ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Vinylic C−H Bond Activation and Hydrogenation Reactions of Tp‘Ir(C2H4)(L) Complexes

View Author Information
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain, Departamento de Química y Ciencia de los Materiales, Universidad de Huelva, 21819 Palos de la Frontera, Huelva, Spain, and Departamento de Química InorgánicaInstituto de Investigaciones Químicas, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, c/ Américo Vespuccio s/n, Isla de la Cartuja, 41092 Sevilla, Spain
Cite this: Inorg. Chem. 1998, 37, 18, 4538–4546
Publication Date (Web):August 11, 1998
https://doi.org/10.1021/ic9800785
Copyright © 1998 American Chemical Society

    Article Views

    447

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The substitution of one of the ethylene ligands of the complexes Tp‘Ir(C2H4)2 (Tp‘ = TpMe2, 1*; Tp‘ = Tp, 1) by soft donors such as tertiary phosphines or carbon monoxide is a facile reaction that gives the corresponding Tp‘Ir(C2H4)(L) adducts. Spectroscopic studies support their formulation as five-coordinate, 18-electron species that possess a distorted trigonal bipyramidal geometry. This proposal has been confirmed by a single-crystal X-ray study carried out with the PMe2Ph complex TpMe2Ir(C2H4)(PMe2Ph) (3b*). Related hydride derivatives of Ir(III) can be obtained either by hydrogenation of the Ir(I) adducts (in general, this gives Tp‘IrH2(L) compounds) or by thermal activation of one of the C−H bonds of the coordinated C2H4 ligand of the TpMe2Ir(C2H4)(L) compounds. All these reactions can be understood by invoking the participation of transient, 16-electron (η2-Tp‘)Ir intermediates, but the thermodynamics of the [Ir](C2H4) to [Ir]H(CHCH2) conversion does not require an overall change in the coordination mode of the Tp‘ ligand.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Instituto de Ciencia de Materiales de Madrid, CSIC.

     Universidad de Huelva.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    §

     Universidad de Sevilla-CSIC.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    For 3b* and 13b*, tables of positional and thermal parameters, fractional coordinates, and bond lengths and angles (20 pages). Ordering information is given on any current masthead page.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 47 publications.

    1. Ángela Vivancos, Nuria Rendón, Margarita Paneque, Manuel L. Poveda, and Eleuterio Álvarez . Reactivity of a Tp–Iridacyclopentene Complex. Organometallics 2015, 34 (22) , 5438-5453. https://doi.org/10.1021/acs.organomet.5b00775
    2. Angel L. Serrano, Miguel A. Casado, José A. López, and Cristina Tejel . Rhodium and Iridium Complexes with a New Scorpionate Phosphane Ligand. Inorganic Chemistry 2013, 52 (13) , 7593-7607. https://doi.org/10.1021/ic400684s
    3. Yohei Kashiwame, Shigeki Kuwata, and Takao Ikariya . Catalytic Intramolecular Hydroamination with a Bifunctional Iridium Pyrazolato Complex: Substrate Scope and Mechanistic Elucidation. Organometallics 2012, 31 (23) , 8444-8455. https://doi.org/10.1021/om301063n
    4. Roberto Ciganda, María A. Garralda, Lourdes Ibarlucea, Claudio Mendicute-Fierro, M. Carmen Torralba, and M. Rosario Torres . Reactions of Hydridoirida-β-diketones with Amines or with 2-Aminopyridines: Formation of Hydridoirida-β-ketoimines, PCN Terdentate Ligands, and Acyl Decarbonylation. Inorganic Chemistry 2012, 51 (3) , 1760-1768. https://doi.org/10.1021/ic202065d
    5. Christine Hahn. Structural Investigations of Platinum(II) Styrene and Styryl Complexes and Mechanistic Study of Vinylic Deprotonation. Organometallics 2010, 29 (6) , 1331-1338. https://doi.org/10.1021/om900482k
    6. María A. Garralda,, Ricardo Hernández,, Lourdes Ibarlucea,, Elena Pinilla,, M. Rosario Torres, and, Malkoa Zarandona. Rhodium(III) Acyl Hydrido, Acyl Hydroxyalkyl, Diacyl, Acyl Hydrido Aldehyde, and Acyl Hydrido Alcohol Complexes. Reduction of Aldehyde to Alcohol through Rhodium Hydroxyalkyl Complexes. Organometallics 2007, 26 (4) , 1031-1038. https://doi.org/10.1021/om060978q
    7. Paul I. P. Elliott,, Claire E. Haslam,, Sharon E. Spey, and, Anthony Haynes. Formation and Reactivity of Ir(III) Hydroxycarbonyl Complexes. Inorganic Chemistry 2006, 45 (16) , 6269-6275. https://doi.org/10.1021/ic0601844
    8. Verónica Salazar,, Oscar R. Suárez-Castillo,, Rosa Padilla,, J. Carlos Macías P.,, Miguel Ángel Méndez-Rojas,, Joaquín Tamariz, and, Adriana Benavides. Synthesis of η4:π2-Exocyclic-Diene Iridium(I) Complexes Derived from 1,3-Oxazolidin-2-ones and Their Transformation into Iridium(III) Derivatives by Reaction with a Phosphine and with Aldehydes. Organometallics 2006, 25 (1) , 172-176. https://doi.org/10.1021/om050582z
    9. Francisco Acha,, María A. Garralda,, Lourdes Ibarlucea,, Elena Pinilla, and, M. Rosario Torres. Novel Hydridoirida-β-diketones Containing Small Molecules, CO, or Ethylene:  Their Behavior in Coordinating Solvents Such as Dimethylsulfoxide or Acetonitrile. Inorganic Chemistry 2005, 44 (24) , 9084-9091. https://doi.org/10.1021/ic051219n
    10. Pilar Rodríguez,, M. Mar Díaz-Requejo,, Tomás R. Belderrain,, Swiatoslaw Trofimenko,, M. Carmen Nicasio, and, Pedro J. Pérez. Alkane Dehydrogenation by Sequential, Double C−H Bond Activation by TpBr3Ir(C2H4)2 (TpBr3 = hydrotris(3,4,5-tribromo)pyrazolylborate). Organometallics 2004, 23 (9) , 2162-2167. https://doi.org/10.1021/om034242u
    11. Neil G. Connelly,, David J. H. Emslie,, Phimphaka Klangsinsirikul, and, Philip H. Rieger. Analysis of Electron Paramagnetic Resonance Spectra with Very Large Quadrupole Couplings. The Journal of Physical Chemistry A 2002, 106 (51) , 12214-12220. https://doi.org/10.1021/jp021799z
    12. Itzia I. Padilla-Martínez,, Manuel L. Poveda, and, Ernesto Carmona, , M. Angeles Monge and, Caridad Ruiz-Valero. Synthesis and Reactivity of [Ir(C2H4)2TpmMe2]PF6 (TpmMe2 = Tris(3,5-dimethylpyrazolyl)methane):  Comparison with the Analogous TpMe2 Derivatives (TpMe2 = Hydrotris(3,5-dimethylpyrazolyl)borate). Organometallics 2002, 21 (1) , 93-104. https://doi.org/10.1021/om010594u
    13. Bishajit Biswas,, Manabu Sugimoto, and, Shigeyoshi Sakaki. C−H Bond Activation of Benzene and Methane by M(η2-O2CH)2 (M = Pd or Pt). A Theoretical Study. Organometallics 2000, 19 (19) , 3895-3908. https://doi.org/10.1021/om000002s
    14. Margarita Paneque,, Manuel L. Poveda, and, Verónica Salazar, , Enrique Gutiérrez-Puebla and, Angeles Monge. Synthesis of η2:σ2-Diene Complexes of Iridium(III) by the Reaction of η4:π2-Diene Iridium(I) Species with Lewis Bases. Organometallics 2000, 19 (16) , 3120-3126. https://doi.org/10.1021/om000382h
    15. M. Carmen Nicasio,, Margarita Paneque,, Pedro J. Pérez,, Antonio Pizzano,, Manuel L. Poveda,, Luis Rey,, Sabine Sirol,, Soraya Taboada,, Marianela Trujillo,, Angeles Monge,, Caridad Ruiz, and, Ernesto Carmona. Substitution and Hydrogenation Reactions on Rhodium(I)−Ethylene Complexes of the Hydrotris(pyrazolyl)borate Ligands Tp‘ (Tp‘ = Tp, TpMe2). Inorganic Chemistry 2000, 39 (2) , 180-188. https://doi.org/10.1021/ic990419u
    16. Margarita Paneque,, Manuel L. Poveda,, Verónica Salazar,, Soraya Taboada, and, Ernesto Carmona, , Enrique Gutiérrez-Puebla,, Angeles Monge, and, Caridad Ruiz. C−H Bond Activation of Thiophenes by Ir Complexes of the Hydrotris(3,5-dimethylpyrazolyl)borate Ligand, TpMe2. Organometallics 1999, 18 (2) , 139-149. https://doi.org/10.1021/om9804834
    17. Manuel A. Gomez‐Bonilla, Verónica Salazar‐Pereda, Daniel Mendoza‐Espinosa, Simplicio Gonzalez‐Montiel, Aracely Castañeda‐Ovando, Susana Rojas‐Lima, Cesar I. Sandoval‐Chavez, Jorge A. Lopez‐Jímenez. Reactivity of 2‐mercaptopyridines with Iridium(I)‐Tris(pyrazolyl) borate complexes. European Journal of Inorganic Chemistry 2021, 2021 (13) , 1244-1250. https://doi.org/10.1002/ejic.202001153
    18. Andrew J. Vetter, Tarah A. DiBenedetto, Mikhaila D. Ritz, William D. Jones. The functionalization of benzene by boranes using trispyrazolylborate complexes. Polyhedron 2021, 197 , 115042. https://doi.org/10.1016/j.poly.2021.115042
    19. Virginia San Nacianceno, Susan Azpeitia, Lourdes Ibarlucea, Claudio Mendicute-Fierro, Antonio Rodríguez-Diéguez, José M. Seco, Eider San Sebastian, María A. Garralda. Stereoselective formation and catalytic activity of hydrido(acylphosphane)(chlorido)(pyrazole)rhodium( iii ) complexes. Experimental and DFT studies. Dalton Transactions 2015, 44 (29) , 13141-13155. https://doi.org/10.1039/C5DT01705J
    20. Paul I. P. Elliott, Susanne Haak, Anthony J. H. M. Meijer, Glenn J. Sunley, Anthony Haynes. Reactivity of Ir(iii) carbonyl complexes with water: alternative by-product formation pathways in catalytic methanol carbonylation. Dalton Transactions 2013, 42 (47) , 16538. https://doi.org/10.1039/c3dt52092g
    21. Montserrat Barquín, María A. Garralda, Ricardo Hernández, Lourdes Ibarlucea, Claudio Mendicute‐Fierro, M. Carmen Torralba, M. Rosario Torres, Virginia San Nacianceno, Itziar Zumeta. New Acylhydrido‐ and Diacylrhodium(III) Organocomplexes Derived from 8‐Quinolinecarbaldehyde and/or o ‐(Diphenylphosphanyl)benzaldehyde. European Journal of Inorganic Chemistry 2012, 2012 (9) , 1445-1452. https://doi.org/10.1002/ejic.201100904
    22. Verónica Salazar, Gloria Sánchez-Cabrera, Francisco J. Zuno-Cruz, Oscar R. Suárez-Castillo, Julián Cruz, Rosa Padilla, Martín Hernández, Arián E. Roa, Celia Maya, Marco A. Leyva, María J. Rosales-Hoz, Pandiyan Thangarasu. Reactivity of TpMe2Ir(C2H4)(DMAD) with carboxylic acids. A DFT study on geometrical isomers and structural characterization. Journal of Organometallic Chemistry 2011, 696 (3) , 748-757. https://doi.org/10.1016/j.jorganchem.2010.09.073
    23. Margarita Paneque, Manuel L. Poveda, Nuria Rendón. Synthesis and Reactivity of Iridacycles Containing the Tp Me2 Ir Moiety. European Journal of Inorganic Chemistry 2011, 2011 (1) , 19-33. https://doi.org/10.1002/ejic.201000809
    24. Patricia Lara, Margarita Paneque, Manuel L. Poveda, Laura L. Santos, José E. V. Valpuesta, Verónica Salazar, Ernesto Carmona, Salvador Moncho, Gregori Ujaque, Agustí Lledós, Celia Maya, Kurt Mereiter. Synthetic, Mechanistic, and Theoretical Studies on the Generation of Iridium Hydride Alkylidene and Iridium Hydride Alkene Isomers. Chemistry – A European Journal 2009, 15 (36) , 9046-9057. https://doi.org/10.1002/chem.200900654
    25. José A. Camerano, Miguel A. Casado, Miguel A. Ciriano, Cristina Tejel, Luis A. Oro. Coordination Features of a Hybrid Scorpionate/Phosphane Ligand Exemplified with Iridium. Chemistry – A European Journal 2008, 14 (6) , 1897-1905. https://doi.org/10.1002/chem.200701209
    26. Ian R. Crossley. The Organometallic Chemistry of Group 9 Poly(pyrazolyl)borate Complexes. 2008, 199-321. https://doi.org/10.1016/S0065-3055(07)56004-1
    27. C. M. Nagaraja, Munirathinam Nethaji, Balaji R. Jagirdar. Tris(pyrazolyl)methane Sulfonate Complexes of Iridium:  Catalytic Hydrogenation of 3,3-Dimethyl-1-butene. Organometallics 2007, 26 (25) , 6307-6311. https://doi.org/10.1021/om700515n
    28. Margarita Paneque, Cristina M. Posadas, Manuel L. Poveda, Nuria Rendón, Eleuterio Álvarez, Kurt Mereiter. Investigations on the Coupling of Ethylene and Alkynes in [IrTp] Compounds: Water as an Effective Trapping Agent. Chemistry – A European Journal 2007, 13 (18) , 5160-5172. https://doi.org/10.1002/chem.200601500
    29. Margarita Paneque, Cristina M. Posadas, Manuel L. Poveda, Nuria Rendón, Kurt Mereiter. Reactivity of the Iridium(I) Alkene/Alkyne Complex Tp Me2 Ir(C 2 H 4 )(MeO 2 CC⋮CCO 2 Me). Organometallics 2007, 26 (13) , 3120-3129. https://doi.org/10.1021/om061056q
    30. Thomas Dirnberger, Helmut Werner. A Series of Hydrido(vinyl)iridium(III) Complexes That Are Thermodynamically More Stable than Their Olefin Iridium(I) Isomers. Organometallics 2005, 24 (21) , 5127-5139. https://doi.org/10.1021/om0505099
    31. Zbigniew Ciunik, Tomasz Ruman, Marta Lukasiewicz, Stanislaw Wolowiec. Complexes of heteroscorpionate trispyrazolylborate ligands. Part XI. Weak CH/π interactions in crystals of hydrotris(3-phenylpyrazolyl)boratothallium(I) and hydrobis(5-methyl-3-phenylpyrazolyl)(3,5-dimethylpyrazol-yl)boratothallium(I) studied by X-ray crystallography. Journal of Molecular Structure 2004, 690 (1-3) , 175-180. https://doi.org/10.1016/j.molstruc.2003.12.002
    32. Ernesto Carmona, Margarita Paneque, Manuel L. Poveda. Generation and reactivity of sterically hindered iridium carbenes. Competitive α- vs. β-hydrogen elimination in iridium( iii ) alkyls. Dalton Trans. 2003, 76 (21) , 4022-4029. https://doi.org/10.1039/B303710J
    33. Jay D. Feldman, Jonas C. Peters, T. Don Tilley. Structural and Chemical Properties of Zwitterionic Iridium Complexes Featuring the Tripodal Phosphine Ligand [PhB(CH 2 PPh 2 ) 3 ] -. Organometallics 2002, 21 (20) , 4050-4064. https://doi.org/10.1021/om0205086
    34. Jackson S. Wiley, D. M. Heinekey. Novel Intramolecular C−H Bond Activation in an Iridium dppm Complex. Inorganic Chemistry 2002, 41 (19) , 4961-4966. https://doi.org/10.1021/ic0257367
    35. H. V. Rasika Dias, Hui-Ling Lu, Hyoung-Juhn Kim, Sharon A. Polach, Timothy K. H. H. Goh, R. Greg Browning, Carl J. Lovely. Copper(I) Ethylene Adducts and Aziridination Catalysts Based on Fluorinated Tris(pyrazolyl)borates [HB(3-(CF 3 ),5-(R)Pz) 3 ] - (where R = CF 3 , C 6 H 5 , H; Pz = pyrazolyl). Organometallics 2002, 21 (7) , 1466-1473. https://doi.org/10.1021/om010886v
    36. . Activation of C-H Bonds by Low-valent Metal Complexes (“The Organometallic Chemistry”). 2002, 127-199. https://doi.org/10.1007/0-306-46945-6_5
    37. David M. Tellers, Robert G. Bergman. An Examination of C−H Bond Activation by Cationic Tp Me 2 Ir(III) Complexes. Organometallics 2001, 20 (23) , 4819-4832. https://doi.org/10.1021/om010697c
    38. Margarita Paneque, Sabine Sirol, Marianela Trujillo, Ernesto Carmona, Enrique Gutiérrez-Puebla, M. Angeles Monge, Caridad Ruiz, François Malbosc, C. Serra-Le Berre, Philippe Kalck, Michel Etienne, Jean Claude Daran. Step-by-Step Uncoordination of the Pyrazolyl Rings of Hydrotris(pyrazolyl)borate Ligands in Complexes of RhI and RhIII. Chemistry - A European Journal 2001, 7 (18) , 3868-3879. https://doi.org/10.1002/1521-3765(20010917)7:18<3868::AID-CHEM3868>3.0.CO;2-T
    39. Tomasz Ruman, Marta Łukasiewicz, Zbigniew Ciunik, Stanisław Wołowiec. Complexes of heteroscorpionate trispyrazolylborate anionic ligands. Part III. X-ray crystallographic and NMR studies on cobalt(II) complexes with tris(pyrazolyl)borate anionic ligands obtained from 3,5-di-methylpyrazole and 3(5)-methyl,5(3)-phenylpyrazole. Polyhedron 2001, 20 (19) , 2551-2558. https://doi.org/10.1016/S0277-5387(01)00854-3
    40. Haw Yang, Charles Bonner Harris. Probing Bond Activation Reactions with Femtosecond Infrared. 2001https://doi.org/10.1201/9780203904763.ch2
    41. Christian Slugovc*, Itzia Padilla-Martı́nez, Sabine Sirol, Ernesto Carmona*. Rhodium- and iridium-trispyrazolylborate complexes. Coordination Chemistry Reviews 2001, 213 (1) , 129-157. https://doi.org/10.1016/S0010-8545(00)00365-9
    42. Alexander P. Sadimenko. Organometallic Complexes of Pyrazolylborates and Related Ligands. 2001, 167-252. https://doi.org/10.1016/S0065-2725(01)81012-6
    43. David M. Tellers, Steven J. Skoog, Robert G. Bergman, T. Brent Gunnoe, W. Dean Harman. Comparison of the Relative Electron-Donating Abilities of Hydridotris(pyrazolyl)borate and Cyclopentadienyl Ligands:  Different Interactions with Different Transition Metals. Organometallics 2000, 19 (13) , 2428-2432. https://doi.org/10.1021/om000043o
    44. Douglas D. Wick, William D. Jones. Energetics of Homogeneous Intermolecular Vinyl and Allyl Carbon−Hydrogen Bond Activation by the 16-Electron Coordinatively Unsaturated Organometallic Fragment [Tp‘Rh(CNCH 2 CMe 3 )]. Organometallics 1999, 18 (4) , 495-505. https://doi.org/10.1021/om9808211
    45. Enrique Gutiérrez-Puebla, Angeles Monge, Margarita Paneque, Manuel L. Poveda, Verónica Salazar, Ernesto Carmona. Activation of Aldehydes by the Ir−2,3-Dimethylbutadiene Complex Tp Me2 Ir(CH 2 C(Me)C(Me)CH 2 ). Journal of the American Chemical Society 1999, 121 (1) , 248-249. https://doi.org/10.1021/ja9819357
    46. Enrique Gutiérrez-Puebla, Angeles Monge, Margarita Paneque, Manuel L. Poveda, Soraya Taboada, Marianela Trujillo, Ernesto Carmona. Synthesis and Properties of Tp Me2 IrH 4 and Tp Me2 IrH 3 (SiEt 3 ):  Ir(V) Polyhydride Species with C 3 v Geometry. Journal of the American Chemical Society 1999, 121 (2) , 346-354. https://doi.org/10.1021/ja980881y
    47. Todd O. Northcutt, Rene J. Lachicotte, William D. Jones. 11 B NMR:  A New Tool for the Determination of Hapticity of Tris(pyrazolyl)borate Ligands. Organometallics 1998, 17 (23) , 5148-5152. https://doi.org/10.1021/om9805685

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect