ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Dinitrogen Complexes Supported by Tris(phosphino)silyl Ligands

View Author Information
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
* To whom correspondence should be addressed. E-mail: [email protected]
†California Institute of Technology, Pasadena, CA 91125.
Cite this: Inorg. Chem. 2009, 48, 6, 2507–2517
Publication Date (Web):February 11, 2009
https://doi.org/10.1021/ic801855y
Copyright © 2009 American Chemical Society

    Article Views

    5553

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The tetradentate tris(phosphino)silyl ligand [SiPiPr3] ([SiPiPr3] = [Si(o-C6H4PiPr2)3]) has been prepared, and its complexation with iron, cobalt, nickel, and iridium precursors has been explored. Several coordination complexes have been thoroughly characterized and are described. These include, for example, the divalent trigonal bipyramidal metal chlorides [SiPiPr3]M−Cl (M = Fe, Co, Ni), as well as the monovalent dinitrogen adducts [SiPiPr3]M−N2 (M = Fe, Co, Ir), which are compared with related [SiPPh3]M−Cl and [SiPPh3]M−N2 species (M = Fe, Co). Complexes of this type represent the first examples of terminal dinitrogen adducts of monovalent iron, and the ligand architecture allows examination of a unique class of dinitrogen adducts with a trans-disposed silyl donor. Oxidation of the appropriate [SiPR3]M−N2 precursors affords the divalent iron triflate [SiPPh3]Fe(OTf) and trivalent cobalt triflate {[SiPiPr3]Co(OTf)}{OTf} complexes, which are of interest for group transfer studies because of the presence of a labile triflate ligand. Comparative electrochemical, structural, and spectroscopic data are provided for these complexes.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    CIF files for complexes 16, 10, 12, 14, 15, 16, and 17. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 134 publications.

    1. Vanessa R. Landaeta, Thomas M. Horsley Downie, Robert Wolf. Low-Valent Transition Metalate Anions in Synthesis, Small Molecule Activation, and Catalysis. Chemical Reviews 2024, Article ASAP.
    2. Yinwu Li, Huayu Liang, Yubang Liu, Jiaxing Lin, Zhuofeng Ke. Unraveling the Role of Silyl and Silane in Si–Ni Catalysts for Hydrogenation. ACS Catalysis 2023, 13 (19) , 13008-13020. https://doi.org/10.1021/acscatal.3c03329
    3. Quinton J. Bruch, Gannon P. Connor, Noah D. McMillion, Alan S. Goldman, Faraj Hasanayn, Patrick L. Holland, Alexander J. M. Miller. Considering Electrocatalytic Ammonia Synthesis via Bimetallic Dinitrogen Cleavage. ACS Catalysis 2020, 10 (19) , 10826-10846. https://doi.org/10.1021/acscatal.0c02606
    4. Matthew J. Chalkley, Marcus W. Drover, Jonas C. Peters. Catalytic N2-to-NH3 (or -N2H4) Conversion by Well-Defined Molecular Coordination Complexes. Chemical Reviews 2020, 120 (12) , 5582-5636. https://doi.org/10.1021/acs.chemrev.9b00638
    5. Yi Yuan, Premkumar Gnanasekaran, Yu-Wen Chen, Gene-Hsiang Lee, Shao-Fei Ni, Chun-Sing Lee, Yun Chi. Iridium(III) Complexes Bearing a Formal Tetradentate Coordination Chelate: Structural Properties and Phosphorescence Fine-Tuned by Ancillaries. Inorganic Chemistry 2020, 59 (1) , 523-532. https://doi.org/10.1021/acs.inorgchem.9b02799
    6. Yafei Gao, Lijun Wang, Liang Deng. Distinct Catalytic Performance of Cobalt(I)–N-Heterocyclic Carbene Complexes in Promoting the Reaction of Alkene with Diphenylsilane: Selective 2,1-Hydrosilylation, 1,2-Hydrosilylation, and Hydrogenation of Alkene. ACS Catalysis 2018, 8 (10) , 9637-9646. https://doi.org/10.1021/acscatal.8b02513
    7. Serge Ruccolo, Michael Rauch, Gerard Parkin. Synthesis and Structural Characterization of Tris(isopropylbenzimidazol-2-ylthio)methyl Zinc Complexes, [TitmPriBenz]ZnX: Modulation of Transannular Zn–C Interactions. Organometallics 2018, 37 (11) , 1708-1718. https://doi.org/10.1021/acs.organomet.8b00158
    8. Nina X. Gu, Paul H. Oyala, Jonas C. Peters. An S = 1/2 Iron Complex Featuring N2, Thiolate, and Hydride Ligands: Reductive Elimination of H2 and Relevant Thermochemical Fe–H Parameters. Journal of the American Chemical Society 2018, 140 (20) , 6374-6382. https://doi.org/10.1021/jacs.8b02603
    9. Yafei Gao, Guangyu Li, and Liang Deng . Bis(dinitrogen)cobalt(−1) Complexes with NHC Ligation: Synthesis, Characterization, and Their Dinitrogen Functionalization Reactions Affording Side-on Bound Diazene Complexes. Journal of the American Chemical Society 2018, 140 (6) , 2239-2250. https://doi.org/10.1021/jacs.7b11660
    10. Longfei Li, Ming Lei, and Shigeyoshi Sakaki . DFT Mechanistic Study on Alkene Hydrogenation Catalysis of Iron Metallaboratrane: Characteristic Features of Iron Species. Organometallics 2017, 36 (18) , 3530-3538. https://doi.org/10.1021/acs.organomet.7b00457
    11. Vidura D. Thalangamaarachchige, Hui Li, David B. Cordes, Daniel K. Unruh, and Clemens Krempner . Zwitterionic Alkali-Metal Silanides of Tripodal Ligand Geometry: Synthesis, Structure, and Lewis Acid–Base Chemistry. Inorganic Chemistry 2017, 56 (16) , 9869-9879. https://doi.org/10.1021/acs.inorgchem.7b01227
    12. Matthew J. Chalkley, Trevor J. Del Castillo, Benjamin D. Matson, Joseph P. Roddy, and Jonas C. Peters . Catalytic N2-to-NH3 Conversion by Fe at Lower Driving Force: A Proposed Role for Metallocene-Mediated PCET. ACS Central Science 2017, 3 (3) , 217-223. https://doi.org/10.1021/acscentsci.7b00014
    13. Joyce Y. Corey . Reactions of Hydrosilanes with Transition Metal Complexes. Chemical Reviews 2016, 116 (19) , 11291-11435. https://doi.org/10.1021/acs.chemrev.5b00559
    14. Bhaskar Mondal, Frank Neese, and Shengfa Ye . Toward Rational Design of 3d Transition Metal Catalysts for CO2 Hydrogenation Based on Insights into Hydricity-Controlled Rate-Determining Steps. Inorganic Chemistry 2016, 55 (11) , 5438-5444. https://doi.org/10.1021/acs.inorgchem.6b00471
    15. Shengfa Ye, Eckhard Bill, and Frank Neese . Electronic Structures of the [Fe(N2)(SiPiPr3)]+1/0/–1 Electron Transfer Series: A Counterintuitive Correlation between Isomer Shifts and Oxidation States. Inorganic Chemistry 2016, 55 (7) , 3468-3474. https://doi.org/10.1021/acs.inorgchem.5b02908
    16. Tatsuya Suzuki, Yuko Wasada-Tsutsui, Takahiko Ogawa, Tomohiko Inomata, Tomohiro Ozawa, Yoichi Sakai, Michael D. Fryzuk, and Hideki Masuda . N2 Activation by an Iron Complex with a Strong Electron-Donating Iminophosphorane Ligand. Inorganic Chemistry 2015, 54 (19) , 9271-9281. https://doi.org/10.1021/acs.inorgchem.5b00536
    17. Trevor J. Del Castillo, Niklas B. Thompson, Daniel L. M. Suess, Gaël Ung, and Jonas C. Peters . Evaluating Molecular Cobalt Complexes for the Conversion of N2 to NH3. Inorganic Chemistry 2015, 54 (19) , 9256-9262. https://doi.org/10.1021/acs.inorgchem.5b00645
    18. Laura J. Clouston, Varinia Bernales, Rebecca K. Carlson, Laura Gagliardi, and Connie C. Lu . Bimetallic Cobalt–Dinitrogen Complexes: Impact of the Supporting Metal on N2 Activation. Inorganic Chemistry 2015, 54 (19) , 9263-9270. https://doi.org/10.1021/acs.inorgchem.5b00983
    19. Henry Fong and Jonas C. Peters . Hydricity of an Fe–H Species and Catalytic CO2 Hydrogenation. Inorganic Chemistry 2015, 54 (11) , 5124-5135. https://doi.org/10.1021/ic502508p
    20. Jian Sun, Chong Ou, Chao Wang, Masanobu Uchiyama, and Liang Deng . Silane-Functionalized N-Heterocyclic Carbene–Cobalt Complexes Containing a Five-Coordinate Silicon with a Covalent Co–Si Bond. Organometallics 2015, 34 (8) , 1546-1551. https://doi.org/10.1021/acs.organomet.5b00114
    21. Pauline Gualco, Sonia Mallet-Ladeira, Hajime Kameo, Hiroshi Nakazawa, Maxime Mercy, Laurent Maron, Abderrahmane Amgoune, and Didier Bourissou . Coordination of a Triphosphine–Silane to Gold: Formation of a Trigonal Pyramidal Complex Featuring Au+→Si Interaction. Organometallics 2015, 34 (8) , 1449-1453. https://doi.org/10.1021/om501154d
    22. Zhenbo Mo, Jie Xiao, Yafei Gao, and Liang Deng . Regio- and Stereoselective Hydrosilylation of Alkynes Catalyzed by Three-Coordinate Cobalt(I) Alkyl and Silyl Complexes. Journal of the American Chemical Society 2014, 136 (50) , 17414-17417. https://doi.org/10.1021/ja510924v
    23. Hajime Kameo, Tatsuya Kawamoto, Shigeyoshi Sakaki, Didier Bourissou, and Hiroshi Nakazawa . Synthesis, Geometry, and Bonding Nature of Heptacoordinate Compounds of Silicon and Germanium Featuring Three Phosphine Donors. Organometallics 2014, 33 (22) , 6557-6567. https://doi.org/10.1021/om500906f
    24. William A. Gunderson, Daniel L. M. Suess, Henry Fong, Xiaoping Wang, Christina M. Hoffmann, George E. Cutsail III, Jonas C. Peters, and Brian M. Hoffman . Free H2 Rotation vs Jahn–Teller Constraints in the Nonclassical Trigonal (TPB)Co–H2 Complex. Journal of the American Chemical Society 2014, 136 (42) , 14998-15009. https://doi.org/10.1021/ja508117h
    25. Zhenwu Ouyang and Liang Deng . Iron(II) Complexes Featuring Bidentate N-Heterocyclic Carbene–Silyl Ligands: Synthesis and Characterization. Organometallics 2013, 32 (24) , 7268-7271. https://doi.org/10.1021/om4010274
    26. Erika R. Bartholomew, Emily C. Volpe, Peter T. Wolczanski, Emil B. Lobkovsky, and Thomas R. Cundari . Selective Extraction of N2 from Air by Diarylimine Iron Complexes. Journal of the American Chemical Society 2013, 135 (9) , 3511-3527. https://doi.org/10.1021/ja311021u
    27. Zhenbo Mo, Dake Chen, Xuebin Leng, and Liang Deng . Intramolecular C(sp3)–H Bond Activation Reactions of Low-Valent Cobalt Complexes with Coordination Unsaturation. Organometallics 2012, 31 (20) , 7040-7043. https://doi.org/10.1021/om300804a
    28. Peter E. Sues, Alan J. Lough, and Robert H. Morris . Flexible Syntheses of Tripodal Phosphine Ligands 1,1,2-Tris(diarylphosphino)ethane and Their Ruthenium η5-C5Me5 Complexes. Organometallics 2012, 31 (18) , 6589-6594. https://doi.org/10.1021/om3005959
    29. Daniel L. M. Suess, Charlene Tsay, and Jonas C. Peters . Dihydrogen Binding to Isostructural S = 1/2 and S = 0 Cobalt Complexes. Journal of the American Chemical Society 2012, 134 (34) , 14158-14164. https://doi.org/10.1021/ja305248f
    30. Ayumi Takaoka, Marc-Etienne Moret, and Jonas C. Peters . A Ru(I) Metalloradical That Catalyzes Nitrene Coupling to Azoarenes from Arylazides. Journal of the American Chemical Society 2012, 134 (15) , 6695-6706. https://doi.org/10.1021/ja211603f
    31. Hajime Kameo, Sho Ishii, and Hiroshi Nakazawa . Synthesis and Reactivity of Rhodium Complexes Bearing [E(o-C6H4PPh2)3]-Type Tetradentate Ligands (E = Si, Ge, and Sn). Organometallics 2012, 31 (6) , 2212-2218. https://doi.org/10.1021/om2011276
    32. S. Chantal E. Stieber, Carsten Milsmann, Jordan M. Hoyt, Zoë R. Turner, Kenneth D. Finkelstein, Karl Wieghardt, Serena DeBeer, and Paul J. Chirik . Bis(imino)pyridine Iron Dinitrogen Compounds Revisited: Differences in Electronic Structure Between Four- and Five-Coordinate Derivatives.. Inorganic Chemistry 2012, 51 (6) , 3770-3785. https://doi.org/10.1021/ic202750n
    33. Ayumi Takaoka and Jonas C. Peters . A Homologous Series of Cobalt, Rhodium, and Iridium Metalloradicals. Inorganic Chemistry 2012, 51 (1) , 16-18. https://doi.org/10.1021/ic202079r
    34. P. Alex Rudd, Shengsi Liu, Laura Gagliardi, Victor G. Young, Jr., and Connie C. Lu . Metal–Alane Adducts with Zero-Valent Nickel, Cobalt, and Iron. Journal of the American Chemical Society 2011, 133 (51) , 20724-20727. https://doi.org/10.1021/ja2099744
    35. Olivia R. Allen, Leslie D. Field, Alison M. Magill, Khuong Q. Vuong, Mohan M. Bhadbhade, and Scott J. Dalgarno . Ruthenium Complexes of CP3: A New Carbon-Centered Polydentate Podand Ligand. Organometallics 2011, 30 (23) , 6433-6440. https://doi.org/10.1021/om200718j
    36. Yunho Lee, R. Adam Kinney, Brian M. Hoffman, and Jonas C. Peters . A Nonclassical Dihydrogen Adduct of S = 1/2 Fe(I). Journal of the American Chemical Society 2011, 133 (41) , 16366-16369. https://doi.org/10.1021/ja207003m
    37. Casey R. Wade, Tzu-Pin Lin, Ryan C. Nelson, Elizabeth A. Mader, Jeffrey T. Miller, and François P. Gabbaï . Synthesis, Structure, and Properties of a T-Shaped 14-Electron Stiboranyl-Gold Complex. Journal of the American Chemical Society 2011, 133 (23) , 8948-8955. https://doi.org/10.1021/ja201092g
    38. Ayumi Takaoka, Neal P. Mankad, and Jonas C. Peters . Dinitrogen Complexes of Sulfur-Ligated Iron. Journal of the American Chemical Society 2011, 133 (22) , 8440-8443. https://doi.org/10.1021/ja2020907
    39. Yunho Lee and Jonas C. Peters . Silylation of Iron-Bound Carbon Monoxide Affords a Terminal Fe Carbyne. Journal of the American Chemical Society 2011, 133 (12) , 4438-4446. https://doi.org/10.1021/ja109678y
    40. Yusuke Sunada, Tsuyoshi Imaoka, and Hideo Nagashima . Half-Sandwich (η6-Arene)iron(II) Dinitrogen Complexes Bearing a Disilaferracycle Skeleton as a Precursor for Double Silylation of Ethylene and Alkynes. Organometallics 2010, 29 (23) , 6157-6160. https://doi.org/10.1021/om100889w
    41. Jian Yang, Iker Del Rosal, Meg Fasulo, Preeyanuch Sangtrirutnugul, Laurent Maron, and T. Don Tilley . Nickel Complexes with Bis(8-quinolyl)silyl Ligands. An Unusual Ni3Si2 Cluster Containing Six-Coordinate Silicon. Organometallics 2010, 29 (21) , 5544-5550. https://doi.org/10.1021/om1004622
    42. J. M. Chin, R. R. Schrock and P. Müller. Synthesis of DiamidoPyrrolyl Molybdenum Complexes Relevant to Reduction of Dinitrogen to Ammonia. Inorganic Chemistry 2010, 49 (17) , 7904-7916. https://doi.org/10.1021/ic100856n
    43. Jeroen Wassenaar, Maxime A. Siegler, Anthony L. Spek, Bas de Bruin, Joost N. H. Reek and Jarl Ivar van der Vlugt . Versatile New C3-Symmetric Tripodal Tetraphosphine Ligands; Structural Flexibility to Stabilize CuI and RhI Species and Tune Their Reactivity. Inorganic Chemistry 2010, 49 (14) , 6495-6508. https://doi.org/10.1021/ic100221w
    44. Nobuhiro Takeda, Daisuke Watanabe, Tetsu Nakamura and Masafumi Unno. Synthesis and Complexation of a New Tripodal Tetradentate Ligand, a Silyl Ligand Tethered with Three Thioether Moieties. Organometallics 2010, 29 (13) , 2839-2841. https://doi.org/10.1021/om100255p
    45. Ayumi Takaoka, Arjun Mendiratta and Jonas C. Peters . E−H Bond Activation Reactions (E = H, C, Si, Ge) at Ruthenium: Terminal Phosphides, Silylenes, and Germylenes. Organometallics 2009, 28 (13) , 3744-3753. https://doi.org/10.1021/om900216u
    46. Marta Feliz, Francisco Estevan. Chiral-at-iron compounds with phosphanes. Coordination Chemistry Reviews 2024, 502 , 215614. https://doi.org/10.1016/j.ccr.2023.215614
    47. Lan Zhou, Dongyang Wang, Chengbo Yang, Liang Deng. Four-coordinate disilyl cobalt(II) complexes with NHC ligation: Synthesis, characterization, and reactivity. Chinese Chemical Letters 2024, 35 (3) , 108682. https://doi.org/10.1016/j.cclet.2023.108682
    48. Jayasree Kumar, Nikhil George Mohan, Tamilselvi Gurusamy, Sai Manoj N. V. T. Gorantla, Prathap Ravichandran, Kartik Chandra Mondal, Kothandaraman Ramanujam. Electrochemical dinitrogen to ammonia reduction at a nickel( ii ) site: an easy access to an air-stable catalyst. Journal of Materials Chemistry A 2024, 12 (8) , 4473-4483. https://doi.org/10.1039/D3TA05857C
    49. Jörg Wagler, Robert Gericke. Pd–Si complexes of the type ClPd(μ2-pyO)4SiR (R = Me, Ph, Bn, Allyl, κO-(pyO)PdCl(η3-allyl); pyO = pyridine-2-olate): The influence of substituent R on the Pd–Si bond. Polyhedron 2023, 245 , 116663. https://doi.org/10.1016/j.poly.2023.116663
    50. Luz J. Barrios-Vargas, Niroshani S. Abeynayake, Carlee Secrist, Nghia Le, Charles Edwin Webster, Bruno Donnadieu, David M. Kaphan, Amitava D. Roy, Ilich A. Ibarra, Virginia Montiel-Palma. Homogeneous versus MOF-supported catalysis: a direct comparison of catalytic hydroboration with Ni tripodal P 3 E (E = Si, Ge) complexes. Dalton Transactions 2023, 52 (26) , 8883-8892. https://doi.org/10.1039/D3DT01328F
    51. Oliver Einsle, Tobias A. Engesser, Felix Tuczek. Biological and synthetic nitrogen fixation. 2023, 302-346. https://doi.org/10.1016/B978-0-12-823144-9.00178-3
    52. Gao‐Xiang Wang, Xuechao Yan, Jianhao Yin, Zhu‐Bao Yin, Junnian Wei, Zhenfeng Xi. Cobalt Cyclopentadienyl‐Phosphine Dinitrogen Complexes. Chemistry – A European Journal 2022, 28 (67) https://doi.org/10.1002/chem.202202803
    53. Kavita Devi, Sai Manoj N. V. T. Gorantla, Kartik Chandra Mondal. Dinitrogen Binding Relevant to FeMoco of Nitrogenase: Clear Visualization of σ‐Donation and π‐Backdonation from Deformation Electron Densities around Carbon/Silicon‐Iron Site. European Journal of Inorganic Chemistry 2022, 2022 (9) https://doi.org/10.1002/ejic.202100931
    54. Harsha S. Karnamkkott, Sai Manoj N. V. T. Gorantla, Kavita Devi, Geetika Tiwari, Kartik Chandra Mondal. Bonding and stability of dinitrogen-bonded donor base-stabilized Si(0)/Ge(0) species [(cAAC Me –Si/Ge) 2 (N 2 )]: EDA-NOCV analysis. RSC Advances 2022, 12 (7) , 4081-4093. https://doi.org/10.1039/D1RA07714G
    55. Guoliang Chang, Peng Zhang, Wenjing Yang, Yanhong Dong, Shangqing Xie, Hongjian Sun, Xiaoyan Li, Olaf Fuhr, Dieter Fenske. Synthesis of silyl iron dinitrogen complexes for activation of dihydrogen and catalytic silylation of dinitrogen. Dalton Transactions 2021, 50 (47) , 17594-17602. https://doi.org/10.1039/D1DT02832D
    56. Hajime Kameo, Daisuke Izumi, Hiroyuki Matsuzaka. Synthesis, Structure, and Bonding Properties of Hypercoordinate Triorganotin Compounds Featuring Three O→Sn Interactions. European Journal of Inorganic Chemistry 2021, 2021 (25) , 2539-2545. https://doi.org/10.1002/ejic.202100334
    57. Ming Li, Sandeep K. Gupta, Sebastian Dechert, Serhiy Demeshko, Franc Meyer. Merging Pincer Motifs and Potential Metal–Metal Cooperativity in Cobalt Dinitrogen Chemistry: Efficient Catalytic Silylation of N 2 to N(SiMe 3 ) 3. Angewandte Chemie International Edition 2021, 60 (26) , 14480-14487. https://doi.org/10.1002/anie.202101387
    58. Ming Li, Sandeep K. Gupta, Sebastian Dechert, Serhiy Demeshko, Franc Meyer. Merging Pincer Motifs and Potential Metal–Metal Cooperativity in Cobalt Dinitrogen Chemistry: Efficient Catalytic Silylation of N 2 to N(SiMe 3 ) 3. Angewandte Chemie 2021, 133 (26) , 14601-14608. https://doi.org/10.1002/ange.202101387
    59. Yoshiaki Tanabe, Yoshiaki Nishibayashi. Comprehensive insights into synthetic nitrogen fixation assisted by molecular catalysts under ambient or mild conditions. Chemical Society Reviews 2021, 50 (8) , 5201-5242. https://doi.org/10.1039/D0CS01341B
    60. Javier Troyano, Félix Zamora, Salomé Delgado. Copper( i )–iodide cluster structures as functional and processable platform materials. Chemical Society Reviews 2021, 50 (7) , 4606-4628. https://doi.org/10.1039/D0CS01470B
    61. Shogo Kuriyama, Yoshiaki Nishibayashi. Development of catalytic nitrogen fixation using transition metal complexes not relevant to nitrogenases. Tetrahedron 2021, 83 , 131986. https://doi.org/10.1016/j.tet.2021.131986
    62. Nicolas Mézailles. Reactivity and Structure of Complexes of Small Molecules: Dinitrogen. 2021, 875-958. https://doi.org/10.1016/B978-0-08-102688-5.00083-0
    63. David N. Stephens, Molly O’Hagan, Elliott Hulley, Michael T. Mock. Transition Metal Complexes for Dinitrogen Coordination and Activation. 2021, 363-409. https://doi.org/10.1016/B978-0-08-102688-5.00116-1
    64. Kelly L. Gullett, Joseph W. Nugent, William T. Darrow, Daniel C. Najera, Noah A. Bender, Ericka L. Bruske, Clare A. Leahy, Tabitha J. Miller, Safiyah R. Muhammad, Alison R. Fout. Dihydrogen and Dinitrogen Complexes of Cobalt and Nickel. 2021, 188-228. https://doi.org/10.1016/B978-0-08-102688-5.00094-5
    65. Matthew T. Whited, Buck L. H. Taylor. Metal/Organosilicon Complexes: Structure, Reactivity, and Considerations for Catalysis. Comments on Inorganic Chemistry 2020, 40 (5) , 217-276. https://doi.org/10.1080/02603594.2020.1737026
    66. Wesley Sattler, Daniel G. Shlian, David Sambade, Gerard Parkin. Synthesis and structural characterization of bis(2-pyridylthio)(p-tolylthio)methyl zinc complexes and the catalytic hydrosilylation of CO2. Polyhedron 2020, 187 , 114542. https://doi.org/10.1016/j.poly.2020.114542
    67. Yuko Wasada‐Tsutsui, Hiroaki Wasada, Tatsuya Suzuki, Akira Katayama, Yuji Kajita, Tomohiko Inomata, Tomohiro Ozawa, Hideki Masuda. Efficient Electronic Structure to Stabilize N 2 ‐Bridged Dinuclear Complexes Intended for N 2 Activation: Iminophosphorane Iron(I) and Cobalt(I). European Journal of Inorganic Chemistry 2020, 2020 (15-16) , 1411-1417. https://doi.org/10.1002/ejic.201901131
    68. Nidhi Vyas, Bhawana Pandey, Animesh Ojha, Abhinav Grover. Revisiting mechanistic studies on dinitrogen reduction to ammonia by an iron dinitrogen complex as nitrogenase mimic. International Journal of Quantum Chemistry 2019, 119 (24) https://doi.org/10.1002/qua.26025
    69. Meaghan M. Deegan, Jonas C. Peters. O -Functionalization of a cobalt carbonyl generates a terminal cobalt carbyne. Chemical Communications 2019, 55 (64) , 9531-9534. https://doi.org/10.1039/C9CC04032C
    70. Hajime Kameo, Tatsuya Kawamoto, Shigeyoshi Sakaki, Didier Bourissou, Hiroshi Nakazawa. Heptacoordinate Structures of Organotin Halides with Three Phosphine Donors: Halogen‐Substituent Effect on Geometry. European Journal of Inorganic Chemistry 2019, 2019 (26) , 3045-3052. https://doi.org/10.1002/ejic.201900524
    71. Patricia J. Nance, Niklas B. Thompson, Paul H. Oyala, Jonas C. Peters. Zerovalent Rhodium and Iridium Silatranes Featuring Two‐Center, Three‐Electron Polar σ Bonds. Angewandte Chemie 2019, 131 (19) , 6286-6290. https://doi.org/10.1002/ange.201814206
    72. Patricia J. Nance, Niklas B. Thompson, Paul H. Oyala, Jonas C. Peters. Zerovalent Rhodium and Iridium Silatranes Featuring Two‐Center, Three‐Electron Polar σ Bonds. Angewandte Chemie International Edition 2019, 58 (19) , 6220-6224. https://doi.org/10.1002/anie.201814206
    73. Leslie D. Field, Hsiu L. Li, Scott J. Dalgarno, Ruaraidh D. McIntosh. Ammonia and Hydrazine from Coordinated Dinitrogen by Complexes of Iron(0). European Journal of Inorganic Chemistry 2019, 2019 (14) , 2006-2011. https://doi.org/10.1002/ejic.201900058
    74. Adam D. Piascik, Andrew E. Ashley. Group 8 Transition Metal–Dinitrogen Complexes. 2019, 285-335. https://doi.org/10.1002/9783527344260.ch6
    75. Connie C. Lu, Steven D. Prinslow. Group 9 Transition Metal–Dinitrogen Complexes. 2019, 337-402. https://doi.org/10.1002/9783527344260.ch7
    76. Fenna F. van de Watering, Wojciech I. Dzik. Dinitrogen Reduction. 2019, 549-581. https://doi.org/10.1002/9783527699087.ch20
    77. Bhaskar Mondal, Frank Neese, Shengfa Ye. Computational Insights into Chemical Reactivity and Road to Catalyst Design: The Paradigm of CO 2 Hydrogenation. 2019, 33-48. https://doi.org/10.1002/9783527699087.ch2
    78. Luke J. Murphy, Adam J. Ruddy, Robert McDonald, Michael J. Ferguson, Laura Turculet. Activation of Molecular Hydrogen and Oxygen by PSiP Complexes of Cobalt. European Journal of Inorganic Chemistry 2018, 2018 (40) , 4481-4493. https://doi.org/10.1002/ejic.201800915
    79. Martin A. Bennett, Suresh K. Bhargava, Nedaossadat Mirzadeh, Steven H. Privér. The use of [2-C 6 R 4 PPh 2 ] − (R = H, F) and related carbanions as building blocks in coordination chemistry. Coordination Chemistry Reviews 2018, 370 , 69-128. https://doi.org/10.1016/j.ccr.2018.05.008
    80. Julio Zamora-Moreno, Virginia Montiel-Palma. Versatile Silylphosphine Ligands for Transition Metal Complexation. 2018https://doi.org/10.5772/intechopen.73502
    81. Nadja Stucke, Benedikt M. Flöser, Thomas Weyrich, Felix Tuczek. Nitrogen Fixation Catalyzed by Transition Metal Complexes: Recent Developments. European Journal of Inorganic Chemistry 2018, 2018 (12) , 1337-1355. https://doi.org/10.1002/ejic.201701326
    82. Peng Zhang, Shilu Xu, Xiaoyan Li, Xinghao Qi, Hongjian Sun, Olaf Fuhr, Dieter Fenske. Synthesis and reactivity of silyl cobalt complexes bearing a tetradentate phosphino silyl ligand via Si–H bond activation. Polyhedron 2018, 143 , 165-170. https://doi.org/10.1016/j.poly.2017.09.043
    83. Yanhong Dong, Yaomin Shi, Yizheng Geng, Tingting Zheng, Xiaoyan Li, Hongjian Sun, Olaf Fuhr, Dieter Fenske. Synthesis and characterization of bissilyl cobalt and iron hydrides bearing disilazane ligands via Si-H bond activation. Inorganica Chimica Acta 2018, 471 , 99-103. https://doi.org/10.1016/j.ica.2017.10.043
    84. Shishuai Ren, Shangqing Xie, Tingting Zheng, Yangyang Wang, Shilu Xu, Benjing Xue, Xiaoyan Li, Hongjian Sun, Olaf Fuhr, Dieter Fenske. Synthesis of silyl iron hydride via Si–H activation and its dual catalytic application in the hydrosilylation of carbonyl compounds and dehydration of benzamides. Dalton Transactions 2018, 47 (12) , 4352-4359. https://doi.org/10.1039/C8DT00289D
    85. Ryuji Imayoshi, Kazunari Nakajima, Jun Takaya, Nobuharu Iwasawa, Yoshiaki Nishibayashi. Synthesis and Reactivity of Iron– and Cobalt–Dinitrogen Complexes Bearing PSiP‐Type Pincer Ligands toward Nitrogen Fixation. European Journal of Inorganic Chemistry 2017, 2017 (32) , 3769-3778. https://doi.org/10.1002/ejic.201700569
    86. Anette Petuker, Matthew L. Reback, Ulf‐Peter Apfel. Carbon/Silicon Exchange at the Apex of Diphos‐ and Triphos‐Derived Ligands – More Than Just a Substitute?. European Journal of Inorganic Chemistry 2017, 2017 (27) , 3295-3301. https://doi.org/10.1002/ejic.201700388
    87. Jian Sun, Lun Luo, Yi Luo, Liang Deng. An NHC–Silyl–NHC Pincer Ligand for the Oxidative Addition of C−H, N−H, and O−H Bonds to Cobalt(I) Complexes. Angewandte Chemie International Edition 2017, 56 (10) , 2720-2724. https://doi.org/10.1002/anie.201611162
    88. Jian Sun, Lun Luo, Yi Luo, Liang Deng. An NHC–Silyl–NHC Pincer Ligand for the Oxidative Addition of C−H, N−H, and O−H Bonds to Cobalt(I) Complexes. Angewandte Chemie 2017, 129 (10) , 2764-2768. https://doi.org/10.1002/ange.201611162
    89. H. Li, A. J. A. Aquino, D. B. Cordes, W. L. Hase, C. Krempner. Electronic nature of zwitterionic alkali metal methanides, silanides and germanides – a combined experimental and computational approach. Chemical Science 2017, 8 (2) , 1316-1328. https://doi.org/10.1039/C6SC02390H
    90. Sidney E. Creutz, Jonas C. Peters. Exploring secondary-sphere interactions in Fe–N x H y complexes relevant to N 2 fixation. Chem. Sci. 2017, 8 (3) , 2321-2328. https://doi.org/10.1039/C6SC04805F
    91. M. Simon, F. Breher. Multidentate silyl ligands in transition metal chemistry. Dalton Transactions 2017, 46 (25) , 7976-7997. https://doi.org/10.1039/C7DT02085F
    92. Roy Herrmann, Philipp Wittwer, Thomas Braun. Platinum Complexes Bearing a Tripodal Germyl Ligand. European Journal of Inorganic Chemistry 2016, 2016 (30) , 4898-4905. https://doi.org/10.1002/ejic.201600652
    93. Samira Eghbaliferiz, Mehrdad Iranshahi. Prooxidant Activity of Polyphenols, Flavonoids, Anthocyanins and Carotenoids: Updated Review of Mechanisms and Catalyzing Metals. Phytotherapy Research 2016, 30 (9) , 1379-1391. https://doi.org/10.1002/ptr.5643
    94. M.D. Walter. Recent Advances in Transition Metal-Catalyzed Dinitrogen Activation. 2016, 261-377. https://doi.org/10.1016/bs.adomc.2016.03.001
    95. Jin Kim, Yujeong Kim, Indranil Sinha, Koeun Park, Sun Hee Kim, Yunho Lee. The unusual hydridicity of a cobalt bound Si–H moiety. Chemical Communications 2016, 52 (60) , 9367-9370. https://doi.org/10.1039/C6CC03983A
    96. Shilu Xu, Xiaoyan Li, Shumiao Zhang, Hongjian Sun. Synthesis and characterization of stable tripodal silyl iron and nickel complexes. Inorganica Chimica Acta 2015, 430 , 161-167. https://doi.org/10.1016/j.ica.2015.03.004
    97. Roy Herrmann, Thomas Braun, Stefan Mebs. [Ge(H)(2‐C 6 H 4 PPh 2 ) 3 ] as Ligand Precursor at Ruthenium: Formation and Reactivity of [Ru(Cl){Ge(2‐C 6 H 4 PPh 2 ) 3 }]. European Journal of Inorganic Chemistry 2014, 2014 (28) , 4826-4835. https://doi.org/10.1002/ejic.201402256
    98. James S. Jones, Casey R. Wade, François P. Gabbaï. Redox and Anion Exchange Chemistry of a Stibine–Nickel Complex: Writing the L, X, Z Ligand Alphabet with a Single Element. Angewandte Chemie International Edition 2014, 53 (34) , 8876-8879. https://doi.org/10.1002/anie.201404156
    99. James S. Jones, Casey R. Wade, François P. Gabbaï. Redox and Anion Exchange Chemistry of a Stibine–Nickel Complex: Writing the L, X, Z Ligand Alphabet with a Single Element. Angewandte Chemie 2014, 126 (34) , 9022-9025. https://doi.org/10.1002/ange.201404156
    100. Takashi Komuro, Keisuke Furuyama, Takeo Kitano, Hiromi Tobita. Synthesis of a 14-electron iridium(III) complex with a xanthene-based bis(silyl) chelate ligand (xantsil): A distorted seesaw-shaped four-coordinate geometry and reactions leading to 16-electron complexes. Journal of Organometallic Chemistry 2014, 751 , 686-694. https://doi.org/10.1016/j.jorganchem.2013.09.009
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect