ACS Publications. Most Trusted. Most Cited. Most Read
YF[MoO4] and YCl[MoO4]: Two Halide Derivatives of Yttrium ortho-Oxomolybdate: Syntheses, Structures, and Luminescence Properties
My Activity

    Article

    YF[MoO4] and YCl[MoO4]: Two Halide Derivatives of Yttrium ortho-Oxomolybdate: Syntheses, Structures, and Luminescence Properties
    Click to copy article linkArticle link copied!

    View Author Information
    Institute for Inorganic Chemistry, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart Germany, Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, and Department of Chemistry, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
    * To whom correspondence should be addressed. Fax: +49(0)711/685-64241. E-mail: [email protected]
    †Universität Stuttgart.
    ‡Colorado State University.
    §Katholieke Universiteit Leuven.
    Other Access OptionsSupporting Information (8)

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2008, 47, 9, 3728–3735
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ic702350p
    Published April 3, 2008
    Copyright © 2008 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The halide derivatives of yttrium ortho-oxomolybdate YX[MoO4] (X = F, Cl) both crystallize in the monoclinic system with four formula units per unit cell. YF[MoO4] exhibits a primitive cell setting (space group P21/c; a = 519.62(2) pm, b = 1225.14(7) pm, c = 663.30(3) pm, β = 112.851(4)°), whereas the lattice of YCl[MoO4] shows face-centering (space group C2/m; a = 1019.02(5) pm, b = 720.67(4) pm, c = 681.50(3) pm, β = 107.130(4)°). The two compounds each contain crystallographically unique Y3+ cations, which are found to have a coordination environment of six oxide and two halide anions. In the case of YF[MoO4], the coordination environment is seen as square antiprisms, and for YCl[MoO4], trigon-dodecahedra are found. The discrete tetrahedral [MoO4]2− units of the fluoride derivative are exclusively bound by six terminal Y3+ cations, while those of the chloride compound show a 5-fold coordination around the tetrahedra with one edge-bridging and four terminal Y3+ cations. The halide anions in each compound exhibit a coordination number of two, building up isolated planar rhombus-shaped units according to [Y2F2]4+ in YF[MoO4] and [Y2Cl2]4+ in YCl[MoO4], respectively. Both compounds were synthesized at high temperatures using Y2O3, MoO3, and the corresponding yttrium trihalide in a molar ratio of 1:3:1. Single crystals of both are insensitive to moist air and are found to be coarse shaped and colorless with optical band gaps situated in the near UV around 3.78 eV for the fluoride and 3.82 eV for the chloride derivative. Furthermore, YF[MoO4] seems to be a suitable material for doping to obtain luminescent materials because the Eu3+-doped compound shows an intense red luminescence, which has been spectroscopically investigated.

    Copyright © 2008 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Crystallographic information files (CIFs), IR, and DRS spectra, as well as X-ray powder diffractograms of YF[MoO4] and YCl[MoO4]. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 29 publications.

    1. Chao Feng, Shuoxing Yang, Chenyu Zhu, Hongping Wu, Zhanggui Hu, Jiyang Wang, Yicheng Wu, Hongwei Yu. Syntheses, Structures, and Characterization of Alkali-Metal Molybdates, A3Cl[Mo2O7] (A = K, Rb and Cs). Inorganic Chemistry 2025, 64 (22) , 10712-10718. https://doi.org/10.1021/acs.inorgchem.5c01621
    2. Zixian Jiao, Osvaldo Medina Mireles, Kevin Ensz, Fei Wang, Mingli Liang, P. Shiv Halasyamani, Bingbing Zhang, D. Paul. Rillema, Jian Wang. Heteroanionic LaBrVIO4 (VI = Mo, W): Excellence in Both Nonlinear Optical Properties and Photoluminescent Properties. Chemistry of Materials 2023, 35 (17) , 6998-7010. https://doi.org/10.1021/acs.chemmater.3c01273
    3. Katharina V. Dorn, Björn Blaschkowski, Philip Netzsch, Henning A. Höppe, Ingo Hartenbach. Blue Excitement: The Lanthanide(III) Chloride Oxidomolybdates(VI) Ln3Cl3[MoO6] (Ln = La, Pr, and Nd) and Their Spectroscopic Properties. Inorganic Chemistry 2019, 58 (13) , 8308-8315. https://doi.org/10.1021/acs.inorgchem.9b00098
    4. Marc Leblanc, Vincent Maisonneuve, and Alain Tressaud . Crystal Chemistry and Selected Physical Properties of Inorganic Fluorides and Oxide-Fluorides. Chemical Reviews 2015, 115 (2) , 1191-1254. https://doi.org/10.1021/cr500173c
    5. Justin N. Cross, Patrick M. Duncan, Eric M. Villa, Matthew J. Polinski, Jean-Marie Babo, Evgeny V. Alekseev, Corwin H. Booth, and Thomas E. Albrecht-Schmitt . From Yellow to Black: Dramatic Changes between Cerium(IV) and Plutonium(IV) Molybdates. Journal of the American Chemical Society 2013, 135 (7) , 2769-2775. https://doi.org/10.1021/ja311910h
    6. Karishma Prasad, Vivian Nguyen, Bingheng Ji, Jasmine Quah, Danielle Goodwin, Jian Wang. Chemical perspectives on heteroanionic compounds: a potential playground for multiferroics. Materials Chemistry Frontiers 2024, 8 (22) , 3674-3701. https://doi.org/10.1039/D4QM00454J
    7. Maurice Conrad, Thomas Schleid. BaCl[ReO4] and BaBr[ReO4]: Synthesis, crystal structure and properties of two mixed-anionic barium meta-perrhenates. Journal of Alloys and Compounds 2021, 868 , 159097. https://doi.org/10.1016/j.jallcom.2021.159097
    8. V.V. Popov, A.P. Menushenkov, A.A. Yastrebtsev, A.Yu. Molokova, S.G. Rudakov, R.D. Svetogorov, N.A. Tsarenko, K.V. Ponkratov, N.V. Ognevskaya, O.N. Seregina. The effect of the synthesis conditions on the structure and phase transitions in Ln2(MoO4)3. Solid State Sciences 2021, 112 , 106518. https://doi.org/10.1016/j.solidstatesciences.2020.106518
    9. Katharina V. Dorn, Ingo Hartenbach. Press to Success: Gd5FW3O16—The First Gadolinium(III) Fluoride Oxidotungstate(VI). Crystals 2019, 9 (8) , 424. https://doi.org/10.3390/cryst9080424
    10. Tanja Schustereit, Philip Netzsch, Henning A. Höppe, Ingo Hartenbach. Green Light: On YCl[WO 4 ] as Host Material for Luminescence Active Tb 3+ Cations. Zeitschrift für anorganische und allgemeine Chemie 2018, 644 (24) , 1749-1753. https://doi.org/10.1002/zaac.201800322
    11. L.X. Lovisa, A.A.G. Santiago, M.B. Farias, B.S. Barros, E. Longo, M.S. Li, C.A. Paskocimas, M.R.D. Bomio, F.V. Motta. White light emission from single-phase Y2MoO6: xPr3+ (x = 1, 2, 3 and 4 mol%) phosphor. Journal of Alloys and Compounds 2018, 769 , 420-429. https://doi.org/10.1016/j.jallcom.2018.07.339
    12. Airton Germano Bispo-Jr, Gabriel Mamoru Marques Shinohara, Ana Maria Pires, Celso Xavier Cardoso. Red phosphor based on Eu3+-doped Y2(MoO4)3 incorporated with Au NPs synthesized via Pechini's method. Optical Materials 2018, 84 , 137-145. https://doi.org/10.1016/j.optmat.2018.06.023
    13. Thomas Schleid, Ingo Hartenbach. On halide derivatives of rare-earth metal(III) oxidomolybdates(VI) and -tungstates(VI). Zeitschrift für Kristallographie - Crystalline Materials 2016, 231 (8) , 449-466. https://doi.org/10.1515/zkri-2016-1974
    14. Tanja Schustereit, Thomas Schleid, Ingo Hartenbach. Syntheses and crystal structures of the rare-earth metal(III) bromide ortho -oxidotungstates(VI) with the formula RE Br[WO 4 ] ( RE  = Y, Gd–Yb). Solid State Sciences 2015, 48 , 218-224. https://doi.org/10.1016/j.solidstatesciences.2015.08.013
    15. Tanja Schustereit, Thomas Schleid, Henning A. Höppe, Karolina Kazmierczak, Ingo Hartenbach. Chloride derivatives of lanthanoid(III) ortho-oxidotungstates(VI) with the formula LnCl[WO4] (Ln=Gd–Lu): Syntheses, crystal structures and spectroscopic properties. Journal of Solid State Chemistry 2015, 226 , 299-306. https://doi.org/10.1016/j.jssc.2015.01.035
    16. Tanja Schustereit, Thomas Schleid, Ingo Hartenbach. Solvochemical Synthesis and Crystal Structure of the Fluoride‐Derivatized Early Lanthanoid(III) ortho ‐Oxidomolybdates(VI) Ln F[MoO 4 ] ( Ln = Ce–Nd). European Journal of Inorganic Chemistry 2014, 2014 (30) , 5145-5151. https://doi.org/10.1002/ejic.201402407
    17. Ingo Hartenbach, Henning A. Höppe, Karolina Kazmierczak, Thomas Schleid. Synthesis, crystal structure and spectroscopic properties of a novel yttrium( iii ) fluoride dimolybdate( vi ): YFMo 2 O 7. Dalton Trans. 2014, 43 (37) , 14016-14021. https://doi.org/10.1039/C4DT01066C
    18. S. P. Petrosyants. Coordination polymers of indium, scandium, and yttrium. Russian Journal of Inorganic Chemistry 2013, 58 (13) , 1605-1624. https://doi.org/10.1134/S0036023613130032
    19. Ingo Hartenbach, Harald Henning, Thomas Schleid, Tanja Schustereit, Sabine Strobel. Syntheses, Crystal Structures, and Twinning of the Isotypic Rare‐Earth Metal Bromide Ortho ‐Oxidomolybdates LaBrMoO 4 and CeBrMoO 4. Zeitschrift für anorganische und allgemeine Chemie 2013, 639 (2) , 347-353. https://doi.org/10.1002/zaac.201200433
    20. Sonja Laufer, Sabine Strobel, Thomas Schleid, Joanna Cybinska, Anja-Verena Mudring, Ingo Hartenbach. Yttrium(iii) oxomolybdates(vi) as potential host materials for luminescence applications: an investigation of Eu3+-doped Y2[MoO4]3 and Y2[MoO4]2[Mo2O7]. New Journal of Chemistry 2013, 37 (7) , 1919. https://doi.org/10.1039/c3nj00166k
    21. A. B. Ilyukhin, S. P. Petrosyants. Structural diversity of yttrium(III) halide complexes. Russian Journal of Inorganic Chemistry 2012, 57 (13) , 1653-1681. https://doi.org/10.1134/S0036023612130037
    22. Christian Lipp, Peter C. Burns, Thomas Schleid. Pr 5 F[SiO 4 ] 2 [SeO 3 ] 3 : Another Complex Fluoride Oxosilicate Oxoselenate(IV). Zeitschrift für anorganische und allgemeine Chemie 2012, 638 (5) , 779-784. https://doi.org/10.1002/zaac.201100493
    23. Tanja Schustereit, Thomas Schleid, Ingo Hartenbach. The Non ‐Centrosymmetric Crystal Structure of Molybdenum(VI) Oxide Bromide MoO 2 Br 2. Zeitschrift für anorganische und allgemeine Chemie 2011, 637 (9) , 1159-1161. https://doi.org/10.1002/zaac.201100042
    24. Ingo Hartenbach, Thomas Schleid, Sabine Strobel, Peter K. Dorhout. Chloride Derivatives of Lanthanide Ortho ‐Oxomolybdates:, 3. Crystal Structures, Spectroscopic Studies, and Magnetic Properties of the Ln Cl[MoO 4 ] Representatives with the Large Lanthanides ( Ln = La, Ce, Pr) . Zeitschrift für anorganische und allgemeine Chemie 2010, 636 (7) , 1183-1189. https://doi.org/10.1002/zaac.200900572
    25. Ingo Hartenbach, Sabine Strobel, Thomas Schleid, Biprajit Sarkar, Wolfgang Kaim, Peter Nockemann, Koen Binnemans, Peter K. Dorhout. Synthesis, Structure, and Spectroscopic Properties of the New Lanthanum(III) Fluoride Oxomolybdate(VI) La 3 FMo 4 O 16. European Journal of Inorganic Chemistry 2010, 2010 (11) , 1626-1632. https://doi.org/10.1002/ejic.200901052
    26. Thomas Schleid, Ingo Hartenbach. Chloride Derivatives of Lanthanide Ortho ‐Oxomolybdates: 2. The Unique Crystal Structure of NdCl[MoO 4 ] in the Ln Cl[MoO 4 ] Series . Zeitschrift für anorganische und allgemeine Chemie 2009, 635 (12) , 1904-1909. https://doi.org/10.1002/zaac.200900140
    27. Ingo Hartenbach, Sabine Strobel, Thomas Schleid, Karl W. Krämer, Peter K. Dorhout. Chloride Derivatives of Lanthanide Ortho ‐Oxomolybdates: 1. Structural Comparison, Magnetic Properties, and Luminescence of the Ln Cl[MoO 4 ] Representatives with the Smaller Lanthanides ( Ln = Sm–Lu). Zeitschrift für anorganische und allgemeine Chemie 2009, 635 (6-7) , 966-975. https://doi.org/10.1002/zaac.200801380
    28. Ingo Hartenbach, Sabine Strobel, Peter K. Dorhout, Thomas Schleid. Crystal structure, spectroscopic properties, and magnetic behavior of the fluoride-derivatized lanthanoid(III) ortho-oxomolybdates(VI) LnF[MoO4] (Ln=Sm–Tm). Journal of Solid State Chemistry 2008, 181 (10) , 2828-2836. https://doi.org/10.1016/j.jssc.2008.07.016
    29. Thomas Schleid, Sabine Strobel, Peter K. Dorhout, Peter Nockemann, Koen Binnemans, Ingo Hartenbach. ChemInform Abstract: YF[MoO 4 ] and YCl[MoO 4 ]: Two Halide Derivatives of Yttrium ortho‐Oxomolybdate: Syntheses, Structures, and Luminescence Properties.. ChemInform 2008, 39 (33) https://doi.org/10.1002/chin.200833022

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2008, 47, 9, 3728–3735
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ic702350p
    Published April 3, 2008
    Copyright © 2008 American Chemical Society

    Article Views

    504

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.