ACS Publications. Most Trusted. Most Cited. Most Read
Theoretical Studies on Polynuclear {CuII5GdIIIn} Clusters (n = 4, 2): Towards Understanding Their Large Magnetocaloric Effect
My Activity
    Article

    Theoretical Studies on Polynuclear {CuII5GdIIIn} Clusters (n = 4, 2): Towards Understanding Their Large Magnetocaloric Effect
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumabi 400076, India
    § Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
    School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
    School of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
    *Fax: (+91)-22-2576-7152. Tel: (+91)-22-2576-7183. E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2015, 54, 4, 1661–1670
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ic502651w
    Published January 23, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Density functional theory (DFT) studies on two polynuclear clusters, [CuII5GdIII4O2(OMe)4(teaH)4(O2CC(CH3)3)2(NO3)4] (1) and [Cu5Gd2(OH)4(Br)2-(H2L)2(H3L)2(NO3)2(OH2)4] (2), have been carried out to probe the origin of the large magnetocaloric effect (MCE). The magnetic exchange interactions for 1 and 2 via multiple pathways are estimated using DFT calculations. While the calculated exchange parameters deviate from previous experimental estimates obtained by fitting the magnetic data, the DFT parameter set is found to offer a striking match to the magnetic data for both complexes, highlighting the problem of overparameterization. Magnetostructural correlations for {Cu–Gd} pairs have been developed where both the Cu–O–Gd angles and Cu–O–Gd–O dihedral angles are found to significantly influence the magnitude and sign of the exchange constants. The magnitude of the MCE has been examined as a function of the exchange interactions, and clues on how the effect can be enhanced are discussed.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Information such as spin density plots, overlap integral values, selected structural parameters corresponding to each J values, dinuclear models for each J values, simulated magnetic susceptibility vs temperature data of 2 etc. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 62 publications.

    1. Narayan Ch. Jana, Zvonko Jagličić, Radovan Herchel, Paula Brandão, Rakhi Nandy, Anangamohan Panja. Insight into the Magnetic Exchange Interactions and Anisotropy in Heterobimetallic CuII–LnIII Complexes: A Rare Example of Cu–Gd Single-Molecule Magnets. Crystal Growth & Design 2024, 24 (18) , 7537-7548. https://doi.org/10.1021/acs.cgd.4c00752
    2. Naushad Ahmed, Tanu Sharma, Lena Spillecke, Changhyun Koo, Kamal Uddin Ansari, Shalini Tripathi, Andrea Caneschi, Rüdiger Klingeler, Gopalan Rajaraman, Maheswaran Shanmugam. Probing the Origin of Ferro-/Antiferromagnetic Exchange Interactions in Cu(II)–4f Complexes. Inorganic Chemistry 2022, 61 (14) , 5572-5587. https://doi.org/10.1021/acs.inorgchem.2c00065
    3. Muhammad Nadeem Akhtar, Murad A. AlDamen, Magdalena Fitta, M. Shahid, Alexander M. Kirillov. Butterfly-like Heteronuclear 3d–4f Metal Clusters: Synthesis, Structures, Magnetic Properties, and Magnetocaloric Effect. Crystal Growth & Design 2022, 22 (1) , 608-614. https://doi.org/10.1021/acs.cgd.1c01149
    4. Gavin A. Craig, Gunasekaran Velmurugan, Claire Wilson, Rafael Valiente, Gopalan Rajaraman, Mark Murrie. Magnetic Properties of a Family of [MnIII4LnIII4] Wheel Complexes: An Experimental and Theoretical Study. Inorganic Chemistry 2019, 58 (20) , 13815-13825. https://doi.org/10.1021/acs.inorgchem.9b01592
    5. Thayalan Rajeshkumar, Reshma Jose, Premaja R. Remya, Gopalan Rajaraman. Theoretical Studies on Trinuclear {MnIII2GdIII} and Tetranuclear {MnIII2GdIII2} Clusters: Magnetic Exchange, Mechanism of Magnetic Coupling, Magnetocaloric Effect, and Magneto–Structural Correlations. Inorganic Chemistry 2019, 58 (18) , 11927-11940. https://doi.org/10.1021/acs.inorgchem.9b01503
    6. Mikko M. Hänninen, Antonio J. Mota, Reijo Sillanpää, Sourav Dey, Gunasekaran Velmurugan, Gopalan Rajaraman, Enrique Colacio. Magneto-Structural Properties and Theoretical Studies of a Family of Simple Heterodinuclear Phenoxide/Alkoxide Bridged MnIIILnIII Complexes: On the Nature of the Magnetic Exchange and Magnetic Anisotropy. Inorganic Chemistry 2018, 57 (7) , 3683-3698. https://doi.org/10.1021/acs.inorgchem.7b02917
    7. Mukesh Kumar Singh, Thayalan Rajeshkumar, Ravi Kumar, Saurabh Kumar Singh, and Gopalan Rajaraman . Role of (1,3) {Cu-Cu} Interaction on the Magneto-Caloric Effect of Trinuclear {CuII-GdIII-CuII} Complexes: Combined DFT and Experimental Studies. Inorganic Chemistry 2018, 57 (4) , 1846-1858. https://doi.org/10.1021/acs.inorgchem.7b02775
    8. Peng-Fei Shi, Chun-Shuai Cao, Chu-Ming Wang, and Bin Zhao . Several [Gd-M] Heterometal–Organic Frameworks with [Gdn] as Nodes: Tunable Structures and Magnetocaloric Effect. Inorganic Chemistry 2017, 56 (15) , 9169-9176. https://doi.org/10.1021/acs.inorgchem.7b01209
    9. Paul Richardson, Kevin J. Gagnon, Simon J. Teat, Giulia Lorusso, Marco Evangelisti, Jinkui Tang, and Theocharis C. Stamatatos . New Dioximes as Bridging Ligands in 3d/4f-Metal Cluster Chemistry: One-Dimensional Chains of Ferromagnetically Coupled {Cu6Ln2} Clusters Bearing Acenaphthenequinone Dioxime and Exhibiting Magnetocaloric Properties. Crystal Growth & Design 2017, 17 (5) , 2486-2497. https://doi.org/10.1021/acs.cgd.7b00011
    10. Thomas N. Hooper, Ross Inglis, Giulia Lorusso, Jakub Ujma, Perdita E. Barran, Dusan Uhrin, Jürgen Schnack, Stergios Piligkos, Marco Evangelisti, and Euan K. Brechin . Structurally Flexible and Solution Stable [Ln4TM8(OH)8(L)8(O2CR)8(MeOH)y](ClO4)4: A Playground for Magnetic Refrigeration. Inorganic Chemistry 2016, 55 (20) , 10535-10546. https://doi.org/10.1021/acs.inorgchem.6b01730
    11. Jianfeng Wu, Lang Zhao, Li Zhang, Xiao-Lei Li, Mei Guo, and Jinkui Tang . Metallosupramolecular Coordination Complexes: The Design of Heterometallic 3d–4f Gridlike Structures. Inorganic Chemistry 2016, 55 (11) , 5514-5519. https://doi.org/10.1021/acs.inorgchem.6b00529
    12. Xiu-Yan Dong, Chang-Dai Si, Yan Fan, Dong-Cheng Hu, Xiao-Qiang Yao, Yun-Xia Yang, and Jia-Cheng Liu . Effect of N-Donor Ligands and Metal Ions on the Coordination Polymers Based on a Semirigid Carboxylic Acid Ligand: Structures Analysis, Magnetic Properties, and Photoluminescence. Crystal Growth & Design 2016, 16 (4) , 2062-2073. https://doi.org/10.1021/acs.cgd.5b01734
    13. Yuan-Yuan Zhou, Bing Geng, Zhen-Wei Zhang, Qun Guan, Jun-Ling Lu, and Qi-Bing Bo . New Family of Octagonal-Prismatic Lanthanide Coordination Cages Assembled from Unique Ln17 Clusters and Simple Cliplike Dicarboxylate Ligands. Inorganic Chemistry 2016, 55 (5) , 2037-2047. https://doi.org/10.1021/acs.inorgchem.5b02367
    14. Manoranjan Maity, Mithun Chandra Majee, Sanchita Kundu, Swarna Kamal Samanta, E. Carolina Sañudo, Sanjib Ghosh, and Muktimoy Chaudhury . Pentanuclear 3d–4f Heterometal Complexes of MII3LnIII2 (M = Ni, Cu, Zn and Ln = Nd, Gd, Tb) Combinations: Syntheses, Structures, Magnetism, and Photoluminescence Properties. Inorganic Chemistry 2015, 54 (20) , 9715-9726. https://doi.org/10.1021/acs.inorgchem.5b01142
    15. Long-Yang Xu, Jiong-Peng Zhao, Ting Liu, and Fu-Chen Liu . Gadolinium Sulfate Modified by Formate To Obtain Optimized Magneto-Caloric Effect. Inorganic Chemistry 2015, 54 (11) , 5249-5256. https://doi.org/10.1021/acs.inorgchem.5b00214
    16. Sayantani Banerjee, Rupesh Kumar Tiwari, Paulami Chakraborty, Gopalan Rajaraman, Sankar Prasad Rath. Modulating magnetic exchange, spin dynamics and intermacrocyclic interactions via an oxo-bridge in dihemes through stepwise oxidations. Inorganic Chemistry Frontiers 2025, 12 (7) , 2613-2626. https://doi.org/10.1039/D4QI02972K
    17. Anna V. Pavlishchuk, Sergey V. Kolotilov, Matthias Zeller, Vitaly V. Pavlishchuk, Fabrice Pointillart, Anthony W. Addison. Magnetocaloric effect in 1D-polymers bearing 15-metallacrown-5 {GdCu 5 } 3+ units and anionic oxalate complexes. Dalton Transactions 2024, 53 (37) , 15713-15724. https://doi.org/10.1039/D4DT02413C
    18. Rakhi Nandy, Zvonko Jagličić, Narayan Ch. Jana, Paula Brandão, Fabián Bustamante, Daniel Aravena, Anangamohan Panja. The effect of co-ligands on the performance of single-molecule magnet behaviours in a family of linear trinuclear Zn–Dy–Zn complexes with a compartmental Schiff base. Dalton Transactions 2024, 53 (33) , 13968-13981. https://doi.org/10.1039/D4DT01582G
    19. Naushad Ahmed, Prem Prakash Sahu, Amit Chakraborty, Jessica Flores Gonzalez, Junaid Ali, Pankaj Kalita, Fabrice Pointillart, Saurabh Kumar Singh, Vadapalli Chandrasekhar. In situ hydrolysis of a carbophosphazene ligand leads to one-dimensional lanthanide coordination polymers. Synthesis, structure and dynamic magnetic studies. Dalton Transactions 2024, 53 (27) , 11563-11577. https://doi.org/10.1039/D4DT00582A
    20. Anangamohan Panja, Sagar Paul, Eufemio Moreno-Pineda, Radovan Herchel, Narayan Ch. Jana, Paula Brandão, Ghenadie Novitchi, Wolfgang Wernsdorfer. Insight into ferromagnetic interactions in Cu II –Ln III dimers with a compartmental ligand. Dalton Transactions 2024, 53 (6) , 2501-2511. https://doi.org/10.1039/D3DT03557C
    21. Shuchang Luo, Ting Tu, Zhuo Chen, Yong Zhong, Jun Xu, Shaolei Lu, Xiaoyuan Sun. Magneto‐structural correlations of oximato‐bridged dinuclear copper( II ) complex: A theoretical perspective. International Journal of Quantum Chemistry 2023, 123 (17) https://doi.org/10.1002/qua.27142
    22. Avik Bhanja, Sangeeta Roy Chaudhuri, Angelos B. Canaj, Shachi Pranjal Vyas, Fabrizio Ortu, Lucy Smythe, Mark Murrie, Ritobrata Goswami, Debashis Ray. Synthesis and characterization of two self-assembled [Cu 6 Gd 3 ] and [Cu 5 Dy 2 ] complexes exhibiting the magnetocaloric effect, slow relaxation of magnetization, and anticancer activity. Dalton Transactions 2023, 52 (12) , 3795-3806. https://doi.org/10.1039/D2DT03932J
    23. Soumalya Roy, Pooja Shukla, Naushad Ahmed, Ming-Hao Du, Ibtesham Tarannum, Xiang-Jian Kong, Tulika Gupta, Saurabh Kumar Singh, Sourav Das. Interplay between anisotropy and magnetic exchange to modulate the magnetic relaxation behaviours of phenoxo bridged Dy 2 dimers with axial β-diketonate co-ligands. Dalton Transactions 2022, 51 (47) , 18187-18202. https://doi.org/10.1039/D2DT03117E
    24. Amit Chakraborty, Naushad Ahmed, Junaid Ali, Shruti Moorthy, Joydeb Goura, Saurabh Kumar Singh, Guillaume Rogez, Vadapalli Chandrasekhar. Exchange-driven slow relaxation of magnetization in NiII2LnIII2 (Ln III = Y, Gd, Tb and Dy) butterfly complexes: experimental and theoretical studies. Dalton Transactions 2022, 51 (38) , 14721-14733. https://doi.org/10.1039/D2DT00237J
    25. Cheng-feng Wang, Jianxun Wang, Xin-ping Wang, Xiaoyin Zhang, Yao Meng, Fushan Chen, Liangxu Lin, Xiang-min Meng. Rational design of three Co(II) coordination polymers based on a semirigid tricarboxylate ligand: Syntheses, structural variability, electrochemical behavior, magnetic and photocatalytic properties. Journal of Molecular Structure 2022, 1265 , 133439. https://doi.org/10.1016/j.molstruc.2022.133439
    26. Pawan Kumar, Jessica Flores Gonzalez, Prem Prakash Sahu, Naushad Ahmed, Joydev Acharya, Vierandra Kumar, Olivier Cador, Fabrice Pointillart, Saurabh Kumar Singh, Vadapalli Chandrasekhar. Magnetocaloric effect and slow magnetic relaxation in peroxide-assisted tetranuclear lanthanide assemblies. Inorganic Chemistry Frontiers 2022, 9 (19) , 5072-5092. https://doi.org/10.1039/D2QI01260J
    27. Khalil M. A. Qasem, Shabnam Khan, Magdalena Fitta, Muhammad Nadeem Akhtar, Murad A. AlDamen, M. Shahid, Hatem A. M. Saleh, Musheer Ahmad. A new {Cu 3 –Gd 2 } cluster as a two-in-one functional material with unique topology acting as a refrigerant and adsorbent for cationic dye. CrystEngComm 2022, 24 (29) , 5215-5225. https://doi.org/10.1039/D2CE00795A
    28. Soumalya Roy, Pooja Shukla, Prem Prakash Sahu, Yu‐Chen Sun, Naushad Ahmed, Subash Chandra Sahoo, Xin‐Yi Wang, Saurabh Kumar Singh, Sourav Das. Zero‐field Slow Magnetic Relaxation Behavior of Dy 2 in a Series of Dinuclear {Ln 2 } (Ln=Dy, Tb, Gd and Er) Complexes: A Combined Experimental and Theoretical Study. European Journal of Inorganic Chemistry 2022, 2022 (5) https://doi.org/10.1002/ejic.202100983
    29. Arpan Mondal, Mukul Raizada, Pradip Kumar Sahu, Sanjit Konar. A new family of Fe 4 Ln 4 (Ln = Dy III , Gd III , Y III ) wheel type complexes with ferromagnetic interaction, magnetocaloric effect and zero-field SMM behavior. Inorganic Chemistry Frontiers 2021, 8 (21) , 4625-4633. https://doi.org/10.1039/D1QI00781E
    30. Swetanshu Tandon, Wolfgang Schmitt, Graeme Watson. J2suscep: Calculation of magnetic exchange coupling and temperature dependence of magnetic susceptibility. Journal of Open Source Software 2021, 6 (63) , 2838. https://doi.org/10.21105/joss.02838
    31. Atanu Dey, Prasenjit Bag, Pankaj Kalita, Vadapalli Chandrasekhar. Heterometallic CuII–LnIII complexes: Single molecule magnets and magnetic refrigerants. Coordination Chemistry Reviews 2021, 432 , 213707. https://doi.org/10.1016/j.ccr.2020.213707
    32. Despina Dermitzaki, Michael Pissas, Vassilis Psycharis, Yiannis Sanakis, Catherine P. Raptopoulou. Synthesis, crystal structures, magnetic and magnetocaloric studies of heterometallic enneanuclear {Cu7Gd2} complexes. Polyhedron 2021, 195 , 114960. https://doi.org/10.1016/j.poly.2020.114960
    33. Itziar Oyarzabal, Estitxu Echenique-Errandonea, Eider San Sebastián, Antonio Rodríguez-Diéguez, José Manuel Seco, Enrique Colacio. Synthesis, Structural Features and Physical Properties of a Family of Triply Bridged Dinuclear 3d-4f Complexes. Magnetochemistry 2021, 7 (2) , 22. https://doi.org/10.3390/magnetochemistry7020022
    34. Despina Dermitzaki, Catherine P. Raptopoulou, Vassilis Psycharis, Albert Escuer, Spyros P. Perlepes, Julia Mayans, Theocharis C. Stamatatos. Further synthetic investigation of the general lanthanoid( iii ) [Ln( iii )]/copper( ii )/pyridine-2,6-dimethanol/carboxylate reaction system: {CuII5LnIII4} coordination clusters (Ln = Dy, Tb, Ho) and their yttrium( iii ) analogue. Dalton Transactions 2021, 50 (1) , 240-251. https://doi.org/10.1039/D0DT03582C
    35. Swetanshu Tandon, Munuswamy Venkatesan, Wolfgang Schmitt, Graeme W. Watson. Altering the nature of coupling by changing the oxidation state in a {Mn 6 } cage. Dalton Transactions 2020, 49 (24) , 8086-8095. https://doi.org/10.1039/D0DT01404D
    36. Mukesh Kumar Singh. Probing the strong magnetic exchange behaviour of transition metal–radical complexes: a DFT case study. Dalton Transactions 2020, 49 (14) , 4539-4548. https://doi.org/10.1039/D0DT00262C
    37. Sui-Jun Liu, Song-De Han, Jiong-Peng Zhao, Jialiang Xu, Xian-He Bu. In-situ synthesis of molecular magnetorefrigerant materials. Coordination Chemistry Reviews 2019, 394 , 39-52. https://doi.org/10.1016/j.ccr.2019.05.009
    38. Despina Dermitzaki, Vassilis Psycharis, Yiannis Sanakis, Th. C. Stamatatos, Michael Pissas, Catherine P. Raptopoulou. Extending the family of heptanuclear heterometallic Cu5Ln2 (Ln = Gd, Tb, Dy) complexes: Synthesis, crystal structures, magnetic and magnetocaloric studies. Polyhedron 2019, 169 , 135-143. https://doi.org/10.1016/j.poly.2019.05.004
    39. Kang Wang, Junqing Zhang, Jiao Lu, Pei Jing, Licun Li. Slow magnetic relaxation in Cu-Ln heterometallic Schiff base complexes containing Ln(hfac)4− as counterions. Inorganica Chimica Acta 2019, 490 , 51-56. https://doi.org/10.1016/j.ica.2019.02.030
    40. R. C. Sahoo, Sananda Das, T. K. Nath. Role of Gd spin ordering on magnetocaloric effect and ferromagnetism in Sr substituted Gd2CoMnO6 double perovskite. Journal of Applied Physics 2018, 124 (10) https://doi.org/10.1063/1.5039806
    41. Meng Li, Ning Gao, Qiu Jin, De-Rui Deng, Bi-Ying Liu, Gong-Ping Tang, Hai-Ying Wei, Yue-Hua Zhang, Zhi-Lei Wu. Two new coplanar tetranuclear lanthanide complexes (Ln = Gd(III) and Dy(III)) with magnetic refrigeration and slow magnetic relaxation behaviors. Polyhedron 2018, 151 , 355-359. https://doi.org/10.1016/j.poly.2018.05.054
    42. Despina Dermitzaki, Ourania Bistola, Michael Pissas, Vassilis Psycharis, Yiannis Sanakis, Catherine P. Raptopoulou. Heptanuclear heterometallic Cu 5 Ln 2 (Ln = Gd, Tb) complexes: Synthesis, crystal structures, and magnetic properties studies. Polyhedron 2018, 150 , 47-53. https://doi.org/10.1016/j.poly.2018.05.003
    43. Jing Sun, Ke-Xia Shang, Ya-Jun Wu, Qian Zhang, Xiao-Qiang Yao, Yun-Xia Yang, Dong-Cheng Hu, Jia-Cheng Liu. Three new Coordination Polymers based on a 1-(3,5-dicarboxy-benzyl)-1H-pyrazole-3,5-dicarboxylic acid ligand: Synthesis, crystal structures, magnetic properties and selectively sensing properties. Polyhedron 2018, 141 , 223-229. https://doi.org/10.1016/j.poly.2017.11.037
    44. Dimitris I. Alexandropoulos, Luis Cunha-Silva, Jinkui Tang, Theocharis C. Stamatatos. Heterometallic Cu/Ln cluster chemistry: ferromagnetically-coupled {Cu 4 Ln 2 } complexes exhibiting single-molecule magnetism and magnetocaloric properties. Dalton Transactions 2018, 47 (34) , 11934-11941. https://doi.org/10.1039/C8DT01780H
    45. Yan-Ning Zhao, Shu-Ran Zhang, Wei Wang, Yan-Hong Xu, Guang-Bo Che. A 3D metal–organic framework with dual-aerial-octahedral trinucleate building units: synthesis, structure and fluorescence sensing properties. New Journal of Chemistry 2018, 42 (17) , 14648-14654. https://doi.org/10.1039/C8NJ02078G
    46. Kuduva R. Vignesh, Stuart K. Langley, Keith S. Murray, Gopalan Rajaraman. Quenching the Quantum Tunneling of Magnetization in Heterometallic Octanuclear {TM III 4 Dy III 4 } (TM=Co and Cr) Single‐Molecule Magnets by Modification of the Bridging Ligands and Enhancing the Magnetic Exchange Coupling. Chemistry – A European Journal 2017, 23 (7) , 1654-1666. https://doi.org/10.1002/chem.201604835
    47. Lin Jiang, Bin Liu, Hao-Wen Zhao, Jin-Lei Tian, Xin Liu, Shi-Ping Yan. Compartmental ligand approach for constructing 3d–4f heterometallic [Cu II 5 Ln III 2 ] clusters: synthesis and magnetostructural properties. CrystEngComm 2017, 19 (13) , 1816-1830. https://doi.org/10.1039/C6CE02519F
    48. Zhong-Yi Li, Chi Zhang, Bin Zhai, Jing-Cheng Han, Meng-Chun Pei, Jian-Jun Zhang, Fu-Li Zhang, Su-Zhi Li, Guang-Xiu Cao. Linking heterometallic Cu–Ln chain units with a 2-methylenesuccinate bridge to form a 2D network exhibiting a large magnetocaloric effect. CrystEngComm 2017, 19 (19) , 2702-2708. https://doi.org/10.1039/C7CE00356K
    49. Jianfeng Wu, Lang Zhao, Li Zhang, Xiao‐Lei Li, Mei Guo, Annie K. Powell, Jinkui Tang. Macroscopic Hexagonal Tubes of 3 d – 4 f Metallocycles. Angewandte Chemie 2016, 128 (50) , 15803-15807. https://doi.org/10.1002/ange.201609539
    50. Jianfeng Wu, Lang Zhao, Li Zhang, Xiao‐Lei Li, Mei Guo, Annie K. Powell, Jinkui Tang. Macroscopic Hexagonal Tubes of 3 d – 4 f Metallocycles. Angewandte Chemie International Edition 2016, 55 (50) , 15574-15578. https://doi.org/10.1002/anie.201609539
    51. Hongbo Zhou, Chao Chen, Kang Wu, Yashu Liu, Xiaoping Shen. Heterotrimetallic Cu II (L)–Ln III –M III (M = Cr, Fe; Ln = Pr, Nd, Sm, Gd) Complexes Ranging from 0D Clusters to 1D Chains and 2D Networks: Syntheses, Structures, and Magnetism. European Journal of Inorganic Chemistry 2016, 2016 (30) , 4921-4927. https://doi.org/10.1002/ejic.201600886
    52. Xiao‐Ting Wang, Hui‐Ming Dong, Xiu‐Guang Wang, En‐Cui Yang, Xiao‐Jun Zhao. Two Oxime‐Based { Ln III 3 Ni II 3 } Clusters with Triangular { Ln 3 (μ 3 ‐Ο 2 )} 7+ Core: Solvothermal Syntheses, Crystal Structures, and Magnetic Properties. Zeitschrift für anorganische und allgemeine Chemie 2016, 642 (20) , 1166-1172. https://doi.org/10.1002/zaac.201600253
    53. Shaowei Zhang, Peng Cheng. Coordination‐Cluster‐Based Molecular Magnetic Refrigerants. The Chemical Record 2016, 16 (4) , 2077-2126. https://doi.org/10.1002/tcr.201600038
    54. Sourav Biswas, Sourav Das, Guillaume Rogez, Vadapalli Chandrasekhar. Hydrazone‐Ligand‐Based Homodinuclear Lanthanide Complexes: Synthesis, Structure, and Magnetism. European Journal of Inorganic Chemistry 2016, 2016 (20) , 3322-3329. https://doi.org/10.1002/ejic.201600335
    55. Junqing Zhang, Cun Li, Juanjuan Wang, Mei Zhu, Licun Li. Slow Magnetic Relaxation Behavior in Rare Ln–Cu–Ln Linear Trinuclear Complexes. European Journal of Inorganic Chemistry 2016, 2016 (9) , 1383-1388. https://doi.org/10.1002/ejic.201501388
    56. Saurabh Kumar Singh, Mohammad Faizan Beg, Gopalan Rajaraman. Role of Magnetic Exchange Interactions in the Magnetization Relaxation of {3d–4f} Single‐Molecule Magnets: A Theoretical Perspective. Chemistry – A European Journal 2016, 22 (2) , 672-680. https://doi.org/10.1002/chem.201503102
    57. Jiang‐Zhen Qiu, Long‐Fei Wang, Yan‐Cong Chen, Ze‐Min Zhang, Quan‐Wen Li, Ming‐Liang Tong. Magnetocaloric Properties of Heterometallic 3d–Gd Complexes Based on the [Gd(oda) 3 ] 3− Metalloligand. Chemistry – A European Journal 2016, 22 (2) , 802-808. https://doi.org/10.1002/chem.201503796
    58. Tulika Gupta, Gopalan Rajaraman. Modelling spin Hamiltonian parameters of molecular nanomagnets. Chemical Communications 2016, 52 (58) , 8972-9008. https://doi.org/10.1039/C6CC01251E
    59. Olivier Blacque, Asma Amjad, Andrea Caneschi, Lorenzo Sorace, Pierre-Emmanuel Car. Synthesis, structure, magnetic and magnetocaloric properties of a series of {CrIII4Ln III } complexes. New Journal of Chemistry 2016, 40 (4) , 3571-3577. https://doi.org/10.1039/C6NJ00136J
    60. Jamie M. Frost, Robert J. Stirling, Sergio Sanz, Nidhi Vyas, Gary S. Nichol, Gopalan Rajaraman, Euan K. Brechin. Turning a “useless” ligand into a “useful” ligand: a magneto-structural study of an unusual family of Cu II wheels derived from functionalised phenolic oximes. Dalton Transactions 2015, 44 (22) , 10177-10187. https://doi.org/10.1039/C5DT00884K
    61. Jianfeng Wu, Lang Zhao, Peng Zhang, Li Zhang, Mei Guo, Jinkui Tang. Linear 3d–4f compounds: synthesis, structure, and determination of the d–f magnetic interaction. Dalton Transactions 2015, 44 (26) , 11935-11942. https://doi.org/10.1039/C5DT01382H
    62. Xiufeng Wang, Cun Li, Juan Sun, Licun Li. Nitronyl nitroxide based 2p–3d–4f chains with the magnetocaloric effect and slow magnetic relaxation. Dalton Transactions 2015, 44 (42) , 18411-18417. https://doi.org/10.1039/C5DT02783G

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2015, 54, 4, 1661–1670
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ic502651w
    Published January 23, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    1041

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.