[5,10,15,20-Tetrakis(4-((pentaammineruthenio)- cyano)phenyl)porphyrinato]cobalt(II) Immobilized on Graphite Electrodes Catalyzes the Electroreduction of O2 to H2O, but the Corresponding 4-Cyano-2,6-dimethylphenyl Derivative Catalyzes the Reduction Only to H2O2
*
Corresponding author.
Cited By
This article is cited by 39 publications.
- Yu-Heng Wang, Patrick E. Schneider, Zachary K. Goldsmith, Biswajit Mondal, Sharon Hammes-Schiffer, Shannon S. Stahl. Brønsted Acid Scaling Relationships Enable Control Over Product Selectivity from O2 Reduction with a Mononuclear Cobalt Porphyrin Catalyst. ACS Central Science 2019, 5 (6) , 1024-1034. https://doi.org/10.1021/acscentsci.9b00194
- Ewa Jaworska, Mario L. Naitana, Emilia Stelmach, Giuseppe Pomarico, Marcin Wojciechowski, Ewa Bulska, Krzysztof Maksymiuk, Roberto Paolesse, and Agata Michalska . Introducing Cobalt(II) Porphyrin/Cobalt(III) Corrole Containing Transducers for Improved Potential Reproducibility and Performance of All-Solid-State Ion-Selective Electrodes. Analytical Chemistry 2017, 89 (13) , 7107-7114. https://doi.org/10.1021/acs.analchem.7b01027
- Antonín Trojánek, Jan Langmaier, Hana Kvapilová, Stanislav Záliš, and Zdeněk Samec . Inhibitory Effect of Water on the Oxygen Reduction Catalyzed by Cobalt(II) Tetraphenylporphyrin. The Journal of Physical Chemistry A 2014, 118 (11) , 2018-2028. https://doi.org/10.1021/jp500057x
- Luis R. Dinelli, Gustavo Von Poelhsitz, Eduardo E. Castellano, Javier Ellena, Sérgio E. Galembeck and Alzir A. Batista . On an Electrode Modified by a Supramolecular Ruthenium Mixed Valence (RuII/RuIII) Diphosphine-Porphyrin Assembly. Inorganic Chemistry 2009, 48 (11) , 4692-4700. https://doi.org/10.1021/ic702471d
- Jean-Michel Savéant. Molecular Catalysis of Electrochemical Reactions. Mechanistic Aspects. Chemical Reviews 2008, 108 (7) , 2348-2378. https://doi.org/10.1021/cr068079z
- Richard P. Kingsborough and, Timothy M. Swager. Electrocatalytic Conducting Polymers: Oxygen Reduction by a Polythiophene−Cobalt Salen Hybrid. Chemistry of Materials 2000, 12 (4) , 872-874. https://doi.org/10.1021/cm9907099
- Hua-Zhong Yu,, J. Spencer Baskin,, Beat Steiger,, Fred C. Anson, and, Ahmed H. Zewail. Femtosecond Dynamics and Electrocatalysis of the Reduction of O2: Tetraruthenated Cobalt Porphyrins. Journal of the American Chemical Society 1999, 121 (2) , 484-485. https://doi.org/10.1021/ja983532c
- Lin Li, Zhi-wen Chang, Xin-Bo Zhang. Recent Progress on the Development of Metal-Air Batteries. Advanced Sustainable Systems 2017, 1 (10) , 1700036. https://doi.org/10.1002/adsu.201700036
- José H. Zagal, Marc T. M. Koper. Reaktivitätsdeskriptoren für die Aktivität von molekularen MN4-Katalysatoren zur Sauerstoffreduktion. Angewandte Chemie 2016, 128 (47) , 14726-14738. https://doi.org/10.1002/ange.201604311
- José H. Zagal, Marc T. M. Koper. Reactivity Descriptors for the Activity of Molecular MN4 Catalysts for the Oxygen Reduction Reaction. Angewandte Chemie International Edition 2016, 55 (47) , 14510-14521. https://doi.org/10.1002/anie.201604311
- Kexi Liu, Yinkai Lei, Rongrong Chen, Guofeng Wang. Oxygen Electroreduction on M-N4 Macrocyclic Complexes. 2016, 1-39. https://doi.org/10.1007/978-3-319-31172-2_1
- Chunyu Du, Yongrong Sun, Tiantian Shen, Geping Yin, Jiujun Zhang. Applications of RDE and RRDE Methods in Oxygen Reduction Reaction. 2014, 231-277. https://doi.org/10.1016/B978-0-444-63278-4.00007-0
- Zhong-Li Wang, Dan Xu, Ji-Jing Xu, Xin-Bo Zhang. Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 2014, 43 (22) , 7746-7786. https://doi.org/10.1039/C3CS60248F
- Justus Masa, Kenneth I. Ozoemena, Wolfgang Schuhmann, José H. Zagal. Fundamental Studies on the Electrocatalytic Properties of Metal Macrocyclics and Other Complexes for the Electroreduction of O2. 2013, 157-212. https://doi.org/10.1007/978-1-4471-4911-8_7
- Xin Chen, Dingguo Xia, Zheng Shi, Jiujun Zhang. Theoretical Study of Oxygen Reduction Reaction Catalysts: From Pt to Non-precious Metal Catalysts. 2013, 339-373. https://doi.org/10.1007/978-1-4471-4911-8_11
- Zhongwei Chen, Drew Higgins, Aiping Yu, Lei Zhang, Jiujun Zhang. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy & Environmental Science 2011, 4 (9) , 3167. https://doi.org/10.1039/c0ee00558d
- Henrique E. Toma, Koiti Araki. Exploring the Supramolecular Coordination Chemistry‐Based Approach for Nanotechnology. 2009, 379-486. https://doi.org/10.1002/9780470440124.ch5
- Raheleh Partovi-Nia, Bin Su, Fei Li, Claude P. Gros, Jean-Michel Barbe, Zdenek Samec, Hubert H. Girault. Proton Pump for O 2 Reduction Catalyzed by 5,10,15,20-Tetraphenylporphyrinatocobalt(II). Chemistry - A European Journal 2009, 15 (10) , 2335-2340. https://doi.org/10.1002/chem.200801807
- Daniel A. Scherson, Attila Palencsár, Yuriy Tolmachev, Ionel Stefan. Transition Metal Macrocycles as Electrocatalysts for Dioxygen Reduction. 2008, 191-288. https://doi.org/10.1002/9783527625307.ch3
- Mojtaba Shamsipur, Mostafa Najafi, Mohammad-Reza Milani Hosseini, Hashem Sharghi. Electrocatalytic Reduction of Dioxygen at Carbon Paste Electrode Modified with a Novel Cobalt(III) Schiff's Base Complex. Electroanalysis 2007, 19 (16) , 1661-1667. https://doi.org/10.1002/elan.200703902
- C. Song, L. Zhang, J. Zhang, D. P. Wilkinson, R. Baker. Temperature Dependence of Oxygen Reduction Catalyzed by Cobalt Fluoro‐Phthalocyanine Adsorbed on a Graphite Electrode. Fuel Cells 2007, 7 (1) , 9-15. https://doi.org/10.1002/fuce.200500205
- Nagao Kobayashi. Oxygen Electrocatalysis. 2007https://doi.org/10.1002/9783527610426.bard101001
- Michael J. Johnson, Dennis G. Peters. Electrochemistry of Cobalt‐containing Species. 2006https://doi.org/10.1002/9783527610426.bard070019
- Chaojie Song, Lei Zhang, Jiujun Zhang. Reversible one-electron electro-reduction of O2 to produce a stable superoxide catalyzed by adsorbed Co(II) hexadecafluoro-phthalocyanine in aqueous alkaline solution. Journal of Electroanalytical Chemistry 2006, 587 (2) , 293-298. https://doi.org/10.1016/j.jelechem.2005.11.025
- Kalyan Gadamsetti, Shawn Swavey. Electrocatalytic reduction of oxygen at electrodes coated with a bimetallic cobalt(ii)/platinum(ii) porphyrin. Dalton Transactions 2006, 109 (46) , 5530. https://doi.org/10.1039/b614108k
- Lei Zhang, Chaojie Song, Jiujun Zhang, Haijiang Wang, David P. Wilkinson. Temperature and pH Dependence of Oxygen Reduction Catalyzed by Iron Fluoroporphyrin Adsorbed on a Graphite Electrode. Journal of The Electrochemical Society 2005, 152 (12) , A2421. https://doi.org/10.1149/1.2109667
- Herbert Winnischofer, Vésper Yoshiyuki Otake, Sergio Dovidauskas, Marcelo Nakamura, Henrique Eisi Toma, Koiti Araki. Supramolecular tetracluster-cobalt porphyrin: a four-electron transfer catalyst for dioxygen reduction. Electrochimica Acta 2004, 49 (22-23) , 3711-3718. https://doi.org/10.1016/j.electacta.2003.12.052
- Toshiyuki Abe, Masao Kaneko. Reduction catalysis by metal complexes confined in a polymer matrix. Progress in Polymer Science 2003, 28 (10) , 1441-1488. https://doi.org/10.1016/S0079-6700(03)00057-1
- A. Deronzier, J.-C. Moutet. Electrochemical Reactions Catalyzed by Transition Metal Complexes. 2003, 471-507. https://doi.org/10.1016/B0-08-043748-6/09008-3
- Fábio M. Engelmann, Pellegrino Losco, Herbert Winnischofer, Koiti Araki, Henrique E. Toma. Synthesis, electrochemistry, spectroscopy and photophysical properties of a series of meso -phenylpyridylporphyrins with one to four pyridyl rings coordinated to [ Ru ( bipy ) 2 Cl ] + groups. Journal of Porphyrins and Phthalocyanines 2002, 06 (01) , 33-42. https://doi.org/10.1142/S1088424602000063
- Mojtaba Shamsipur, Abdollah Salimi, Hasan Haddadzadeh, Mir Fazlollah Mousavi. Electrocatalytic activity of cobaloxime complexes adsorbed on glassy carbon electrodes toward the reduction of dioxygen. Journal of Electroanalytical Chemistry 2001, 517 (1-2) , 37-44. https://doi.org/10.1016/S0022-0728(01)00644-1
- Koiti Araki, Sergio Dovidauskas, Herbert Winnischofer, Anamaria D.P. Alexiou, Henrique Eisi Toma. A new highly efficient tetra-electronic catalyst based on a cobalt porphyrin bound to four μ3-oxo-ruthenium acetate clusters. Journal of Electroanalytical Chemistry 2001, 498 (1-2) , 152-160. https://doi.org/10.1016/S0022-0728(00)00348-X
- N Rea, B Loock, D Lexa. Porphyrins bound to Ru(bpy)2 clusters: electrocatalysis of sulfite. Inorganica Chimica Acta 2001, 312 (1-2) , 53-66. https://doi.org/10.1016/S0020-1693(00)00319-4
- Beat Steiger, J. Spencer Baskin, Fred C. Anson, Ahmed H. Zewail. Femtosecond Dynamics of Dioxygen – Picket-Fence Cobalt Porphyrins: Ultrafast Release of O2 and the Nature of Dative Bonding. Angewandte Chemie 2000, 112 (1) , 263-266. https://doi.org/10.1002/(SICI)1521-3757(20000103)112:1<263::AID-ANGE263>3.0.CO;2-Z
- Henrique E Toma, Koiti Araki. Supramolecular assemblies of ruthenium complexes and porphyrins. Coordination Chemistry Reviews 2000, 196 (1) , 307-329. https://doi.org/10.1016/S0010-8545(99)00041-7
- Takakazu Yamamoto, Tohru Kimura, Kouichi Shiraishi. Preparation of π-Conjugated Polymers Composed of Hydroquinone, p -Benzoquinone, and p -Diacetoxyphenylene Units. Optical and Redox Properties of the Polymers. Macromolecules 1999, 32 (26) , 8886-8896. https://doi.org/10.1021/ma9907946
- BEAT STEIGER, FRED C. ANSON. Preparation, Isolation and Electrochemical Characterization of Cobalt Porphyrins with Ru ( NH 3 ) 5 2+ Complexes Coordinated to 4-Cyanophenyl Substituents in the 5, 10, 15 and 20 Positions on the Porphyrin Ring. Journal of Porphyrins and Phthalocyanines 1999, 03 (02) , 159-165. https://doi.org/10.1002/(SICI)1099-1409(199902)3:2<159::AID-JPP113>3.0.CO;2-E
- Lucian Gurban, André Tézé, Gilbert Hervé. Coordination of the tetrakis-pyridyl-porphyrin to the ferri-11-tungstophosphate. Electrocatalytic activity of the complex immobilized on a glassy carbon electrode. Comptes Rendus de l'Académie des Sciences - Series IIC - Chemistry 1998, 1 (5-6) , 397-403. https://doi.org/10.1016/S1387-1609(98)80177-1
- Fred C. Anson, Chunnian Shi, Beat Steiger. Novel Multinuclear Catalysts for the Electroreduction of Dioxygen Directly to Water. Accounts of Chemical Research 1997, 30 (11) , 437-444. https://doi.org/10.1021/ar960264j