ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Ring-Opening Polymerization of Lactides Catalyzed by Natural Amino-Acid Based Zinc Catalysts

View Author Information
Department of Chemistry, Texas A&M University, College Station, Texas 77843
*To whom correspondence should be addressed. E-mail: [email protected]. Fax (979)845-0158.
Cite this: Inorg. Chem. 2010, 49, 5, 2360–2371
Publication Date (Web):February 1, 2010
https://doi.org/10.1021/ic902271x
Copyright © 2010 American Chemical Society

    Article Views

    3475

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    A series of chiral NNO-tridentate Schiff base ligands derived from natural amino acids were reacted with zinc(bis-trimethylsilylamide)2 to provide metal complexes which have been fully characterized. One of these derivatives was further reacted with p-fluorophenol to yield a phenoxide complex. X-ray crystallographic studies reveal the zinc Schiff base amide complexes to be monomeric, whereas, the p-fluorophenolate complex was shown to be dimeric with bridging phenoxide ligands. All zinc complexes were shown to be very effective catalysts for the ring-opening polymerization (ROP) of lactides at ambient temperature, producing polymers with controlled and narrow molecular weight distributions. These enantiomerically pure zinc complexes did not show selectivity toward either l- or d-lactide, that is, kd(obsd)/kl(obsd) ≈ 1. However, steric substituents on the Schiff base ligands exhibited moderate to excellent stereocontrol for the ROP of rac-lactide. Heterotactic polylactides were produced from rac-lactide with Pr values ranging from 0.68 to 0.89, depending on the catalyst employed and the reaction temperature. The reactivities of the various catalysts were greatly affected by substituents on the Schiff base ligands, with sterically bulky substituents being rate enhancing.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    X-ray crystallographic files in CIF format for the structural determinations of complexes 6ae. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 173 publications.

    1. Sarah L. Hejnosz, Danielle R. Beres, Alexander H. Cocolas, Martin J. Neal, Benjamin S. Musiak, Marianne M. B. Hanna, Aaron J. Bloomfield, Thomas D. Montgomery. [3 + 2] Cycloadditions of Tertiary Amine N-Oxides and Silyl Imines as an Innovative Route to 1,2-Diamines. Organic Letters 2023, 25 (25) , 4638-4643. https://doi.org/10.1021/acs.orglett.3c01396
    2. Valentin Vaillant-Coindard, Benjamin Théron, Gaël Printz, Florian Chotard, Cédric Balan, Yoann Rousselin, Philippe Richard, Iogann Tolbatov, Paul Fleurat-Lessard, Ewen Bodio, Raluca Malacea-Kabbara, Jérôme Bayardon, Samuel Dagorne, Pierre Le Gendre. Phenoxy-Amidine Ligands: Toward Lactic Acid-Tolerant Catalysts for Lactide Ring-Opening Polymerization. Organometallics 2022, 41 (21) , 2920-2932. https://doi.org/10.1021/acs.organomet.2c00343
    3. Tanyawan Pongpanit, Thonthun Saeteaw, Phongnarin Chumsaeng, Pongsakorn Chasing, Khamphee Phomphrai. Highly Active Homoleptic Zinc and Magnesium Complexes Supported by Constrained Reduced Schiff Base Ligands for the Ring-Opening Polymerization of Lactide. Inorganic Chemistry 2021, 60 (22) , 17114-17122. https://doi.org/10.1021/acs.inorgchem.1c02382
    4. Agnieszka Gadomska-Gajadhur, Paweł Ruśkowski. Biocompatible Catalysts for Lactide Polymerization—Catalyst Activity, Racemization Effect, and Optimization of the Polymerization Based On Design of Experiments. Organic Process Research & Development 2020, 24 (8) , 1435-1442. https://doi.org/10.1021/acs.oprd.0c00149
    5. Agnieszka Gadomska-Gajadhur, Ludwik Synoradzki, Paweł Ruśkowski. Poly(lactic acid) for Biomedical Application–Synthesis of Biocompatible Mg Catalyst and Optimization of Its Use in Polymerization of Lactide with the Aid of Design of Experiments. Organic Process Research & Development 2018, 22 (9) , 1167-1173. https://doi.org/10.1021/acs.oprd.8b00165
    6. Tie-Qi Xu, Guan-Wen Yang, Chuang Liu, and Xiao-Bing Lu . Highly Robust Yttrium Bis(phenolate) Ether Catalysts for Excellent Isoselective Ring-Opening Polymerization of Racemic Lactide. Macromolecules 2017, 50 (2) , 515-522. https://doi.org/10.1021/acs.macromol.6b02439
    7. Changjuan Chen, Yaqin Cui, Xiaoyang Mao, Xiaobo Pan, and Jincai Wu . Suppressing Cyclic Polymerization for Isoselective Synthesis of High-Molecular-Weight Linear Polylactide Catalyzed by Sodium/Potassium Sulfonamidate Complexes. Macromolecules 2017, 50 (1) , 83-96. https://doi.org/10.1021/acs.macromol.6b02271
    8. Tannaz Ebrahimi, Emiliya Mamleeva, Insun Yu, Savvas G. Hatzikiriakos, and Parisa Mehrkhodavandi . The Role of Nitrogen Donors in Zinc Catalysts for Lactide Ring-Opening Polymerization. Inorganic Chemistry 2016, 55 (18) , 9445-9453. https://doi.org/10.1021/acs.inorgchem.6b01722
    9. Haobing Wang, Yang Yang, and Haiyan Ma . Exploring Steric Effects in Diastereoselective Synthesis of Chiral Aminophenolate Zinc Complexes and Stereoselective Ring-Opening Polymerization of rac-Lactide. Inorganic Chemistry 2016, 55 (15) , 7356-7372. https://doi.org/10.1021/acs.inorgchem.6b00378
    10. Alexander Kronast, Marina Reiter, Peter T. Altenbuchner, Christian Jandl, Alexander Pöthig, and Bernhard Rieger . Electron-Deficient β-Diiminato-Zinc-Ethyl Complexes: Synthesis, Structure, and Reactivity in Ring-Opening Polymerization of Lactones. Organometallics 2016, 35 (5) , 681-685. https://doi.org/10.1021/acs.organomet.5b00983
    11. Hsiu-Wei Ou, Kai-Hsuan Lo, Wei-Ting Du, Wei-Yi Lu, Wan-Jung Chuang, Bor-Hunn Huang, Hsuan-Ying Chen, and Chu-Chieh Lin . Synthesis of Sodium Complexes Supported with NNO-Tridentate Schiff Base Ligands and Their Applications in the Ring-Opening Polymerization of l-Lactide. Inorganic Chemistry 2016, 55 (4) , 1423-1432. https://doi.org/10.1021/acs.inorgchem.5b02043
    12. Paweł Horeglad, Martyna Cybularczyk, Bartosz Trzaskowski, Grażyna Zofia Żukowska, Maciej Dranka, and Janusz Zachara . Dialkylgallium Alkoxides Stabilized with N-Heterocyclic Carbenes: Opportunities and Limitations for the Controlled and Stereoselective Polymerization of rac-Lactide. Organometallics 2015, 34 (14) , 3480-3496. https://doi.org/10.1021/acs.organomet.5b00071
    13. Yang Yang, Haobing Wang, and Haiyan Ma . Stereoselective Polymerization of rac-Lactide Catalyzed by Zinc Complexes with Tetradentate Aminophenolate Ligands in Different Coordination Patterns: Kinetics and Mechanism. Inorganic Chemistry 2015, 54 (12) , 5839-5854. https://doi.org/10.1021/acs.inorgchem.5b00558
    14. Francisco M. García-Valle, Robert Estivill, Carlos Gallegos, Tomás Cuenca, Marta E. G. Mosquera, Vanessa Tabernero, and Jesús Cano . Metal and Ligand-Substituent Effects in the Immortal Polymerization of rac-Lactide with Li, Na, and K Phenoxo-imine Complexes. Organometallics 2015, 34 (2) , 477-487. https://doi.org/10.1021/om501000b
    15. Haobing Wang, Yang Yang, and Haiyan Ma . Stereoselectivity Switch between Zinc and Magnesium Initiators in the Polymerization of rac-Lactide: Different Coordination Chemistry, Different Stereocontrol Mechanisms. Macromolecules 2014, 47 (22) , 7750-7764. https://doi.org/10.1021/ma501896r
    16. Jinjin Zhang, Jiao Xiong, Yangyang Sun, Ning Tang, and Jincai Wu . Highly Iso-Selective and Active Catalysts of Sodium and Potassium Monophenoxides Capped by a Crown Ether for the Ring-Opening Polymerization of rac-Lactide. Macromolecules 2014, 47 (22) , 7789-7796. https://doi.org/10.1021/ma502000y
    17. Kimberly M. Osten, Dinesh C. Aluthge, Brian O. Patrick, and Parisa Mehrkhodavandi . Probing the Role of Secondary versus Tertiary Amine Donor Ligands for Indium Catalysts in Lactide Polymerization. Inorganic Chemistry 2014, 53 (18) , 9897-9906. https://doi.org/10.1021/ic501529f
    18. Srinivas Abbina and Guodong Du . Zinc-Catalyzed Highly Isoselective Ring Opening Polymerization of rac-Lactide. ACS Macro Letters 2014, 3 (7) , 689-692. https://doi.org/10.1021/mz5002959
    19. Francesco Della Monica, Ermanno Luciano, Giuseppina Roviello, Alfonso Grassi, Stefano Milione, and Carmine Capacchione . Group 4 Metal Complexes Bearing Thioetherphenolate Ligands. Coordination Chemistry and Ring-Opening Polymerization Catalysis. Macromolecules 2014, 47 (9) , 2830-2841. https://doi.org/10.1021/ma5003358
    20. Manuel Honrado, Antonio Otero, Juan Fernández-Baeza, Luis F. Sánchez-Barba, Andrés Garcés, Agustı́n Lara-Sánchez, and Ana M. Rodrı́guez . Stereoselective ROP of rac-Lactide Mediated by Enantiopure NNO-Scorpionate Zinc Initiators. Organometallics 2014, 33 (7) , 1859-1866. https://doi.org/10.1021/om500207x
    21. Sheng Yang, Kun Nie, Yong Zhang, Mingqiang Xue, Yingming Yao, and Qi Shen . New [ONOO]-Type Amine Bis(phenolate) Ytterbium(II) and -(III) Complexes: Synthesis, Structure, and Catalysis for Highly Heteroselective Polymerization of rac-Lactide. Inorganic Chemistry 2014, 53 (1) , 105-115. https://doi.org/10.1021/ic401747n
    22. Wei Yi and Haiyan Ma . Magnesium and Calcium Complexes Containing Biphenyl-Based Tridentate Iminophenolate Ligands for Ring-Opening Polymerization of rac-Lactide. Inorganic Chemistry 2013, 52 (20) , 11821-11835. https://doi.org/10.1021/ic4012668
    23. Lan-Chang Liang, Chia-Cheng Chien, Ming-Tsz Chen, and Sheng-Ta Lin . Zirconium and Hafnium Complexes Containing N-Alkyl-Substituted Amine Biphenolate Ligands: Unexpected Ligand Degradation and Divergent Complex Constitutions Governed by N-Alkyls. Inorganic Chemistry 2013, 52 (13) , 7709-7716. https://doi.org/10.1021/ic400891b
    24. Manuel Honrado, Antonio Otero, Juan Fernández-Baeza, Luis F. Sánchez-Barba, Agustı́n Lara-Sánchez, Juan Tejeda, Marı́a P. Carrión, Jaime Martı́nez-Ferrer, Andrés Garcés, and Ana M. Rodrı́guez . Efficient Synthesis of an Unprecedented Enantiopure Hybrid Scorpionate/Cyclopentadienyl by Diastereoselective Nucleophilic Addition to a Fulvene. Organometallics 2013, 32 (12) , 3437-3440. https://doi.org/10.1021/om4003279
    25. Xiao-Feng Yu, Cheng Zhang, and Zhong-Xia Wang . Rapid and Controlled Polymerization of rac-Lactide Using N,N,O-Chelate Zinc Enolate Catalysts. Organometallics 2013, 32 (11) , 3262-3268. https://doi.org/10.1021/om400193z
    26. Mohammad Hayatifar, Fabio Marchetti, Guido Pampaloni, and Stefano Zacchini . Synthesis, X-ray Characterization, and Reactivity of α-Aminoacidato Ethoxide Complexes of Niobium(V) and Tantalum(V). Inorganic Chemistry 2013, 52 (7) , 4017-4025. https://doi.org/10.1021/ic4000654
    27. Lan-Chang Liang, Sheng-Ta Lin, and Chia-Cheng Chien . Titanium Complexes of Tridentate Aminebiphenolate Ligands Containing Distinct N-Alkyls: Profound N-Substituent Effect on Ring-Opening Polymerization Catalysis. Inorganic Chemistry 2013, 52 (4) , 1780-1786. https://doi.org/10.1021/ic301551v
    28. Kun Nie, Lei Fang, Yingming Yao, Yong Zhang, Qi Shen, and Yaorong Wang . Synthesis and Characterization of Amine-Bridged Bis(phenolate)lanthanide Alkoxides and Their Application in the Controlled Polymerization of rac-Lactide and rac-β-Butyrolactone. Inorganic Chemistry 2012, 51 (20) , 11133-11143. https://doi.org/10.1021/ic301746c
    29. Clare Bakewell, Rachel H. Platel, Samantha K. Cary, Steven M. Hubbard, Joshua M. Roaf, Alex C. Levine, Andrew J. P. White, Nicholas J. Long, Michael Haaf, and Charlotte K. Williams . Bis(8-quinolinolato)aluminum ethyl complexes: Iso-Selective Initiators for rac-Lactide Polymerization. Organometallics 2012, 31 (13) , 4729-4736. https://doi.org/10.1021/om300307t
    30. Courtney C. Roberts, Brandon R. Barnett, David B. Green, and Joseph M. Fritsch . Synthesis and Structures of Tridentate Ketoiminate Zinc Complexes That Act As l-Lactide Ring-Opening Polymerization Catalysts. Organometallics 2012, 31 (11) , 4133-4141. https://doi.org/10.1021/om200865w
    31. Antonio Otero, Juan Fernández-Baeza, Luis F. Sánchez-Barba, Juan Tejeda, Manuel Honrado, Andrés Garcés, Agustín Lara-Sánchez, and Ana M. Rodríguez . Chiral N,N,O-Scorpionate Zinc Alkyls as Effective and Stereoselective Initiators for the Living ROP of Lactides. Organometallics 2012, 31 (11) , 4191-4202. https://doi.org/10.1021/om300146n
    32. Hongsui Sun, Jamie S. Ritch, and Paul G. Hayes . Toward Stereoselective Lactide Polymerization Catalysts: Cationic Zinc Complexes Supported by a Chiral Phosphinimine Scaffold. Inorganic Chemistry 2011, 50 (17) , 8063-8072. https://doi.org/10.1021/ic201139b
    33. Yann Sarazin, Bo Liu, Thierry Roisnel, Laurent Maron, and Jean-François Carpentier . Discrete, Solvent-Free Alkaline-Earth Metal Cations: Metal···Fluorine Interactions and ROP Catalytic Activity. Journal of the American Chemical Society 2011, 133 (23) , 9069-9087. https://doi.org/10.1021/ja2024977
    34. Luis F. Sánchez-Barba, Andrés Garcés, Juan Fernández-Baeza, Antonio Otero, Carlos Alonso-Moreno, Agustín Lara-Sánchez, and Ana M. Rodríguez . Stereoselective Production of Poly(rac-lactide) by ROP with Highly Efficient Bulky Heteroscorpionate Alkylmagnesium Initiators. Organometallics 2011, 30 (10) , 2775-2789. https://doi.org/10.1021/om200163t
    35. Donald J. Darensbourg and Osit Karroonnirun. Ring-Opening Polymerization of l-Lactide and ε-Caprolactone Utilizing Biocompatible Zinc Catalysts. Random Copolymerization of l-Lactide and ε-Caprolactone. Macromolecules 2010, 43 (21) , 8880-8886. https://doi.org/10.1021/ma101784y
    36. Donald J. Darensbourg and Osit Karroonnirun. Stereoselective Ring-Opening Polymerization of rac-Lactides Catalyzed by Chiral and Achiral Aluminum Half-Salen Complexes. Organometallics 2010, 29 (21) , 5627-5634. https://doi.org/10.1021/om100518e
    37. Yong Huang, Yueh-Hsuan Tsai, Wen-Chou Hung, Chieh-Shen Lin, Wei Wang, Jui-Hsien Huang, Saikat Dutta, and Chu-Chieh Lin . Synthesis and Structural Studies of Lithium and Sodium Complexes with OOO-Tridentate Bis(phenolate) Ligands: Effective Catalysts for the Ring-Opening Polymerization of l-Lactide. Inorganic Chemistry 2010, 49 (20) , 9416-9425. https://doi.org/10.1021/ic1011154
    38. Suman Mandal, Mitali Sarkar, Shanku Denrah, Arka Bagchi, Arunima Biswas, David B. Cordes, Alexandra M.Z. Slawin, Nitis Chandra Saha. Catalytic and anticancer activity of two new Ni(II) complexes with a pyrazole based heterocyclic Schiff-base ligand: Synthesis, spectroscopy and X-ray crystallography. Journal of Molecular Structure 2023, 1287 , 135648. https://doi.org/10.1016/j.molstruc.2023.135648
    39. Nicholas M. Shawver, Alicia M. Doerr, Brian K. Long. A perspective on redox‐switchable ring‐opening polymerization. Journal of Polymer Science 2023, 61 (5) , 361-371. https://doi.org/10.1002/pol.20220585
    40. Sourav Singha Roy, Sriparna Sarkar, P. K. Sudhadevi Antharjanam, Debashis Chakraborty. Mononuclear Zn( ii ) compounds supported by iminophenolate proligands binding in the bidentate (N, O) and tridentate (N, O, S) coordination mode: synthesis, characterization and polymerization studies. New Journal of Chemistry 2023, 47 (2) , 635-652. https://doi.org/10.1039/D2NJ03982F
    41. Ashley E. Fricker, Erika Samolova, Arnold L. Rheingold, David B. Green, Kelsey R. Brereton, Joseph M. Fritsch. Synthesis, spectroscopy, and crystallography of magnesium, aluminum, and zinc complexes supported by a tridentate ketoiminate. Polyhedron 2022, 223 , 115946. https://doi.org/10.1016/j.poly.2022.115946
    42. Rianne M. Lord, Felix D. Janeway, Laura Bird, Patrick C. McGowan. Bis(phenyl-β-diketonato)titanium(IV) ethoxide complexes: Ring-opening polymerization of l-lactide by solvent-free microwave irradiation. Polyhedron 2022, 211 , 115520. https://doi.org/10.1016/j.poly.2021.115520
    43. Siham Iksi, Farid El Guemmout, Mar Reguero, Anna M. Masdeu-Bultó, Ali Aghmiz. Crystal Structure and DFT Calculations of Zn(II)-NN’O Schiff Base Complex. Journal of Chemical Crystallography 2021, 51 (3) , 432-437. https://doi.org/10.1007/s10870-020-00865-y
    44. Ilaria D'Auria, Marina Lamberti, Raffaella Rescigno, Vincenzo Venditto, Mina Mazzeo. Copolymerization of L-Lactide and ε-Caprolactone promoted by zinc complexes with phosphorus based ligands. Heliyon 2021, 7 (7) , e07630. https://doi.org/10.1016/j.heliyon.2021.e07630
    45. Andrés Castro Ruiz, Krishna K. Damodaran, Sigridur G. Suman. Towards a selective synthetic route for cobalt amino acid complexes and their application in ring opening polymerization of rac -lactide. RSC Advances 2021, 11 (27) , 16326-16338. https://doi.org/10.1039/D1RA02909F
    46. David T. Jenkins, Eszter Fazekas, Samuel B. H. Patterson, Georgina M. Rosair, Filipe Vilela, Ruaraidh D. McIntosh. Polymetallic Group 4 Complexes: Catalysts for the Ring Opening Polymerisation of rac-Lactide. Catalysts 2021, 11 (5) , 551. https://doi.org/10.3390/catal11050551
    47. Jack Payne, Paul McKeown, Oliver Driscoll, Gabriele Kociok-Köhn, Emma A. C. Emanuelsson, Matthew D. Jones. Make or break: Mg( ii )- and Zn( ii )-catalen complexes for PLA production and recycling of commodity polyesters. Polymer Chemistry 2021, 12 (8) , 1086-1096. https://doi.org/10.1039/D0PY01519A
    48. Jaegyeong Lee, Kyeonghun Kim, Hyosun Lee, Saira Nayab. Cobalt(II) complexes supported by iminomethylpyridine derived ligands: Synthesis, characterization and catalytic application towards methyl methacrylate and rac-lactide polymerisations. Polyhedron 2021, 196 , 115003. https://doi.org/10.1016/j.poly.2020.115003
    49. Alicia M. Doerr, Justin M. Burroughs, Nicholas M. Legaux, Brian K. Long. Redox-switchable ring-opening polymerization by tridentate ONN-type titanium and zirconium catalysts. Catalysis Science & Technology 2020, 10 (19) , 6501-6510. https://doi.org/10.1039/D0CY00642D
    50. Hongyan Zhao, Shaohui Zhang, Xiaojun Fang, Liang Chen, Wenshan Ren. Synthesis, structure and catalytic activity of organozinc complexes derived from chiral sulfonylamidoazetidines. Inorganica Chimica Acta 2020, 511 , 119767. https://doi.org/10.1016/j.ica.2020.119767
    51. Dong-Lai Peng. Synthesis and crystal structure of a phenolato, chlorido and end-on azido-cobridged tetranuclear copper(II) complex derived from 2-[(2-dimethylaminoethylimino)methyl]-4-methylphenol. Inorganic and Nano-Metal Chemistry 2020, 50 (8) , 674-679. https://doi.org/10.1080/24701556.2020.1724143
    52. Suman Das, Ravi Kumar, Ajitrao Devadkar, Tarun K. Panda. Zinc Complexes of β ‐Ketoiminato Ligands as Efficient Catalysts for the Synthesis of α‐Amino Nitriles via Strecker Reaction. Asian Journal of Organic Chemistry 2020, 9 (8) , 1217-1224. https://doi.org/10.1002/ajoc.202000278
    53. Orlando Santoro, Xin Zhang, Carl Redshaw. Synthesis of Biodegradable Polymers: A Review on the Use of Schiff-Base Metal Complexes as Catalysts for the Ring Opening Polymerization (ROP) of Cyclic Esters. Catalysts 2020, 10 (7) , 800. https://doi.org/10.3390/catal10070800
    54. Yoshiaki Haramiishi, Ryo Kawatani, Nalinthip Chanthaset, Hiroharu Ajiro. Preparation of block copolymer of poly(trimethylene carbonate) with oligo(ethylene glycol) and the surface properties of the dip coated film. Polymer Testing 2020, 86 , 106484. https://doi.org/10.1016/j.polymertesting.2020.106484
    55. Jaegyeong Lee, Minyoung Yoon, Hyosun Lee, Saira Nayab. Stereoselective polymerization of methyl methacrylate and rac -lactide mediated by iminomethylpyridine based Cu( ii ) complexes. RSC Advances 2020, 10 (27) , 16209-16220. https://doi.org/10.1039/D0RA00805B
    56. Darío M. González, Nicole B. Cruz, Loreto A. Hernández, Jocelyn Oyarce, Rosario Benavente, Carolina Manzur. Bis‐β‐(diketonates) Zn(II) complexes substituted with thiophene: Electropolymerization, homogeneous and heterogeneous catalysis for ring opening polymerization of lactide. Journal of Polymer Science 2020, 58 (4) , 557-567. https://doi.org/10.1002/pol.20190103
    57. Feng-Jie Lai, Li-Ling Chiu, Chieh-Ling Lee, Wei-Yi Lu, Yi-Chun Lai, Shangwu Ding, Hsuan-Ying Chen, Kuo-Hui Wu. Improvement in zinc complexes bearing Schiff base in ring-opening polymerization of ε-caprolactone: A five-membered ring system. Polymer 2019, 182 , 121812. https://doi.org/10.1016/j.polymer.2019.121812
    58. Zhiyong Wei, Shengnan Shao, Meili Sui, Ping Song, Maomao He, Qiang Xu, Xuefei Leng, Yanshai Wang, Yang Li. Development of zinc salts of amino acids as a new class of biocompatible nucleating agents for poly(l-lactide). European Polymer Journal 2019, 118 , 337-346. https://doi.org/10.1016/j.eurpolymj.2019.05.064
    59. Swarup Ghosh, Pascal M. Schäfer, Dennis Dittrich, Christoph Scheiper, Phillip Steiniger, Gerhard Fink, Agnieszka N. Ksiazkiewicz, Alexander Tjaberings, Christoph Wölper, André H. Gröschel, Andrij Pich, Sonja Herres‐Pawlis, Stephan Schulz. Heterolepic β ‐Ketoiminate Zinc Phenoxide Complexes as Efficient Catalysts for the Ring Opening Polymerization of Lactide. ChemistryOpen 2019, 8 (7) , 951-960. https://doi.org/10.1002/open.201900203
    60. Yoshiaki Haramiishi, Ryo Kawatani, Nalinthip Chanthaset, Hiroharu Ajiro. Viscoelastic Evaluation of Poly(Trimethylene Carbonate)s Bearing Oligoethylene Glycol Units Which Show Thermoresponsive Properties at Body Temperature. Macromolecular Chemistry and Physics 2019, 220 (12) https://doi.org/10.1002/macp.201900019
    61. Juhyun Cho, Min Kyung Chun, Saira Nayab, Jong Hwa Jeong. Synthesis and structures of copper(II) complexes containing N,N-bidentate N-substituted phenylethanamine derivatives as pre-catalysts for heterotactic-enriched polylactide. Polyhedron 2019, 163 , 54-62. https://doi.org/10.1016/j.poly.2019.02.014
    62. Yuan Liang, Meili Sui, Maomao He, Zhiyong Wei, Wanxi Zhang. A Strategy of In Situ Catalysis and Nucleation of Biocompatible Zinc Salts of Amino Acids towards Poly(l-lactide) with Enhanced Crystallization Rate. Polymers 2019, 11 (5) , 790. https://doi.org/10.3390/polym11050790
    63. Zhenjie Yang, Chenyang Hu, Ranlong Duan, Zhiqiang Sun, Han Zhang, Xuan Pang, Lili Li. Salen‐Manganese Complexes and their Application in the Ring‐Opening Polymerization of Lactide and ϵ‐Caprolactone. Asian Journal of Organic Chemistry 2019, 8 (3) , 376-384. https://doi.org/10.1002/ajoc.201800695
    64. Juhyun Cho, Min Kyung Chun, Saira Nayab, Jong Hwa Jeong. Synthesis, characterisation, and X-ray structures of zinc(II) complexes bearing camphor-based ethyleneamineimines as pre-catalysts for heterotactic-enriched polylactide from rac-lactide. Transition Metal Chemistry 2019, 44 (2) , 175-185. https://doi.org/10.1007/s11243-018-0282-9
    65. Alexandre B. Kremer, Parisa Mehrkhodavandi. Dinuclear catalysts for the ring opening polymerization of lactide. Coordination Chemistry Reviews 2019, 380 , 35-57. https://doi.org/10.1016/j.ccr.2018.09.008
    66. Paul McKeown, Strachan N. McCormick, Mary F. Mahon, Matthew D. Jones. Highly active Mg( ii ) and Zn( ii ) complexes for the ring opening polymerisation of lactide. Polymer Chemistry 2018, 9 (44) , 5339-5347. https://doi.org/10.1039/C8PY01369A
    67. Xiang Li, Baojun Yang, Huaili Zheng, Pei Wu, Guoming Zeng, . Synthesis and characterization of salen-Ti(IV) complex and application in the controllable polymerization of D, L-lactide. PLOS ONE 2018, 13 (8) , e0201054. https://doi.org/10.1371/journal.pone.0201054
    68. El‐Sayed A. El‐Samanody, Saeyda A. AbouEl‐Enein, Esam M. Emara. Molecular modeling, spectral investigation and thermal studies of the new asymmetric Schiff base ligand; (E)‐N' ‐(1‐(4‐(( E )‐2‐hydroxybenzylideneamino)phenyl)ethylidene)morpholine‐4‐carbothiohydrazide and its metal complexes: Evaluation of their antibacterial and anti‐molluscicidal activity. Applied Organometallic Chemistry 2018, 32 (4) https://doi.org/10.1002/aoc.4262
    69. Jiao Xiong, Yangyang Sun, Jitao Jiang, Changjuan Chen, Xiaobo Pan, Cheng Wang, Jincai Wu. Metal-size influence of alkali metal complexes for polymerization of rac-lactide. Polyhedron 2018, 141 , 118-124. https://doi.org/10.1016/j.poly.2017.11.046
    70. Jean-Marie E. P. Cols, Victoria G. Hill, Stella K. Williams, Ruaraidh D. McIntosh. Aggregated initiators: defining their role in the ROP of rac -lactide. Dalton Transactions 2018, 47 (31) , 10626-10635. https://doi.org/10.1039/C8DT01229F
    71. Ekemini D. Akpan, Bernard Omondi, Stephen O. Ojwach. Ring-Opening Polymerization Reactions of ε-Caprolactone and Lactides Initiated by (Benzimidazolylmethyl)amino Magnesium(II) Alkoxides. Australian Journal of Chemistry 2018, 71 (5) , 341. https://doi.org/10.1071/CH17506
    72. Susmita Mandal, Monojit Mondal, Jayanta Kumar Biswas, David B. Cordes, Alexandra M.Z. Slawin, Ray J. Butcher, Manan Saha, Nitis Chandra Saha. Synthesis, characterization and antimicrobial activity of some nickel, cadmium and mercury complexes of 5-methyl pyrazole-3yl-N-(2′-methylthiophenyl) methyleneimine, (MPzOATA) ligand. Journal of Molecular Structure 2018, 1152 , 189-198. https://doi.org/10.1016/j.molstruc.2017.09.015
    73. Sarah M. Kirk, Paul McKeown, Mary F. Mahon, Gabriele Kociok-Köhn, Timothy J. Woodman, Matthew D. Jones. Synthesis of Zn II and Al III Complexes of Diaminocyclohexane-Derived Ligands and Their Exploitation for the Ring Opening Polymerisation of rac -Lactide. European Journal of Inorganic Chemistry 2017, 2017 (45) , 5417-5426. https://doi.org/10.1002/ejic.201701186
    74. Joung Heo, Hyosun Lee, Saira Nayab. Polymerizations of methyl methacrylate and rac -lactide by zinc(II) precatalyst containing N -substituted 2-iminomethylpyridine and 2-iminomethylquinoline. Journal of Coordination Chemistry 2017, 70 (23) , 3837-3858. https://doi.org/10.1080/00958972.2017.1416106
    75. Juan Rueda‐Espinosa, Juan F. Torres, Carmen Valdez Gauthier, Lukasz Wojtas, Gaurav Verma, Mario A. Macías, John Hurtado. Copper(II) Complexes with Tridentate Bis(pyrazolylmethyl)pyridine Ligands: Synthesis, X‐ray Crystal Structures and ϵ‐Caprolactone Polymerization. ChemistrySelect 2017, 2 (30) , 9815-9821. https://doi.org/10.1002/slct.201701820
    76. Jayeeta Bhattacharjee, Adimulam Harinath, Hari Pada Nayek, Alok Sarkar, Tarun K. Panda. Highly Active and Iso‐Selective Catalysts for the Ring‐Opening Polymerization of Cyclic Esters using Group 2 Metal Initiators. Chemistry – A European Journal 2017, 23 (39) , 9319-9331. https://doi.org/10.1002/chem.201700672
    77. Hongjun Yang, Aibin Sun, Chenqun Chai, Wenyan Huang, Xiaoqiang Xue, Jianhai Chen, Bibiao Jiang. Synthesis and post-functionalization of a degradable aliphatic polyester containing allyl pendent groups. Polymer 2017, 121 , 256-261. https://doi.org/10.1016/j.polymer.2017.06.029
    78. Natesan Mannangatti Rajendran, Yanxia Xi, Wenjuan Zhang, Yang Sun, Wen‐Hua Sun. Lithium Quinolyl‐Amidinates Efficiently Promoting Ring‐Opening Polymerization of ε‐Caprolactone: Synthesis and 7 Li NMR Spectroscopic Studies. European Journal of Inorganic Chemistry 2017, 2017 (20) , 2653-2660. https://doi.org/10.1002/ejic.201700135
    79. Ranlong Duan, Zhi Qu, Xuan Pang, Yu Zhang, Zhiqiang Sun, Han Zhang, Xinchao Bian, Xuesi Chen. Ring‐Opening Polymerization of Lactide Catalyzed by Bimetallic Salen‐Type Titanium Complexes. Chinese Journal of Chemistry 2017, 35 (5) , 640-644. https://doi.org/10.1002/cjoc.201600580
    80. Kyuong Seop Kwon, Saira Nayab, Hong-In Lee, Jong Hwa Jeong. Synthesis, characterisation, and X-ray structures of Zn(II) complexes containing bis-camphoryldiimine ligands: Application to polymerisation of rac-lactide. Polyhedron 2017, 126 , 127-133. https://doi.org/10.1016/j.poly.2017.01.034
    81. Nelson Nuñez-Dallos, Andrés F. Posada, John Hurtado. Coumarin salen-based zinc complex for solvent-free ring opening polymerization of ε-caprolactone. Tetrahedron Letters 2017, 58 (10) , 977-980. https://doi.org/10.1016/j.tetlet.2017.01.088
    82. Mnqobi Zikode, Stephen O. Ojwach, Matthew P. Akerman. Structurally rigid bis(pyrazolyl)pyridine Zn(II) and Cu(II) complexes: Structures and kinetic studies in ring-opening polymerization of ε-caprolactone. Applied Organometallic Chemistry 2017, 31 (2) , e3556. https://doi.org/10.1002/aoc.3556
    83. Yaqin Cui, Changjuan Chen, Yangyang Sun, Jincai Wu, Xiaobo Pan. Isoselective mechanism of the ring-opening polymerization of rac-lactide catalyzed by chiral potassium binolates. Inorganic Chemistry Frontiers 2017, 4 (2) , 261-269. https://doi.org/10.1039/C6QI00449K
    84. Antonio Otero, Juan Fernández-Baeza, Luis F. Sánchez-Barba, Sonia Sobrino, Andrés Garcés, Agustín Lara-Sánchez, Ana M. Rodríguez. Mono- and binuclear chiral N,N,O-scorpionate zinc alkyls as efficient initiators for the ROP of rac-lactide. Dalton Transactions 2017, 46 (43) , 15107-15117. https://doi.org/10.1039/C7DT03045B
    85. Pascal Binda, Zakiya Barnes, Dechristian Guthrie, Rasaan Ford. Highly Branched Poly(α-Methylene-γ-Butyrolactone) from Ring-Opening Homopolymerization. Open Journal of Polymer Chemistry 2017, 07 (04) , 76-91. https://doi.org/10.4236/ojpchem.2017.74006
    86. Yanxia Xi, Natesan Mannangatti Rajendran, Wenjuan Zhang, Yang Sun, Ming Lei, Wen-Hua Sun. Quinolyl-Amidinates Chelating Bimetallic Magnesium and Mononuclear Aluminum Complexes for ϵ -Caprolactone Polymerization. ChemistrySelect 2016, 1 (18) , 5660-5665. https://doi.org/10.1002/slct.201601517
    87. Zhong-Ran Dai, Chang-Feng Yin, Cheng Wang, Jin-Cai Wu. Zinc bis-Schiff base complexes: Synthesis, structure, and application in ring-opening polymerization of rac-lactide. Chinese Chemical Letters 2016, 27 (11) , 1649-1654. https://doi.org/10.1016/j.cclet.2016.05.001
    88. Kimberly M. Osten, Dinesh C. Aluthge, Parisa Mehrkhodavandi. Ligand Design in Enantioselective Ring‐opening Polymerization of Lactide. 2016, 270-307. https://doi.org/10.1002/9781118839621.ch10
    89. Tomer Rosen, Yanay Popowski, Israel Goldberg, Moshe Kol. Zinc Complexes of Sequential Tetradentate Monoanionic Ligands in the Isoselective Polymerization of rac ‐Lactide. Chemistry – A European Journal 2016, 22 (33) , 11533-11536. https://doi.org/10.1002/chem.201601979
    90. Miao Huang, Haiyan Ma. Magnesium and Zinc Complexes Supported by N,N,O Tridentate Ligands: Synthesis and Catalysis in the Ring‐Opening Polymerization of rac ‐Lactide and α‐Methyltrimethylene Carbonate. European Journal of Inorganic Chemistry 2016, 2016 (23) , 3791-3803. https://doi.org/10.1002/ejic.201600441
    91. Jaewon Cho, Saira Nayab, Jong Hwa Jeong. Stereoselective polymerisation of rac-lactide catalysed by Cu(II) complexes bearing chloro derivatives of N,N′-bis(benzyl)dimethyl-(R,R)-1,2-diaminocyclohexane. Polyhedron 2016, 113 , 81-87. https://doi.org/10.1016/j.poly.2016.04.021
    92. Manuel Honrado, Antonio Otero, Juan Fernández‐Baeza, Luis F. Sánchez‐Barba, Andrés Garcés, Agustín Lara‐Sánchez, Ana M. Rodríguez. Synthesis and Dynamic Behavior of Chiral NNO‐Scorpionate Zinc Initiators for the Ring‐Opening Polymerization of Cyclic Esters. European Journal of Inorganic Chemistry 2016, 2016 (15-16) , 2562-2572. https://doi.org/10.1002/ejic.201501347
    93. Hui-Qin Chang, Lei Jia, Jun Xu, Tao-Feng Zhu, Zhou-Qing Xu, Ru-Hua Chen, Tie-Liang Ma, Yuan Wang, Wei-Na Wu. Syntheses, crystal structures, anticancer activities of three reduce Schiff base ligand based transition metal complexes. Journal of Molecular Structure 2016, 1106 , 366-372. https://doi.org/10.1016/j.molstruc.2015.11.001
    94. P. Horeglad, M. Cybularczyk, A. Litwińska, A. M. Dąbrowska, M. Dranka, G. Z. Żukowska, M. Urbańczyk, M. Michalak. Controlling the stereoselectivity of rac-LA polymerization by chiral recognition induced the formation of homochiral dimeric metal alkoxides. Polymer Chemistry 2016, 7 (11) , 2022-2036. https://doi.org/10.1039/C5PY02005K
    95. Haobing Wang, Jianshuang Guo, Yang Yang, Haiyan Ma. Diastereoselective synthesis of chiral aminophenolate magnesium complexes and their application in the stereoselective polymerization of rac-lactide and rac-β-butyrolactone. Dalton Transactions 2016, 45 (27) , 10942-10953. https://doi.org/10.1039/C6DT01126H
    96. Yu-Ning Chang, Pei-Ying Lee, Xue-Ru Zou, Han-Fan Huang, Yi-Wei Chen, Lan-Chang Liang. Aluminum complexes containing biphenolate phosphine ligands: synthesis and living ring-opening polymerization catalysis. Dalton Transactions 2016, 45 (40) , 15951-15962. https://doi.org/10.1039/C6DT02143C
    97. Mrinmay Mandal, Uwe Monkowius, Debashis Chakraborty. Synthesis and structural characterization of titanium and zirconium complexes containing half-salen ligands as catalysts for polymerization reactions. New Journal of Chemistry 2016, 40 (11) , 9824-9839. https://doi.org/10.1039/C6NJ02148D
    98. Zhiqiang Sun, Ranlong Duan, Jingwei Yang, Han Zhang, Shuai Li, Xuan Pang, Wenqi Chen, Xuesi Chen. Bimetallic Schiff base complexes for stereoselective polymerisation of racemic-lactide and copolymerisation of racemic-lactide with ε-caprolactone. RSC Advances 2016, 6 (21) , 17531-17538. https://doi.org/10.1039/C6RA00289G
    99. Sagnik K. Roymuhury, Debashis Chakraborty, Venkatachalam Ramkumar. Zwitterionic niobium and tantalum complexes with bidentate aminophenol scaffolds: synthesis, structural characterization and use in the ring opening polymerization of lactides. RSC Advances 2016, 6 (54) , 48816-48826. https://doi.org/10.1039/C6RA09789H
    100. Pascal Binda, Kimberly Rivers, Clifford Padgett. Zinc Complexes of New Chiral Aminophenolate Ligands: Synthesis, Characterization and Reactivity toward Lactide. Open Journal of Inorganic Chemistry 2016, 06 (03) , 205-218. https://doi.org/10.4236/ojic.2016.63016
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect