ACS Publications. Most Trusted. Most Cited. Most Read
My Activity

Methylation of Tethered Thiolates in [(bme-daco)Zn]2 and [(bme-daco)Cd]2 as a Model of Zinc Sulfur-Methylation Proteins

View Author Information
Department of Chemistry, Texas A&M University, College Station, Texas 77843
Cite this: Inorg. Chem. 1998, 37, 16, 4052–4058
Publication Date (Web):July 17, 1998
Copyright © 1998 American Chemical Society

    Article Views





    Read OnlinePDF (174 KB)
    Supporting Info (1)»


    Abstract Image

    The dimeric dithiolate complex [1,5-bis(mercaptoethyl)-1,5-diazacyclooctanato]zinc(II), [(bme-daco)Zn]2 or Zn-1, and its cadmium analogue, Cd-1, were investigated as models for the active site of zinc-dependent methylation proteins. The key issue addressed was whether alkylation of a thiolate in a relatively rigid tetradentate ligand would result in coordination of the thioether product to the metal. On the basis of 1H and 13C NMR spectroscopy and similar reactivity toward alkylating agents, the newly synthesized cadmium complex, Cd-1, is proposed to be isostructural with the previously reported Zn-1 complex, which is known from X-ray crystallography to be dimeric in the solid state (Tuntulani, T.; Reibenspies, J. H.; Farmer, P. J.; Darensbourg, M. Y. Inorg. Chem. 1992, 31, 3497). Iodomethane reacts with Zn-1 in hot CH3OH/CH3CN to produce a thioether which dissociates, replaced by coordination of iodide in the pseudotetrahedral complex, (Me2bme-daco)ZnI2 or Zn-2. Complex Zn-2 crystallizes in the triclinic P1̄ space group with a = 7.911(2) Å, b = 10.675(2) Å, c = 12.394(2) Å, α = 75.270(10)°, β = 75.270(10)°, γ = 82.12(2)°, V = 998.270 Å3, and Z = 2. An analogous reaction was observed for the cadmium derivative, Cd-1, which displays a 1H NMR spectrum identical to that of Zn-2. In attempts to promote thioether binding, the iodide was displaced by addition of AgBF4 to solutions of Zn-2 or the BF4- analogue was synthesized directly from Zn(BF4)2 and methylated ligand, Me2bme-daco, to yield Zn-3. Similar reactions with the cadmium analogue yielded a product identified as Cd-3 that was indistinguishable from Zn-3 by 1H NMR. The 113Cd NMR spectra of Cd-3 displayed a single resonance at 88 ppm consistent with a hard donor environment and inconsistent with sulfur binding. As a further attempt to induce thioether binding to zinc, the macrocyclization reagent 1,3-dibromopropane was added to Zn-1. The resulting product, [BrZn(macrocycle)]+, was only slightly soluble in pyridine and identified by +FAB/MS as the desired macrocyclic product with a large amount of free macrocycle ligand. Recrystallization from pyridine/ether resulted in loss of the zinc as Zn(py)2Br2, which was obtained as colorless crystals and characterized by X-ray crystallography. Complex Zn(py)2Br2 crystallizes in the monoclinic P21/c space group with a = 8.534(2) Å, b = 18.316(4) Å, c = 8.461(2) Å, β = 101.07(3)°, V = 1297.9(5) Å3, and Z = 4.

     Current address:  Department of Chemistry, Chulalongkorn University, Bangkok, Thailand 10330.


    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    Jump To

    Tables of crystallographic data collection parameters, atomic coordinates and equivalent isotropic displacement parameters, complete bond lengths and bond angles, and anisotropic displacement parameters and packing diagrams for Zn-2 and Zn(py)2Br2 (17 pages). Ordering information is given on any current masthead page.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system:

    Cited By

    This article is cited by 74 publications.

    1. Anuj Baran Chakraborty, Tuhin Ganguly, Amit Majumdar. Hydrolysis and Transfer Reactivity of the Coordinated Thiolate, Thiocarboxylate, and Selenolate in Binuclear Zinc(II) Complexes. Inorganic Chemistry 2023, 62 (28) , 11095-11111.
    2. Kamal Hossain, Amit Majumdar. Polysulfido Chain in Binuclear Zinc(II) Complexes. Inorganic Chemistry 2022, 61 (16) , 6295-6310.
    3. Marcello Gennari, Carole Duboc. Bio-inspired, Multifunctional Metal–Thiolate Motif: From Electron Transfer to Sulfur Reactivity and Small-Molecule Activation. Accounts of Chemical Research 2020, 53 (11) , 2753-2761.
    4. Moises Ballesteros II, Emily Y. Tsui. Reactivity of Zinc Thiolate Bonds: Oxidative Organopolysulfide Formation and S3 Insertion. Inorganic Chemistry 2019, 58 (16) , 10501-10507.
    5. Tapash Deb and Michael P. Jensen . Electrophilic Alkylation of Pseudotetrahedral Nickel(II) Arylthiolate Complexes. Inorganic Chemistry 2015, 54 (1) , 87-96.
    6. Minwoo Park, Hyeun Kim, Haeri Lee, Tae Hwan Noh, and Ok-Sang Jung . Host–Guest Chemistry of 1D Suprachannels and Dihalomethane Molecules: Metallacyclodimeric Ensembles Consisting of Zinc(II)-2,7-bis(nicotinoyloxy)naphthalene Complexes. Crystal Growth & Design 2014, 14 (9) , 4461-4467.
    7. Marcello Gennari, Marius Retegan, Serena DeBeer, Jacques Pécaut, Frank Neese, Marie-Noëlle Collomb, and Carole Duboc . Experimental and Computational Investigation of Thiolate Alkylation in NiII and ZnII Complexes: Role of the Metal on the Sulfur Nucleophilicity. Inorganic Chemistry 2011, 50 (20) , 10047-10055.
    8. Elky Almaraz, William S. Foley, Jason A. Denny, Joseph H. Reibenspies, Melissa L. Golden and Marcetta Y. Darensbourg . Development of Five-Coordinate Zinc Mono- and Dithiolates as S-Donor Metalloligands: Formation of a Zn−W Coordination Polymer. Inorganic Chemistry 2009, 48 (12) , 5288-5295.
    9. Delphine Picot, Gilles Ohanessian and Gilles Frison. The Alkylation Mechanism of Zinc-Bound Thiolates Depends upon the Zinc Ligands. Inorganic Chemistry 2008, 47 (18) , 8167-8178.
    10. Elky Almaraz, Queite A. de Paula, Qin Liu, Joseph H. Reibenspies, Marcetta Y. Darensbourg and Nicholas P. Farrell. Thiolate Bridging and Metal Exchange in Adducts of a Zinc Finger Model and PtII Complexes: Biomimetic Studies of Protein/Pt/DNA Interactions. Journal of the American Chemical Society 2008, 130 (19) , 6272-6280.
    11. Mian Ji,, Boumahdi Benkmil, and, Heinrich Vahrenkamp. Zinc−Thiolate Complexes of the Bis(pyrazolyl)(thioimidazolyl)hydroborate Tripods for the Modeling of Thiolate Alkylating Enzymes. Inorganic Chemistry 2005, 44 (10) , 3518-3523.
    12. Steven M. Berry and, Deborah C. Bebout, , Raymond J. Butcher. Solid-State and Solution-State Coordination Chemistry of the Zinc Triad with the Mixed N,S Donor Ligand Bis(2-methylpyridyl) Sulfide. Inorganic Chemistry 2005, 44 (1) , 27-39.
    13. Udo Brand,, Michael Rombach,, Jan Seebacher, and, Heinrich Vahrenkamp. Functional Modeling of Cobalamine-Independent Methionine Synthase with Pyrazolylborate−Zinc−Thiolate Complexes. Inorganic Chemistry 2001, 40 (24) , 6151-6157.
    14. Brian S. Hammes and, Carl J. Carrano. Methylation of (2-Methylethanethiol-bis-3,5-dimethylpyrazolyl)methane Zinc Complexes and Coordination of the Resulting Thioether:  Relevance to Zinc-Containing Alkyl Transfer Enzymes. Inorganic Chemistry 2001, 40 (5) , 919-927.
    15. Brian S. Hammes and, Carl J. Carrano. Synthesis and Characterization of Pseudotetrahedral N2O and N2S Zinc(II) Complexes of Two Heteroscorpionate Ligands:  Models for the Binding Sites of Several Zinc Metalloproteins. Inorganic Chemistry 1999, 38 (20) , 4593-4600.
    16. Christopher P. Landee, Firas F. Awwadi, Brendan Twamley, Mark M. Turnbull. Coordination chemistry and magnetic properties of copper(II) halide complexes of quinoline. Journal of Coordination Chemistry 2022, 75 (19-24) , 2616-2627.
    17. Tilak Naskar, Nabhendu Pal, Amit Majumdar. Synthesis and redox reactions of binuclear zinc( ii )–thiolate complexes with elemental sulfur. New Journal of Chemistry 2021, 45 (47) , 22406-22416.
    18. B.L.C. Noir. metallothiolates. 2020
    19. R.B. Lincoln. BME‐DACO, bme‐daco. 2020
    20. Carl J. Carrano. A Family of Homo‐ and Heteroscorpionate Ligands: Applications to Bioinorganic Chemistry. European Journal of Inorganic Chemistry 2016, 2016 (15-16) , 2377-2390.
    21. C. Slabbert, M. Rademeyer. Structures and trends of neutral MX x solvent 4−x tetrahedra and anionic [MX 4 ] 2− tetrahalometallates of zinc( ii ), cadmium( ii ) and mercury( ii ) with benzopyridine- and benzopyrazine-type N-donor ligands or cations. CrystEngComm 2016, 18 (24) , 4555-4579.
    22. Nidhi Tyagi, Ovender Singh, Udai P. Singh, Kaushik Ghosh. Nitric oxide (NO) reactivity studies on mononuclear iron( ii ) complexes supported by a tetradentate Schiff base ligand. RSC Advances 2016, 6 (116) , 115326-115333.
    23. Daniel Rabinovich. Synthetic Bioinorganic Chemistry: Scorpionates Turn 50. 2016, 139-157.
    24. Ajay Singh Karakoti, Ritesh Shukla, Rishi Shanker, Sanjay Singh. Surface functionalization of quantum dots for biological applications. Advances in Colloid and Interface Science 2015, 215 , 28-45.
    25. Hyeun Kim, Minwoo Park, Haeri Lee, Ok-Sang Jung. Construction of helical coordination polymers via flexible conformers of bis(3-pyridyl)cyclotetramethylenesilane: metal( ii ) and halogen effects on luminescence, thermolysis and catalysis. Dalton Transactions 2015, 44 (17) , 8198-8204.
    26. J. A. Denny, W. S. Foley, A. D. Todd, M. Y. Darensbourg. The ligand unwrapping/rewrapping pathway that exchanges metals in S-acetylated, hexacoordinate N 2 S 2 O 2 complexes. Chemical Science 2015, 6 (12) , 7079-7088.
    27. Mohamed M. Ibrahim, A. Mosa. Structural zinc(II) thiolate complexes relevant to the modeling of Ada repair protein: Application toward alkylation reactions. Arabian Journal of Chemistry 2014, 7 (5) , 672-679.
    28. Haeri Lee, Tae Hwan Noh, Ok-Sang Jung. Halogen effects on photoluminescence and catalytic properties: a series of spatially arranged trimetallic zinc( ii ) complexes. Dalton Trans. 2014, 43 (10) , 3842-3849.
    29. Jason A. Denny, William S. Foley, Elky Almaraz, Joseph H. Reibenspies, Nattamai Bhuvanesh, Marcetta Y. Darensbourg. Comparisons of zinc with cadmium in N 2 S 2 coordination and as S-bonded adducts to tungsten carbonyls. Dalton Trans. 2012, 41 (1) , 143-148.
    30. Graham A. Bowmaker, Effendy, Fariati, Susanto I. Rahajoe, Brian W. Skelton, Allan H. White. Structural and Infrared Spectroscopic Studies of Some Adducts of Divalent Metal Dihalides (MX2, M = Zn, Cd; X = CI, Br, I) with Variously Hindered Monodentate Nitrogen (Pyridine) Base Ligands (L = Pyridine, 2-Methylpyridine, and Quinoline) of 1:2 Stoichio. Zeitschrift für anorganische und allgemeine Chemie 2011, 637 (10) , 1361-1370.
    31. Marzena Wojciechowska-Nowak, Beata Jasiewicz, Władysław Boczoń, Beata Warżajtis, Urszula Rychlewska. Spectroscopic and X-ray studies of N-methylanabasine complexes with ZnX2 (X=Br, Cl). Journal of Molecular Structure 2011, 997 (1-3) , 15-19.
    32. Ulrich Siemeling, Thorsten Klemann, Clemens Bruhn, Jiří Schulz, Petr Štěpnička. The coordination behaviour of ferrocene-based pyridylphosphine ligands towards ZnII, CdII and HgII. Dalton Transactions 2011, 40 (17) , 4722.
    33. Mohamed M. Ibrahim. Zinc(II)-bound thiolate complexes-containing cysteine derivatives modeling of methionine synthase alkylating enzyme. Journal of Sulfur Chemistry 2010, 31 (5) , 395-403.
    34. Rüdiger W. Seidel, Iris M. Oppel. 1D and 2D solid-state metallosupramolecular arrays of freebase 5,10,15,20-tetra(4-pyridyl)porphyrin, peripherally linked by zinc and manganese ions. Structural Chemistry 2009, 20 (1) , 121-128.
    35. Elky Almaraz, Jason A. Denny, William S. Foley, Joseph H. Reibenspies, Nattamai Bhuvanesh, Marcetta Y. Darensbourg. Zinc/Nickel exchange and ligand cannibalism in N2S2O1,2 donor ligand sets. Dalton Transactions 2009, 26 (43) , 9496.
    36. Queite A. de Paula, Qin Liu, Elky Almaraz, Jason A. Denny, John B. Mangrum, Nattamai Bhuvanesh, Marcetta Y. Darensbourg, Nicholas P. Farrell. Reactions of palladium and gold complexes with zinc-thiolate chelates using electrospray mass spectrometry and X-ray diffraction: molecular identification of [Pd(bme-dach)], [Au(bme-dach]+ and [ZnCl(bme-dach)]2Pd. Dalton Transactions 2009, 109 (48) , 10896.
    37. Mario Wriedt, Inke Jeß, Christian Näther. Synthesis, Crystal Structures, and Thermal Properties of New [ZnX 2 (2,5‐dimethylpyrazine)] (X = Cl, Br, I) Coordination Compounds. European Journal of Inorganic Chemistry 2009, 2009 (3) , 363-372.
    38. Ulrich Siemeling, Thorsten Klemann, Clemens Bruhn, Bernhard Neumüller, Kurt Dehnicke. Chelate Complexes of the Pyrid-2-yl Analogue of Tetracyclone. Zeitschrift für anorganische und allgemeine Chemie 2008, 634 (5) , 895-900.
    39. Andrew S. Lipton, Paul D. Ellis. Modeling the Metal Center of Cys 4 Zinc Proteins. Journal of the American Chemical Society 2007, 129 (29) , 9192-9200.
    40. James Penner-Hahn. Zinc-promoted alkyl transfer: a new role for zinc. Current Opinion in Chemical Biology 2007, 11 (2) , 166-171.
    41. Johannes Notni, Wolfgang Günther, Ernst Anders. Zinc Thiolate Complexes [ZnL n (SR)] + with Azamacrocyclic Ligands, Part III: The Influence of the Ligand L n on the Reactivity of Zinc‐Bound Thiolate. European Journal of Inorganic Chemistry 2007, 2007 (7) , 985-993.
    42. Gajendrasingh K. Ingle, Magdalena M. Makowska-Grzyska, Ewa Szajna-Fuller, Indranil Sen, John C. Price, Atta M. Arif, Lisa M. Berreau. Influence of the Chelate Ligand Structure on the Amide Methanolysis Reactivity of Mononuclear Zinc Complexes. Inorganic Chemistry 2007, 46 (4) , 1471-1480.
    43. Mohamed M. Ibrahim. The influence of hydrogen bonding on the rate of thiolate alkylation in tripod-zinc thiolate complexes. Inorganica Chimica Acta 2006, 359 (13) , 4235-4242.
    44. Jonathan G. Melnick, Guang Zhu, Daniela Buccella, Gerard Parkin. Thiolate exchange in [TmR]ZnSR′ complexes and relevance to the mechanisms of thiolate alkylation reactions involving zinc enzymes and proteins. Journal of Inorganic Biochemistry 2006, 100 (5-6) , 1147-1154.
    45. Johannes Notni, Helmar Görls, Ernst Anders. Zinc Thiolate Complexes [ZnL n (SR)] + with Azamacrocyclic Ligands: Synthesis and Structural Properties. European Journal of Inorganic Chemistry 2006, 2006 (7) , 1444-1455.
    46. Xuehong Liu, Christopher Alexander, Jose Serrano, Erik Borg, David C. Dawson. Variable Reactivity of an Engineered Cysteine at Position 338 in Cystic Fibrosis Transmembrane Conductance Regulator Reflects Different Chemical States of the Thiol. Journal of Biological Chemistry 2006, 281 (12) , 8275-8285.
    47. Monte L. Helm, Lensey L. Hill, John P. Lee, Donald G. Van Derveer, Gregory J. Grant. Cadmium-113 NMR studies on homoleptic complexes containing thioether ligands: the crystal structures of [Cd([12]aneS4)2](ClO4)2, [Cd([18]aneS4N2)](PF6)2 and [Cd([9]aneS3)2](PF6)2. Dalton Transactions 2006, 97 (29) , 3534.
    48. Lisa M. Berreau. Bioinorganic Chemistry of Group 12 Complexes Supported by Tetradentate Tripodal Ligands Having Internal Hydrogen‐Bond Donors. European Journal of Inorganic Chemistry 2006, 2006 (2) , 273-283.
    49. Melissa M. Morlok, Kevin E. Janak, Guang Zhu, Duncan A. Quarless, Gerard Parkin. Intramolecular NH···S Hydrogen Bonding in the Zinc Thiolate Complex [Tm Ph ]ZnSCH 2 C(O)NHPh:  A Mechanistic Investigation of Thiolate Alkylation as Probed by Kinetics Studies and by Kinetic Isotope Effects. Journal of the American Chemical Society 2005, 127 (40) , 14039-14050.
    50. Thomas Stey, Dietmar Stalke. The Di(benzothiazol‐2‐yl)‐phosphanide Janus Head Ligand in Zinc and Cadmium Coordination. Zeitschrift für anorganische und allgemeine Chemie 2005, 631 (13-14) , 2931-2936.
    51. Mohamed M. Ibrahim, Guosen He, Jan Seebacher, Boumahdi Benkmil, Heinrich Vahrenkamp. Biomimetic Thiolate Alkylation with Zinc Pyrazolylbis(thioimidazolyl)borate Complexes. European Journal of Inorganic Chemistry 2005, 2005 (20) , 4070-4077.
    52. Mian Ji, Heinrich Vahrenkamp. Zinc Thiolate Complexes of (N,N,S)‐Tridentate Ligands for the Modeling of Thiolate Alkylating Enzymes. European Journal of Inorganic Chemistry 2005, 2005 (7) , 1398-1405.
    53. Wenpeng Kou, Harsha S. Kolla, Alfonso Ortiz-Acevedo, Donovan C. Haines, Matthew Junker, Gregg R. Dieckmann. Modulation of zinc- and cobalt-binding affinities through changes in the stability of the zinc ribbon protein L36. JBIC Journal of Biological Inorganic Chemistry 2005, 10 (2) , 167-180.
    54. Qin Liu, Melissa Golden, Marcetta Y. Darensbourg, Nicholas Farrell. Thiolate-bridged heterodinuclear platinum–zinc chelates as models for ternary platinum–DNA–protein complexes and zinc ejection from zinc fingers. Evidence from studies using ESI-mass spectrometry. Chemical Communications 2005, 579 (34) , 4360.
    55. Robert Pejchal, Martha L Ludwig, . Cobalamin-Independent Methionine Synthase (MetE): A Face-to-Face Double Barrel That Evolved by Gene Duplication. PLoS Biology 2004, 3 (2) , e31.
    56. Derek C. Fox, Adam T. Fiedler, Heather L. Halfen, Thomas C. Brunold, Jason A. Halfen. Electronic Structure Control of the Nucleophilicity of Transition Metal−Thiolate Complexes:  An Experimental and Theoretical Study. Journal of the American Chemical Society 2004, 126 (24) , 7627-7638.
    57. Kirsten E Armstrong, Jonathan D Crane, Matthew Whittingham. Structural insight into the different reactivities towards ligand S-ethylation with iodoethane of the tetrahedral zinc(II) complexes of 1,1,5,5-tetramethyl-2-thiobiuret and 1,1,5,5-tetramethyl-2,4-dithiobiuret. Inorganic Chemistry Communications 2004, 7 (6) , 784-787.
    58. Arefa Docrat, Melissa M Morlok, Brian M Bridgewater, David G Churchill, Gerard Parkin. N–H⋯O hydrogen bonding interactions in tetrahedral [ZnS4] complexes of relevance to zinc enzymes: the synthesis, structures and reactivity of tris(2-mercapto-1-arylimidazolyl)hydroborato zinc(2-mercapto-1-arylimidazole) complexes, {[TmAr]Zn(mimAr)}[ClO4] (Ar=Ph, p-Tol). Polyhedron 2004, 23 (2-3) , 481-488.
    59. Jan Seebacher, Mian Ji, Heinrich Vahrenkamp. (Neocuproin)zinc Thiolates: Attempts at Modeling Cobalamin‐Independent Methionine Synthase. European Journal of Inorganic Chemistry 2004, 2004 (2) , 409-417.
    60. Daniel A. Tobin, Jennifer S. Pickett, Heather L. Hartman, Carol A. Fierke, James E. Penner-Hahn. Structural Characterization of the Zinc Site in Protein Farnesyltransferase. Journal of the American Chemical Society 2003, 125 (33) , 9962-9969.
    61. Show-Jen Chiou, Charles G. Riordan, Arnold L. Rheingold. Synthetic modeling of zinc thiolates: Quantitative assessment of hydrogen bonding in modulating sulfur alkylation rates. Proceedings of the National Academy of Sciences 2003, 100 (7) , 3695-3700.
    62. Brian S Hammes, Matthew T Kieber-Emmons, Joseph A Letizia, Zahida Shirin, Carl J Carrano, Lev N Zakharov, Arnold L Rheingold. Synthesis and characterization of several zinc(II) complexes containing the bulky heteroscorpionate ligand bis(5-tert-butyl-3-methylpyrazol-2-yl)acetate: relevance to the resting states of the zinc(II) enzymes thermolysin and carboxypeptidase A. Inorganica Chimica Acta 2003, 346 , 227-238.
    63. Miguel Machuqueiro, Tamis Darbre. Zinc mediated methyl transfer from trimethyl phosphate to chelating and non-chelating alkyl thiols. Model for Zn-dependent methyltransferases. Journal of Inorganic Biochemistry 2003, 94 (1-2) , 193-196.
    64. S.J. Archibald. Zinc. 2003, 1147-1251.
    65. Russell A. Allred, Lenore H. McAlexander, Atta M. Arif, Lisa M. Berreau. Chemistry of a Binuclear Cadmium(II) Hydroxide Complex:  Formation from Water, CO 2 Reactivity, and Comparison to a Zinc Analog. Inorganic Chemistry 2002, 41 (25) , 6790-6801.
    66. Selma Bakbak, Christopher D. Incarvito, Arnold L. Rheingold, Daniel Rabinovich. Synthesis and Characterization of Novel Mononuclear Cadmium Thiolate Complexes in a Sulfur-Rich Environment. Inorganic Chemistry 2002, 41 (4) , 998-1001.
    67. Núria Romero-Isart, Milan Vašák. Advances in the structure and chemistry of metallothioneins. Journal of Inorganic Biochemistry 2002, 88 (3-4) , 388-396.
    68. SeChin Chang, Vivek V. Karambelkar, Roger D. Sommer, Arnold L. Rheingold, David P. Goldberg. New Monomeric Cobalt(II) and Zinc(II) Complexes of a Mixed N,S(alkylthiolate) Ligand:  Model Complexes of (His)(His)(Cys) Metalloprotein Active Sites. Inorganic Chemistry 2002, 41 (2) , 239-248.
    69. Show-Jen Chiou, Julie Innocent, Charles G. Riordan, Kin-Chung Lam, Louise Liable-Sands, Arnold L. Rheingold. Synthetic Models for the Zinc Sites in the Methionine Synthases. Inorganic Chemistry 2000, 39 (19) , 4347-4353.
    70. Lauakia M. Richburg, Jamshaid A. Farouq, Christopher D. Incarvito, Arnold L. Rheingold*, Daniel Rabinovich*. Zinc bis(pyrazolyl)silane complexes. Polyhedron 2000, 19 (15) , 1815-1820.
    71. Karin Sauer, Rudolf K. Thauer. Methyl-coenzyme M formation in methanogenic archaea. European Journal of Biochemistry 2000, 267 (9) , 2498-2504.
    72. Renzo Cini. Molecular Orbital Study of Complexes of Zinc(II) with Sulphide, Thiomethanolate, Thiomethanol, Dimethylthioether, Thiophenolate, Formiate, Acetate, Carbonate, Hydrogen Carbonate, Iminomethane and Imidazole. Relationships with Structural and Catalytic Zinc in Some Metallo-Enzymes. Journal of Biomolecular Structure and Dynamics 1999, 16 (6) , 1225-1237.
    73. Kendra E Hightower, Carol A Fierke. Zinc-catalyzed sulfur alkylation: insights from protein farnesyltransferase. Current Opinion in Chemical Biology 1999, 3 (2) , 176-181.
    74. Daniel Rabinovich. Poly(mercaptoimidazolyl)borate Complexes of Cadmium and Mercury. , 143-162.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Your Mendeley pairing has expired. Please reconnect