https://doi.org/10.1002/zaac.201400290
    49. Stephen Fordham, Xuan Wang, Mathieu Bosch, Hong-Cai Zhou. Lanthanide Metal-Organic Frameworks: Syntheses, Properties, and Potential Applications. 2014, 1-27. https://doi.org/10.1007/430_2014_162
    50. Huan Zhang, Jiangong Ma, Diming Chen, Jingmin Zhou, Shaowei Zhang, Wei Shi, Peng Cheng. Microporous heterometal–organic framework as a sensor for BTEX with high selectivity. J. Mater. Chem. A 2014, 2 (48) , 20450-20453. https://doi.org/10.1039/C4TA04396K

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2014, 53, 12, 5922–5930
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ic403080n
    Published June 2, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    1506

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.